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ABSTRACT:

Recently, with InSAR data provided by the German TanDEM-X mission, a new global, high-resolution Digital Elevation Model (DEM)
has been produced by the German Aerospace Center (DLR) with unprecedented height accuracy. However, due to SAR-inherent sensor
specifics, its quality decreases over urban areas, making additional improvement necessary. On the other hand, DEMs derived from
optical remote sensing imagery, such as Cartosat-1 data, have an apparently greater resolution in urban areas, making their fusion with
TanDEM-X elevation data a promising perspective. The objective of this paper is two-fold: First, the height accuracies of TanDEM-X
and Cartosat-1 elevation data over different land types are empirically evaluated in order to analyze the potential of TanDEM-X-
Cartosat-1 DEM data fusion. After the quality assessment, urban DEM fusion using weighted averaging is investigated. In this
experiment, both weight maps derived from the height error maps delivered with the DEM data, as well as more sophisticated weight
maps predicted by a procedure based on artificial neural networks (ANNs) are compared. The ANN framework employs several features
that can describe the height residual performance to predict the weights used in the subsequent fusion step. The results demonstrate
that especially the ANN-based framework is able to improve the quality of the final DEM through data fusion.

1. INTRODUCTION

Digital Elevation Models (DEMs) as a representation of terrain
surface with different resolution and coverage are produced for
diverse applications. Special interest lies in the generation of
global DEMs, which provide homogeneous information about
the worlds topography for (almost) the complete globe. One of
the most recent and most prominent examples of global terrain
datasets is the TanDEM-X DEM, which was produced by the Ger-
man TanDEM-X mission, consisting of two SAR satellites flying
in close orbit configuration. The mission goals aimed at a DEM
of HRTI 3 standard, i.e. with a relative height accuracy better
than 2 m for slopes lower than 20 % (Krieger et al., 2007). How-
ever, initial visual inspection of TanDEM-X DEM data demon-
strates undesirable horizontal resolution and height accuracy in
morphologically complex terrains like urban areas and in conse-
quence the need for quality enhancement in these areas (Rossi et
al., 2011). One possibility for improvement of TanDEM-X eleva-
tion data in problematic terrain is the fusion with other available
elevation data which do not suffer from SAR-inherent imaging
effects such as layover and shadowing. Examples for these alter-
native data are DEMs derived from optical stereo imagery. Opti-
cal DEMs generally reach HRTI-3 standard (with a relative height
accuracy of 2-3 m) when they are produced using high-resolution
optical imagery like acquired by Cartosat-1.

This paper first investigates the height accuracies and errors of
both the TanDEM-X and the Cartosat-1 elevation data for differ-
ent land types. The output of this assessment illustrates the per-
formance of each DEM for a specific land type and allows for an
educated judgment about which DEM shows favourable accuracy
for which land type, thus providing a basis for the consideration
of DEM fusion. Afterwards, the results of a simple preliminary

TSX/Cartosat-1 DEM fusion are shown and discussed. In order
to reach a better result, a more sophisticated approach for adap-
tive weight map generation is proposed. It employs several fea-
tures that can describe the height residual performance and uses
them as input to an artificial neural network (ANN) to predict the
weights used in the subsequent fusion step.

2. TANDEM-X AND CARTOSAT-1 DEM
UNCERTAINTY ASSESSMENT

Because of the different vertical and horizontal datum of the test
DEMs and the reference DEM, all data must first be transferred
to one reference datum with identical pixel spacing. For the ex-
periments in this paper, we chose to use UTM as joint reference
system with heights measured above the WGS84 ellipsoid. All
data were resampled to 3 m pixel spacing to preserve more de-
tails in the high resolution DEM and to prevent the creation of an
artificial vertical bias caused by lost building shape details.

After datum homogenization, the test DEMs must be precisely
aligned to the reference DEM in order to remove any rotational
and horizontal translations. In this study, the Iterative Closest
Point (ICP) algorithm (Ravanbakhsh and Fraser, 2013) was used
for DEM coregistration. After alignment, the DEMs can be eval-
uated with respect to the reference dataset. The usual metrics
for this aim are standard deviation (STD) and LE90 (linear error
in 90% confidence interval; a common metric in the TanDEM-
X specification document to express TanDEM-X accuracy lo-
cally and globally (German Aerosapce Center (DLR), 2016). All
aforementioned metrics are only reasonable when the height er-
rors at least approximately follow a normal distribution. In addi-
tion, If the quantile-quantile plot of the height errors over study
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areas demonstrates that the errors do not follow a normal distribu-
tion, other robust metrics like normal median absolute deviation
(NMAD) are recommended for error analysis (Höhle and Höhle,
2009). Section 4.2 summarizes the results of our accuracy as-
sessment of TanDEM-X and Cartosat-1 DEM data over different
urban and rural land types.

3. DEM FUSION OVER URBAN AREAS

As the results of the uncertainty assessment (see Section 4.2) will
validate, the quality of the TanDEM-X DEM is not perfect in
urban areas, especially when high buildings are present. As men-
tioned in Section 1, a feasible solution for the improvement of
TanDEM-X elevation data over urban areas is the fusion with
Cartosat-1 DEM data, which were shown to provide much better
accuracy in urban areas. Various methods have been formulated
for DEM fusion (Crosetto et al. 1998; Reinartz et al. 2005; Pa-
pasaika et al. 2011; Kuschk et al. 2016; Fuss et al. 2016), an
important application case of data fusion in the field of remote
sensing (Schmitt and Zhu, 2016). Among the aforementioned
methods, the simplest and most popular one is weighted aver-
aging (WA) (Reinartz et al., 2005). The main issue of WA is
to employ weights which are proportional to the expected height
errors. In this paper two attempts are followed for generating
weight maps which can describe the qualities of corresponding
DEMs. First, the height error maps delivered with the TanDEM
X data and the standard deviation maps of the Cartosat 1 stereo
matching are used as weight maps in the WA-based fusion. Sec-
ondly, more sophisticated weight maps are generated using an
ANN-based approach in order to predict more accurate weights
based on spatial features extracted from the DEMs.

3.1 DEM Fusion Using HEM-based Weight Maps

The TanDEM-X DEM comes with a height error map (HEM),
which is derived from the coherence estimates, the number of
looks, and the baseline configuration. For the Cartosat-1 DEM,
the standard deviation of the stereo matching process, including
consideration of the number of stereo matched points can be used
to produce a similar HEM.

Before application of the fusion process, the Cartosat-1 DEM
must be aligned to the TanDEM-X DEM, which again is carried
out using the ICP algorithm. After that, TanDEM-X and Cartosat-
1 are fused together by using the acquired weight maps based on
the simple weighted averaging.

3.2 DEM Fusion Using ANN-Predicted Weight Maps

As will be shown in Section 4.3.1, DEM fusion over urban ar-
eas using simple weighted averaging with weight maps derived
from the height error maps delivered with the DEM products does
not result in a DEM accuracy exceeding the Cartosat-1 DEM
accuracy. Therefore, a more sophisticated approach for adap-
tive weight map generation is proposed. It employs several fea-
tures that can describe the height residual performance and uses
them as input to an artificial neural network (ANN) to predict the
weights used in the subsequent fusion step. The framework of
the proposed method is shown in Fig. 1. It consists of three main
steps that are: 1) feature extraction and height residual computa-
tion, 2) data preprocessing and finally 3) training of an artificial
neural network to generate a suitable weight predictor. The out-
put of the network is a model that can approximately predict the
height residuals in the target areas where two DEMs are supposed
to be fused.

3.2.1 Feature Extraction and Data Preprocessing: For the
training of the ANN training data representing different relevant
land types are used. From those, features such as slope, aspect,
edginess, different types of roughness, anisotropic coefficient
of variation (ACV) and height error map (HEM) are extracted
(Olaya, Gruber and Peckham, 2009). In addition, height residual
maps are calculated from the corresponding DEM patches and
LiDAR ground truth data.

Before building the ANN structure, pre-processing the height
residuals related to feature values is essential to remove outliers
and reduce the noise influence. For this purpose, a two-step mean
filtering process is carried out. The significant characteristic of
this pre-processing step is to bin feature values by a statistical-
empirical binning approach. The feature values and their corre-
sponding height residuals are binned by Freedman-Diaconis rule
(Birgé and Rozenholc, 2006):

N =
fmax
j − fmin

j

h
(1)

where h = 2 × IQR × n−1/3, and N is the number of bins,
fmax
j and fmin

j are the max and min values of feature j, and h is
the bin width. IQR is the interquartile range and n is the number
of measurements.

The mean filter is bin-wisely performed for each bin to smooth
height residual values. This process should be carried out for each
feature. Then corresponding to each pixel, the new outcomes of
the previous step as smoothed height residual are averaged again
to give a height residual for every pixel. After pre-processing, the
data used to train the ANN for weight map prediction.

3.2.2 ANN for Weight Map Prediction: The filtered inputs
from Section 3.2.1 are then used to train a classical artificial neu-
ral network. The final output of the trained ANN is a predic-
tive weight map model that can be used for arbitrary parts of
DEMs in order to anticipate the height residuals just based on
measured features. The explained framework is implemented for
both kinds of DEMs to generate an individual weight map for
each DEM separately. The predicted residual maps can then be
used as weight maps associated with each kind of DEMs in the
fusion process.

For training the NN, training data representing versatile land
types, e.g. inner city area (densely packed, relatively high build-
ings), residential areas (single family homes and detached build-
ings), agricultural areas, and forested areas are used in order to
ensure generalizability. After feature extraction, height residual
computation and preprocessing based on the pipeline described
in Section 3.2.1, the output is input into to the NN. The NN is
trained using the filtered feature vectors as inputs and the mod-
ified height residuals as outputs. 70% of the data are allocated
for training, 15% for validation, while the rest is devoted as test-
ing data to monitor the performance of the network during the
training.

4. EXPERIMENTS AND RESULTS

4.1 Study Area and DEMs

Cartosat-1 is an Indian satellite equipped with a dual-optics 2-
line along-track stereoscopic push broom scanner with a stereo
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Figure 1. The proposed framework for ANN-based weight map model generation for fusion of TanDEM-X and Cartosat-1 DEMs

Figure 2. Depictions and locations of study subsets

angle of 31◦ and a resolution of 2.5 m. It is specifically designed
for high-resolution DEM generation with relatively large areal
coverage. The Cartosat-1 DEM used in this study has been pro-
duced by the XDibias image processing system of DLR, using
the pipeline described in (d’Angelo et al., 2010). It has a nominal
pixel spacing of 5 m. On the other hand, TanDEM-X is a Ger-
man SAR interferometry mission aiming at mapping the worlds
topography on global scale with a grid size of 0.4 arc seconds and
height accuracy of HRTI-3 (Krieger et al., 2007). The TanDEM-
X raw DEM used in this study was produced by DLRs Integrated
TanDEM-X Processor (ITP) from data with an incidence angle
of about 38◦ and a height of ambiguity of about 46 m and has a
pixel size of 0.2 arc seconds.

For height accuracy evaluation, six subsets of different land types
are selected:

1. Industrial area (Sub A). This land type is characterized by
flat, simple and rectangular buildings which often are not
very high.

2. Inner city area (Sub B). This land type includes many dense
buildings and possibly also some higher buildings.

3. High buildings (Sub C) are skyscrapers and other high rise
buildings.

4. Residential area (Sub D). This type contains many small
one-family homes

5. Forested and agricultural area (Sub E).
6. Agricultural areas and lake (Sub F).

Figure 2 shows the locations and descriptions of these study sub-
sets. All these test areas are located in the area of Munich,
Bavaria, so that for each of them a highly-accurate LiDAR point
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cloud (with a density of 1 point per m) provided by the Bavarian
surveying administration is available as reference.

4.2 Accuracy Assessment Results

Figure 3 shows the vertical offset of the TanDEM-X and the
Cartosat-1 DEM in comparison to the reference DEM in each
subset. The vertical bias of Cartosat-1 depends on the absolute
vertical accuracy of the external DEM that is used for RPC re-
finement because the Cartosat-1 RPCs originally only provide an
accuracy in the order of several hundred meters. On average,
the vertical offset of the Cartosat-1 elevation data over the differ-
ent test areas is 1.327 m. The vertical offset of the TanDEM-X
DEM depends on the accuracy of determining phase offset. For
this task, the initial radargrametric DEM of coarse accuracy is
produced by TanDEM-X bistatic images and orbital information.
Then, this DEM is employed as an external DEM in phase un-
wrapping process. The phase offset is calculated from the mean
of the most probable values in the phase difference histogram
(histogram of radargrammetric and unwrapped phase difference),
whereas layover and shadow areas are disregarded (Rossi et al.,
2012). In consequence, for areas affected by layover or shadow-
ing, such as subset C (high buildings), the vertical offset is higher
than in the other test subsets because they are discarded for phase
offset estimation and the vertical offset estimate is not valid for
these areas. The mean height offset of the TanDEM-X DEM over
all subsets is found to be -0.794 m. In contrast, the height off-
set of the TanDEM-X DEM calibrated with ICESat data is even
lower (Gruber et al., 2012).

The uncertainty assessment results over urban and non-urban ar-
eas after vertical bias removal are collected in Tab. 1. The height
residual maps for TanDEM-X and Cartosat-1 DEM in study areas
are also displayed in Figs. 4-9. It has to be noted that all figures
and mean heights are derived by comparing the DEMs and the
LiDAR reference data after vertical bias correction.

Figure 3. Vertical offsets of TanDEM-X and Cartosat-1 in study
areas

Figure 4. Height residual maps of industrial area: TanDEM-X
DEM (Left) and Cartosat-1 DEM (Right)

Figure 5. Height residual maps of inner city area: TanDEM-X
DEM (Left) and Cartosat-1 DEM (Right)

Figure 6. Height residual map for high building: TanDEM-X
DEM (Left) and Cartosat-1 DEM (Right)

Figure 7. Height residual map for residential area: TanDEM-X
DEM (Left) and Cartosat-1 DEM (Right)

4.3 DEM Fusion Results

4.3.1 HEM-based Fusion Results: The results of uncer-
tainty assessment illustrate the relationship between the mean
HEM value of TanDEM-X and mean standard deviation of
matching with RMSE in each subset. Figure 10 depicts the high
correlation between the mean HEM values of the TanDEM X
DEM and the DEM RMSE, while Fig. 11 shows a similarly high
correlation between the mean standard deviation of the stereo
matching and the DEM RMSE in each subset. In Fig. 11, the
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Areas Cartosat-1 TanDEM-X
STD NMAD LE90 STD NMAD LE90

Urban

Industrial 3.638 1.698 1.993 4.714 2.552 2.830
Inner city 5.657 4.561 4.075 7.453 6.395 5.390

High building 12.638 3.243 4.957 18.271 6.689 8.652
Residential 3.036 2.631 2.407 3.966 3.501 2.992

Non-Urban

Forested 4.296 4.193 3.474 4.563 4.386 3.567
Agricultural (sub E) 1.675 1.337 1.227 1.221 1.122 0.953
Agricultural (sub F) 2.527 0.881 0.993 2.443 1.171 1.285

Lake 2.273 1.819 1.736 12.481 10.012 10.486

Table 1. Height accuracy (in meter) of TanDEM-X and Cartosat-1 over different areas

Figure 8. Height residual maps for agricultural and forested
area: TanDEM-X DEM (Top) and Cartosat-1 DEM (Bottom)

Figure 9. Height residual maps for agricultural and lake area:
TanDEM-X DEM (Left) and Cartosat-1 DEM (Right)

RMSE of the high building subset deviates from the trend line
because strong height changes appear in this subset.

The main problem of using the matching standard deviation as
HEM for optical DEMs like Cartosat-1 is that it is not computed
comprehensively for urban subsets and thus is only available in a
rather sparse distribution. Thus, the Cartosat-1 HEM was pixel-
wisely calculated based on the mean standard deviation of the
available values derived from the dense matching step propor-
tional to the number of pair-rays in each cell in urban areas. Un-
fortunately, the TanDEM-X HEM does not consider the layover
effect, and as a result the mean of TanDEM-X HEM is lower
than mean of the Cartosat-1 HEM, while, using prior knowledge
of DEM qualities from the previous uncertainty assessment, it
is known that Cartosat-1 is more accurate than the TanDEM-X
DEM for urban areas on average. The assessments reveal the
variance of TanDEM-X HEM is higher than Cartosat 1 HEM.
Thus, the 3σ of HEM values can be used as appropriate ratio for
normalized weight map generation from the HEMs. The fusion
was just carried out in urban areas in subset A, B, C, and D be-
cause the standard deviation of matching was not available for
non-urban areas. The results of fusion are summarized in Tab. 2.

Figure 10. TanDEM-X height errors: Correlation between
RMSE of height residuals and mean HEM value in different

subsets

Figure 11. Cartosat-1 height errors: Correlation between RMSE
of height residuals and mean value of standard deviation of

stereo matching in different subsets

4.3.2 ANN-based Fusion Results: The size of data for train-
ing the networks of Cartosat-1 and TanDEM-X DEM was 91272
and 89574 pixels, respectively, taken from three considered sub-
sets (B, D, E). Figures 12 and 13 demonstrate the performance of
the neural networkss for an increasing number of neurons in the
first layer, as well as with an added hidden layer. The result shows
that increasing the number of neurons in the first layer is more ef-
fective than deepening the networks. After successfully setting
networks and the training, the predictive models were created.

The performance of the full DEM fusion chain was then evalu-
ated on a completely independent subset as target area (Sub A)
with the size of 238 x 298 = 70924 pixels. The TanDEM-X and
Cartosat-1 DEMs of this subset are fused together using a pixel-
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Subset A:Industrial area B: Inner city area C: High buildings D: Residential areas
DEM STD NMAD RMSE STD NMAD RMSE STD NMAD RMSE STD NMAD RMSE
TanDEM-X 5.12 2.95 5.12 8.38 7.93 8.39 19.78 7.29 20.44 4.49 3.97 4.51
Cartosat-1 4.04 1.85 4.04 6.76 5.81 6.77 14.09 3.49 14.34 3.94 3.33 4.02
Fused DEM 3.91 1.84 3.91 6.66 6.03 6.66 14.01 3.80 14.31 3.93 3.33 4.00

Table 2. Accuracies of TanDEM-X and Cartosat-1 DEM fusion based on HEM-weighted averaging (accuracies in meter).

DEM Median RMSE MAE NMAD
Cartosat-1 0.212 4.041 2.407 1.847

TanDEM-X 0.337 5.122 3.412 2.950

Fused DEM
Averaging 0.291 3.768 2.539 2.258
HEM-WA 0.200 3.912 2.357 1.844
ANN-WA 0.263 3.534 2.253 1.815

Table 3. Results of fusion of TanDEM-X and Cartosat-1 DEM (in meter) by using weight maps generated from different methods

Figure 12. The performance of the NNs with increasing the
number of Neurons in first layer

Figure 13. The performance of the NNs with adding the hidden
layer and increasing the number of Neurons in the hidden layer

wise weighted averaging algorithm using the obtained height er-
ror maps as weights of the input DEMs. In Table 3, the results of
the fusion by adopting the proposed framework for weight map
generation based on the neural network are compared with other
methods like HEMs as weights and also just using the simple av-
eraging without using weights.

5. DISCUSSION

The results of accuracy assessment of TanDEM-X and Cartosat-
1 DEM collected in Table 1 show that the Cartosat-1 DEM has a
higher height accuracy than the TanDEM-X DEM in urban areas.
The difference of two DEMs is lowest in residential areas and
maximal in the high building subset. The main source of errors
in the TanDEM-X DEM come from the layover effect that causes
a phase ramp (sometimes referred to as front porch effect (Thiele
et al. 2007)), which leads to wrong height reconstructions. Since
the amount of layover depends on the height of the buildings and

the incidence angle of SAR sensor, its effect is less for lower
residential and industrial buildings and increases for inner city
areas with more high buildings, while being maximal for areas
with skyscrapers. The layover causes the height of the left side
of building facing the SAR sensors to be lower than they should
actually be, while they are overestimated around the right side
of the building. This layover-caused over- and underestimation,
respectively, can be found in all urban areas on the right and left
sides of the buildings as depicted in the residual maps (Fig. 4-7).

In contrast, the TanDEM-X and the Cartosat-1 DEMs have al-
most identical height accuracy in agricultural and forested ar-
eas. In forested areas, the mean height of the TanDEM-X DEM
is 584.396 m, while the mean height of the Cartosat-1 DEM is
581.528 m, respectively. In comparison, the mean first-pulse Li-
DAR height is 583.312 m. This indicates that the mean canopy
height is slightly overestimated by TanDEM-X, which is proba-
bly caused by the location of the X-band SAR phase scattering
center in the upper part of the vegetation volume (Fig. 8). In con-
trast, the Cartosat-1 mean height is lower than the first-pulse Li-
DAR height. In the agricultural areas, the opposite phenomenon
appears: Here, 91% of the first pulse and second pulse heights
differ by less than 5 cm (i.e. the first and last pulse almost coin-
cide with height of 577.575 m) while the mean height of Cartosat-
1 and TanDEM-X DEM are 578.018 m and 577.484 m respec-
tively. Last, but not least, as shown in Fig. 9, Cartosat-1 defi-
nitely estimates the height of the lake area better than TanDEM-X
which is due to the low coherence because of specular reflection
and temporal decoration.

Generally, the results of fusion based on height error maps deliv-
ered with the TanDEM X data and the standard deviation maps
of the Cartosat 1 stereo matching confirm the improvement of
TanDEM-X in all subsets. The quality of the fused DEM is
even slightly better than the Cartosat-1 DEM accuracy. Neverthe-
less, the results demonstrate that using appropriate weight maps,
which can precisely identify the quality of the InSAR and the op-
tical DEM will lead to a better fusion result. Therefore, a more
sophisticated approach which is be able to estimate the height
residuals based on pre-extracted spatial DEM features and using
NN was proposed for weight map prediction in the target area
where two DEMs would be fused together.

The uncertainty assessment of the fused DEM with using HEMs
predicted by NNs shows the increasing the quality of the newly
achieved DEM in comparison to TanDEM-X and Cartosat-1 data
in the target area. However, using the HEMs of TanDEM-X and
Cartosat-1 just produce a DEM with slight corresponding to the
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quality of Cartosat-1 DEM in the target area, the weight maps
derived from the output model of NN can significantly increase
the quality of both input DEMs. Besides RMSE and MAE, a
decreasing NMAD value as robust metric is evident for this im-
provement.

6. CONCLUSION AND OUTLOOK

The uncertainty assessment confirmed that the Cartosat-1 DEM
provides higher accuracy than the TanDEM-X DEM over urban
areas, while in non-urban subsets both DEMs have almost iden-
tical quality. The results of the fusion experiments illustrate that
the implemented framework to produce the weight maps of in-
put DEMs can effectively improve the fusion process. In this
case of multi-sensor data fusion, where each input dataset comes
with different inherent specifications, the weight maps can assist
the fusion algorithm to feasibly regard the individual inputs. The
strategy of recognizing patterns on the DEMs based on suitable
spatial features and corresponding height residual errors in se-
lected subsets as typical areas with different land types makes a
general model as predictive weight map for the whole of DEM.
The neural network can be employed to explore the patterns and
relationships between the features and height residual map to
properly construct predictive weight map model for each DEM.

In the future, we will combine weight map prediction along with
more sophisticated DEM fusion approaches like Total Variation-
regularized DEM fusion.

ACKNOWLEDGEMENTS

The authors would like to thank Prof. Reinartz and Dr. dAngelo
of DLR for providing the Cartosat-1 DEM; Dr. Fritz of DLR for
providing the TanDEM-X raw DEM; and the Bavarian Surveying
Administration for providing the LiDAR data.

REFERENCES
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