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ABSTRACT: 

The presented Softmax Regression classifier is a generalization of logistic regression. It is used for multi-class classification, where 

classes are mutually exclusive. Implemented in a classification framework, it provides a flexible approach to customize a 

classification process. Traditional classification is focused with classifiers that can only be applied on the same dataset. The Softmax 

Regression classifier can be created and trained on a reference dataset using spectral and spatial information and then applied to 

similar data multiple times. We present the general workflow of Softmax Regression classification as part of a case study that is 

based on attribute images derived from hyperspectral airborne and elevation imagery. 

* Corresponding author 

1. INTRODUCTION

Remotely sensed imagery, both multispectral and hyperspectral, 

forms an excellent source of information about the Earth's 

surface, especially when it is coupled with spatial data (height, 

texture, shape, etc.). A key task in processing is feature 

selection, particularly in the case of classification. A logistic 

regression model may be used to predict the probabilities of the 

classes on the basis of the input features, after weighting them 

according to their relative importance. 

Traditionally, classifiers are tied to one data source. The 

workflow described in this contribution allows training and 

evaluating the performance of a classifier once and then 

applying it to similar data multiple times. It is based on Softmax 

Regression, a generalization of logistic regression that is used 

for multi-class classification where classes are mutually 

exclusive. 

Currently, the classification workflow uses the ENVI 

application programming interface (API). This API in 

combination with the multiple image approach predisposes the 

workflow to be executed in both desktop and enterprise 

environments, e. g. to support time-series analysis of specific 

features. 

A case study is used to demonstrate and evaluate this Softmax 

Regression approach, exemplified by the classification of an 

urban environment with five simple classes: Asphalt, Concrete, 

Grass, Tree, and Building. 

The test site we selected is located in the urban area of Fruita, 

Colorado, USA. Data files were provided by the National 

Ecological Observatory Network (NEON), Boulder, CO, USA, 

2014. Files were accessed in July 2016, available online at 

http://neonscience.org from the National Ecological 

Observatory Network. The image to be classified was acquired 

on 17 July 2013 with a NEON imaging spectrometer. Out of the 

original 426 spectral bands, only four essential bands were 

extracted for use: 

• Band 19: Blue (0.4724 µm)

• Band 34: Green (0.5476 µm)

• Band 52: Red (0.6378 µm)

• Band 97: Near-infrared (0.8632 µm)

To create the height data for this study, we used the ENVI 

LiDAR software application to process NEON point-cloud data. 

We created a digital surface model (DSM) and digital elevation 

model (DEM), then subtracted the DEM from the DSM to 

create a relative height image at 0.5 meter resolution. 

For a reference image, we chose a digital orthorectified 

photograph from the NEON RGB camera at 0.25 meter 

resolution, captured at the same time as the NEON image. 

2. INTRODUCTION TO SOFTMAX REGRESSION

Softmax Regression is a classification method that generalizes 

logistic regression to multi-class problems, i.e. with more than 

two possible discrete outcomes (Greene, 2012). An example is 

classifying an image into four different classes such as Cloud, 

Water, Asphalt, and Vegetation. 

A logistic regression model is the simplest form of a neural 

network. It consists of an input layer with multiple attributes 

and a bias unit, and only one output layer, or class (Figure 1). It 

is essentially a binary classifier. For each attribute, a weight (θ) 

is computed using a stochastic gradient descent function. An 

activation function (φ) determines if the attribute belongs to the 

output class or not. 

The Softmax Regression algorithm applies binary logistic 

regression to multiple classes at once. Figure 2 shows an 

example of the Softmax Regression model with five attributes 

and three classes. The weights (θ) were omitted from the 

diagram for clarity, but they are computed for each attribute-to-

class mapping. 
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Figure 1. Example of a simple logistic regression model. 

 

 
 

Figure 2. Example of a Softmax Regression model with five 

attributes and three classes. 

 

Softmax Regression differs from multiple binary logistic 

regression classifiers in the following way: Those classifiers are 

used with multiple classes when some objects naturally belong 

to more than one class. Examples include Green, Trees, and 

Grass. With a multiple binary classifier, objects might fall into 

both the Green and Trees class, or Green and Grass. It evaluates 

membership in a given class independently from membership in 

other classes. 

 

Softmax Regression was designed for use with multiple classes 

that are mutually exclusive from each other. It does not evaluate 

class membership independently from other classes. An 

example is Vegetation, Bare Soil, and Impervious. 

 

For each data item, Softmax Regression computes activation 

values for each output class. It normalizes the values to obtain a 

set of probabilities that sum to 1. The class with the highest 

probability wins, and the data item is assigned to that class. An 

ideal scenario is if one class has a probability close to 1 and the 

others are close to 0. 

 

3. SOFTMAX REGRESSION CLASSIFICATION 

3.1 General Workflow 

Figure 3 shows a typical workflow where the Softmax 

Regression classifier is used. For the operation of the single 

processing steps (as described in sections 3.1 to 3.5) in service-

based production environments we embedded them in an IDL-

based task system. IDL (Interactive Data Language), as the 

development language of ENVI, allows one to extend or 

customize ENVI features and functionality and to integrate 

them in existing geospatial workflows. 

 

Based on IDL, ENVI introduced an ENVITask API for 

processing data. ENVITasks provide an object-oriented 

approach to run ENVI analytics programmatically. ENVITasks 

are objects with properties and methods. After instantiation, 

their properties can be manipulated before executing them. Each 

step in the workflow of Figure 3 represents the corresponding 

ENVITask. 

 

 

Figure 3. Softmax Regression classification workflow using 

ENVITasks. 

 

3.2 Data Preparation for Classification 

Before running a Softmax Regression classification, we 

included a variety of attributes from the source image rather 

than spectral information alone, which often yields more 

accurate classification results. Attributes are unique 

characteristics that can help distinguish between different 

classes in an image. Examples of attributes include reflectance, 

elevation, texture, and shape. In a multi-band attribute image, 

each band represents a different attribute. Each layer (band) 

must have the same number of rows and columns, the same 

pixel size, and the same spatial reference. Figure 4 shows an 

example of the layer stack used with six attributes. A 

prerequisite was applying atmospheric correction to the spectral 

data before creating the multi-band attribute image. 

 

 

Figure 4. Example of a multi-band attribute image, where each 

band represents a different attribute. 

 

3.3 Collection of Training Data 

With supervised classification, one collects samples of pixels 

that belong to each class. This training data is used to train the 

classifier and classify pixels of unknown identity into known 
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classes. Training data for this case study was collected by 

drawing regions of interest (ROIs) for each of the five feature 

types (Buildings, Trees, Grass, Concrete, and Asphalt) on the 

high-resolution orthorectified NEON photograph that was co-

registered with the NEON reflectance image to be classified 

(Figure 3, step 1). 

 

 

Figure 5. Example of the pixel values for six attributes in one 

ROI polygon using the building class. 

 

The one-dimensional array (or vector) of pixel values of the 

highlighted pixel indicated in Figure 5 is called an example in 

the following sections. 

 

3.4 Definition and Training of the Classifier 

The next step in the classification process is to define a 

classification method, or classifier (Figure 3, step 5). Then the 

examples and class values are passed to a trainer to iteratively 

minimize the classification error. The classifier will be trained 

on one set of examples and evaluated with another set.  

 

For this purpose, the examples were shuffled to create a random 

distribution of data (Figure 3, step 3). Then a task was used to 

split the examples into two separate array elements (Figure 3, 

step 4): The first array element contained the examples that 

were used to train the classifier. The second array element 

contained the examples for the evaluation of the classifier. A 

specific keyword was set to determine the percentage of the 

original examples used for training; the other percent were used 

for evaluation. 

 

A trainer is an algorithm that iteratively trains a classifier in 

order to minimize its error. It tries to adjust the classifier's 

internal parameters until the error (also called loss) converges 

on a minimum value. A loss function calculates the loss, which 

is a unitless number that indicates how closely the classifier fits 

the training data. A value of 0 represents a perfect fit. The 

further the value from 0, the less accurate the fit. A high-quality 

fit does not ensure that new data will be classified correctly. The 

classifier still must be evaluated with untrained data after 

training is complete. 

 

The Softmax Regression classifier should use a gradient descent 

trainer (Figure 3, step 6). A gradient descent algorithm 

iteratively updates the classifier according to the classifier's 

gradient for that iteration (Figure 3, step 7). It iterates until the 

loss function converges on a minimum value. The gradient 

descent trainer takes three input parameters: 

 

 

Figure 6. Loss profiles are used for the evaluation of the 

Softmax Regression classifier. A) The curve should flatten and 

approach a minimum value. B) If the learning rate is set to a 

smaller value, the maximum number of iterations must be 

increased for the loss function to converge. This can increase 

processing time. C) If the learning rate is set to a smaller value 

without increasing the maximum number of iterations, the curve 

starts to approach a minimum but never reaches it. D) If the 

learning rate is set too high, the loss profile reveals oscillations 

and the solution never converges.  
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• Maximum iterations: The maximum number of iterations 

for which to compute the minimum, if the convergence 

criterion is not met. 

• Convergence criterion: Iterations stop when the change in 

loss value from the previous iteration falls below a 

specified threshold. This threshold is the convergence 

criterion. 

• Learning rate: The step size to take downhill during each 

iteration.  

 

The Softmax regression classifier is sensitive to data values that 

widely vary. Therefore normalization was used to apply a gain 

and offset to the examples (Figure 3, step 2) to get the data into 

a consistent range of values prior to classification. 

 

It is advantageous that this type of classifier can be trained once 

and used many times to classify similar datasets. It can also be 

trained in stages (for example, as more data become available) 

where subsequent training will further refine the classifier. 

 

The plots in Figure 6 represent the loss profiles to evaluate how 

well the input parameters worked together to converge on a 

minimum value. 

 

3.5 Evaluation of the Classifier and Final Classification 

The performance of the Softmax Regression classifier was 

evaluated (Figure 3, step 8) using the examples and 

corresponding truth class values that were not used to train the 

classifier (Figure 3, step 4, second array element). Predicted 

class values from these input examples were calculated. Finally 

accuracy metrics derived from a confusion matrix between the 

truth class values and the predicted class values were computed 

(Table 1).  

 
 Asphalt Concrete Grass Tree Building 

Error of 
commission 

0.004 0.012 0.010 0.005 0.007 

Error of 
omission 

0.006 0.015 0.001 0.008 0.007 

F1 value 0.995 0.986 0.994 0.993 0.993 

Precision 0.996 0.988 0.990 0.995 0.993 

Producer 
accuracy  

0.994 0.985 0.999 0.992 0.993 

Recall  0.994 0.985 0.999 0.992 0.993 

User 
accuracy  

0.996 0.988 0.990 0.995 0.993 

 

Overall accuracy 0.994 Kappa coefficient 0.991 

Table 1. Accuracy metrics for the Softmax Regression classifier. 

 

The final step in this classification framework is to classify the 

attribute image (Figure 3, step 10). Prior to this step the gains 

and offsets computed in step 3 were applied to the attribute 

image (Figure 3, step 9). This ensured that the pixel values were 

properly scaled among the different attributes. Figure 7 shows 

both the unclassified reflectance image and the Softmax 

Regression classification result. 

 

After classifying the attribute image, we applied the trained 

classifier to a neighbouring dataset of the same sensor, which 

had the same attributes and data representation. The subset in 

figure 8 demonstrates how precisely the two classification 

images overlap and proves that the trained classifier is 

applicable to similar datasets. 

 

 

Figure 7. Reflectance image (top) and corresponding 

classification result (bottom). 

 

Figure 8. Merge of two classification images. The Softmax 

Regression classifier was trained on the attribute image 

corresponding to the right classification image and then applied 

on the attribute image corresponding to the left classification 

image. 
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4. CONCLUSIONS

The workflow described in this contribution is based on 

Softmax Regression, a generalization of logistic regression that 

is used for multi-class classification where classes are mutually 

exclusive. It allows training and evaluating the performance of a 

classifier once and applying it to similar datasets. 

We evaluated this Softmax Regression approach within a case 

study about the classification of an urban environment with five 

simple classes: Asphalt, Concrete, Grass, Tree, and Building. 

After classifying one attribute image, we applied the trained 

Softmax Regression classifier to a neighbouring dataset from 

the same sensor. The two classification images overlap 

precisely. This example demonstrated that a trained classifier 

can be applied to other similar datasets that have the same 

attributes and data representation. 

Currently, the classification workflow is based on the ENVI 

application programming interface (API). Therefore, the 

presented automated Softmax Regression classification can be 

embedded in virtually any existing geospatial workflow for 

operational applications, including both desktop and enterprise 

environments. Three integration options were implemented as 

part of this case study: 

• Integration within any ArcGIS® environment, which can be

deployed on the desktop, in the cloud, or online. Execution

uses a customized ArcGIS® script tool. A Python script file

retrieves the parameters from the user interface and runs

the precompiled IDL code. That IDL code is used to

interface between the Python script and the relevant

ENVITasks.

• Publishing the processing tasks as services via the

Geospatial Service Framework (GSF). GSF is a cloud-

based image analysis solution to publish and deploy

advanced ENVI image and data analytics to existing

enterprise infrastructures. For this purpose the entire IDL

code can be capsuled into one single ENVITask.

• Integration in an existing geospatial workflow using the

IDL bi-directional Python bridge. This mechanism allows

calling IDL code within Python on a user-defined

platform.
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