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ABSTRACT:

Land cover classification (LCC) is a central and wide field of research in earth observation and has already put forth a variety of
classification techniques. Many approaches are based on classification techniques considering observation at certain points in time.
However, some land cover classes, such as crops, change their spectral characteristics due to environmental influences and can thus
not be monitored effectively with classical mono-temporal approaches. Nevertheless, these temporal observations should be utilized to
benefit the classification process. After extensive research has been conducted on modeling temporal dynamics by spectro-temporal
profiles using vegetation indices, we propose a deep learning approach to utilize these temporal characteristics for classification tasks.
In this work, we show how long short-term memory (LSTM) neural networks can be employed for crop identification purposes
with SENTINEL 2A observations from large study areas and label information provided by local authorities. We compare these
temporal neural network models, i.e., LSTM and recurrent neural network (RNN), with a classical non-temporal convolutional neural
network (CNN) model and an additional support vector machine (SVM) baseline. With our rather straightforward LSTM variant, we
exceeded state-of-the-art classification performance, thus opening promising potential for further research.

1. INTRODUCTION

In earth observation, the problem domain of land cover classifica-
tion (LCC) has educed a variety of techniques until today. Many
approaches rely on mono-temporal observations and concentrate
on spectral or textural features describing observations acquired
at one specific point in time. However, some land cover classes—
such as, e.g., vegetation and especially crops—are difficult to
classify by mono-temporal approaches (Foerster et al., 2012), as
vegetation changes its spectral and textural appearance within its
species-dependent growth cycle. Especially crops develop these
temporal dynamics in a systematic and thus predictable manner,
dependent on phenology and the applied crop calendar (Valero et
al., 2016; Whitcraft et al., 2014). These temporal features can be
utilized for classification by suitable techniques.

In the recent past, the deep learning community has developed a
variety of architectures producing impressive results for a wide
range of applications. Among these applications, long short-term
memory (LSTM) neural networks are commonly utilized to han-
dle sequential information in various problem domains, such as
natural language processing and text or voice generation. In con-
trast to mono-temporal models, these LSTM networks can store
a theoretically unlimited amount of evidence and make decisions
in that actual temporal context. In text generation, for instance,
the subsequent word is chosen from the vocabulary body wrt. to a
sequence of preceding words. These generated texts imitate the
language, grammar, and word choice of the training data.

In this work, we propose to use LSTM networks for the purpose
of crop classification from earth observation data. In experiments
carried out on a series of SENTINEL 2A images collected over the
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Figure 1. Sequence of observations during the growth season of
the year 2016. SENTINEL 2A RGB bands (top row) illustrate the

systematic and characteristic change of crops over the season.
Class labels (bottom row) show the ground truth labels, as used

for the training process. Coverage of the ground is considered by
additional covered classes, as shown as clouds at July 2nd. The
systematic temporal changes of spectral reflectances can benefit

identification of crops, as exploited by our proposed
multi-temporal land cover classification network.

entire growth season of the year 2016, the effect of multi-temporal
features has been evaluated by comparing the performance of
multi-temporal models, namely LSTM networks and RNNs, with
mono-temporal convolutional neural network (CNN) models and
a support vector machine (SVM) baseline.

1.1 Remote Sensing of Phenology

Vegetation follows specific periodic growth cycles determined by
the plant’s biology. The study of these cycles is known as phe-
nology and describes characteristic events such as germination,
flowering, or senescence. Along with these phenological events,
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plants change their reflective spectral characteristics which can
be observed via remote sensing technologies. Phenological char-
acteristics are assumed to change in a predictive manner and can
thus be utilized for identification, as long as farming practices and
environmental conditions remain unchanged or are considered in
the model (Odenweller and Johnson, 1984; Foerster et al., 2012).
Figure 1 illustrates reflective RGB responses of different crops
in SENTINEL 2A observations along the growth season. Fields
containing the same types of cultivated crops change their spectral
appearance uniformly within the series of observation. This is due
to a combination of the crops phenological cycles and farming
practices, such as the date of seeding and or harvesting.

Commonly, vegetation remote sensing uses vegetation indices—
e.g., the normalized difference vegetation index (NDVI) or en-
hanced vegetation index (EVI)—to observe these changes over a
temporal series of observations (Reed et al., 1994). However, these
indices usually consider only a limited number of bands which
are predominantly sensitive to chlorophyll and water content, i.e.,
red and near infrared wavelengths. Further spectral bands are
often discarded, even though that information is perceived by the
satellite and may also contribute to the classification procedure.
Additionally, these approaches need to filter high-frequent cov-
erages, such as clouds, as preprocessing routines or by applying
upper envelope filters (Bradley et al., 2007) to remove negative out-
liers from the temporal profiles. Overall, these manually-crafted
functional models might not be able to represent the complex ef-
fects of various influencing factors—such as, for instance, weather
conditions, sunlight exposure, or farming practices—which are
encoded in the reflectance signal. For these reasons, very recent
research has started to employ deep learning techniques to over-
come these limitations for crop yield prediction (You et al., 2017)
and classification of phenological events (Ikasari et al., 2016).

2. RELATED WORK

Even though vegetation analysis with continuous monitoring over
the growth season dates back many decades (Reed et al., 1994),
only recently space-born sensors—namely the LANDSAT and
ESA SENTINEL series—provide sufficient ground sampling dis-
tance (GSD) and temporal resolution for single-plot field clas-
sification. Thus, classical land-cover classification approaches
have concentrated on multi- or hyperspectral sensors at one single
observation time. Matton et al. (2015) propose a generic methodol-
ogy for global cropland mapping and statistical temporal features
derived from LANDSAT-7 and SPOT images for K-means and
maximum likelihood classifiers on eight test regions on the entire
world. Following this approach, Valero et al. (2016) use SEN-
TINEL 2A images to create a binary cropland/non-cropland mask
by using randomized decision forests (RDF) classifiers on statis-
tical temporal features extracted from spectro-temporal profiles.
Foerster et al. (2012) make first attempts to utilize temporal infor-
mation for per-plot identification by extracting spectro-temporal
NDVI profiles and adjusting these profiles by additional agro-
meteorological information to account for seasonal variations in
phenology. They use LANDSAT-7 images aggregated over several
years from a large study area in north-east Germany and classify
twelve crop classes in total. While these approaches follow a
generic feature extraction and classification pipeline, Siachalou et
al. (2015) utilize a hidden markov model (HMM) approach which
retains sequential consistency of multi-temporal observations on
four LANDSAT-7 and one RAPIDEYE observation of Thessalonı́ki,
Greece in 2010. Methodically similar to ours, Lyu et al. (2016)
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Figure 2. LSTM cells in layer l recieve information of previous
observations at time step t− 1 by means of two vectors: The

hidden layer hl
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t. (Figure adapted from colah.github.io/posts/

2015-08-Understanding-LSTMs)

utilize RNNs and LSTM architectures to multispectral LANDSAT-
7 and hyperspectral EO-1 HYPERION images, but—in contrast to
our approach—for the purpose of change detection.

3. METHODOLOGY

3.1 Neural Network Architectures

Traditional classification systems are assembled from sequential
building blocks, e.g., feature extraction, classification, and post
processing, as summarized by Ünsalan and Boyer (2011). Fea-
tures, which are expected to be significant for classification, are
extracted from available observations, e.g., via estimating the
parameters of functional models (Bradley et al., 2007). These
features are further passed as inputs to classifiers like, for instance,
maximum likelihood classifiers, SVMs, or RDFs. The optimal
choice of feature extraction methodology and classifiers depends
on the actual classification task and available data.

In contrast to these approaches, artificial neural networks (NNs)
are trained in an end-to-end manner, solely based on raw input
data x ∈ Rn and output labels ŷ ∈ Rc. NNs are usually used for
supervised learning to approximate non-linear response functions,
e.g., class probabilities, by a sequence of affine transformations
Wdata · x+ b passed to (usually non-linear) activation functions
σ : Rm 7→ Rm, e.g., sigmoid or tangent functions. A loss
function quantifying the divergence between predicted and actual
class probabilities is minimized at each training step by back-
propagating residuals and adjusting the network weightsWdata ∈
Rn×m and biases b ∈ Rm. Neural networks are commonly
arranged in multiple stacked layers with the hidden output of one
layer forming the input of the consecutive layer. The number of
neurons, expressed as dimensions of hidden vectorsm and number
of layers l, are common hyper-parameters of which the optimal
combination is determined based on classification performance on
an validation dataset distinct from the training data corpus.

Feature extraction and classification are performed in a joint man-
ner, as the network can inherently select which parts of the input is
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Figure 3. Unrolled flow of data for classification and training. Class probabilities ŷt are calculated by multiple stacked LSTM layers and
one softmax layer. LSTM layers have additional access to cell state vectors ct−1 and ht−1 originating from previous observations,
indicated by an arrow between processing columns, which benefits extraction of temporal features. At each training step, the cross
entropy loss Ht(ŷt,yt) between predicted and reference class probabilites is calculated. To minimize the loss function, gradients

(dotted) are calculated by Adam optimizer and adjust the network weights in involved in LSTM and softmax layers.

important for classification based on available data. This scheme
ensures that neural network architectures can be applied to a va-
riety of tasks and scenarios, as long as a sufficient quantity of
training data is available. Additionally, information which is not
important for classification can be gradually ignored by the net-
work. Hence, all available information can safely be provided to
the deep learning model. Nevertheless, various neural network
architectures have been developed for application to certain fields
which—by design—excel at some types of features.

Mono-temporal models Feed-forward neural networks process
input data in a one-directional pipeline. Image processing and
segmentation feed forward neural networks incorporate additional
convolutional layers to account for local neighborhoods and thus
are well suited for recognition of shapes and textural patterns. Due
to these properties, convolutional neural networks (CNNs) are
already applied in earth observation for high resolution satellite
imagery (Hu et al., 2015) or semantic segmentation (Castelluccio
et al., 2015).

Multi-temporal models RNNs (Werbos, 1990) are potentially
well suited for processing sequential data, such as temporal se-
quences of observations, as the network has access to information
of the previous observation for the classification of current obser-
vation. At each network layer l and observation t, a hidden output
vector hl

t is derived from the output of the previous observation
hl

t−1 and the input of the current observation hl−1
t . Hence, deci-

sions can be based on the context of previous observations, thus
making RNNs a useful architecture for language processing, text
generation, or voice recognition.

Inducing a further level of complexity, long short-term memory
(LSTM) networks (Hochreiter and Schmidhuber, 1997) introduce
an additional cell state vector clt ∈ Rm providing long-term
memory capabilities, as at each observation t information can be
stored or retrieved to varying extents. Figure 2 illustrates the flow
of vectorized information within one LSTM cell layer l. At each
observation t, the previous cell state vector clt−1 is manipulated
by a set of gates, i.e., the forget gate f l

t for discarding information
and the input gate ilt combined with the modulation gate glt for

writing additional information to clt. The output gate olt is derived
based on hl

t−1 and hl−1
t and provides the same functionality as

a RNN layer. The new output vector hl
t is then obtained by an

element-wise multiplication of the output gate olt and the cell
state clt. While our approach is based on these LSTM networks
(Zaremba et al., 2014), a variety of variations have been presented
in the past (Gers et al., 2002; Graves and Schmidhuber, 2005;
Graves et al., 2013; Kalchbrenner et al., 2015).

3.2 Approach

We employ LSTM neural networks for the purpose of crop clas-
sification on a per-plot scale from medium resolution satellite
imagery. Figure 3 illustrates the classification and training scheme
of our approach for at multiple consecutive observations. At each
observation t, ns spectral bottom-of-atmosphere reflectance mea-
surements ρi ∈ R(k×k)·ns , along with the day of observation ti
are fed to the network as input vector x. A series of l LSTM
layers process the data with additional information of the previous
observation t − 1. A softmax layer produces probabilities for
each class ŷt. At each training step, the cross-entropy loss wrt.
predicted and actual class probabilities is calculated. Gradients
are calculated by Adam optimizer (Kingma and Ba, 2014) and
back-propagated in order to adjust the network weights.

Crops have been chosen as subject of classification since these land
cover classes are expected to change in a characteristic manner, as
explained in Section 1.1, thus making these classes ideal subjects
to demonstrate the capabilities of temporal modeling by LSTM
networks.

4. EXPERIMENTS

In order to evaluate the classification performance of the LSTM
architecture and to investigate the effects of temporal features on
the classification results, we trained multiple multi-temporal mod-
els, i.e., based on LSTM networks and RNNs, and mono-temporal
alternatives, i.e., a CNN model and a baseline SVM, on the dataset
described in Section 4.1. In the following, we describe the body of
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Figure 4. In our experiments, we used an area of interest of
102 km× 42 km (black rectangle) in the north of Munich,

Germany, as study area containing 137 k field plots.

obtained data in Section 4.1 and the performed data aggregation to
obtain input and label vectors in Section 4.2. Section 4.3 explains
the intuitions behind the different dataset partitioning regimes
to obtain training, validation, and evaluation subsets in
the context of phenological temporal features and regional en-
vironmental influences. The training and evaluation process is
explained in Section 4.4 and results are shown in Section 4.5.

4.1 Data Material

To train the large number of neural network weights, a feasible
body of raster and label data is necessary. For this reason a large
area of interest (AOI) of 102 km× 42 km in the north of Munich,
Germany, has been selected (cf. Figure 4) due to its homogeneous
geography, climate conditions, and farming practices which sug-
gest similar environmental conditions. A raster dataset of 26
SENTINEL 2A images, acquired between 31st December, 2015
and 30th September, 2016, has been retrieved from ESA SCI-
HUB and atmospherically corrected by SEN2COR software. For
consistency reasons with the LANDSAT series, blue, green, red,
near-infrared and shortwave infrared 1 and 2 bands were selected
for this evaluation. Field geometries and cultivated crop labels of
137 k fields in the AOI have been provided by the Bavarian Min-
istry of Agriculture (Bayrische Staatsministerium für Ernährung,
Landwirtschaft und Forsten).

The distribution of fields per crop class is not uniform with com-
mon cultivated crops, e.g., corn or wheat, dominating the dataset,
while other crops, e.g., sugar beet or asparagus, are less repre-
sented (cf. Figure 5). Nevertheless, from 172 unique field crops,
19 field classes have been selected with at least 400 field-plots in
the AOI.

4.2 Data Extraction

The field geometries of the field and reflection values of the
raster dataset have been discretized to a 100m× 100m grid
of points of interest (POIs). Each POI contains information of
network input x and classification ground truth labels y in a
30m× 30m neighborhood. The network input vector x incor-
porated bottom-of-atmosphere reflection values directly derived
from the raster dataset combined with the day of observation
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Figure 5. Distribution of classes by fields in the AOI. Common
field crops, such as corn or wheat, dominate the dataset with 28k

and 22k fields, respectively, while, e.g., asparagus or peas are
cultivated in less than 600 fields. Only crops with at least 400

occurances have been included in the dataset.

normalized as fraction of year. The network labels y have been
formed by two types of classes.

1. Field classes were derived from the field dataset, namely
corn, meadow, asparagus, rape, hop, summer oats, winter
spelt, fallow, winter wheat, winter barley, winter rye, beans,
winter triticale, summer barley, peas, potatoe, sugar beets,
soybeans, and the default class other.

2. Covered classes cloud, water, snow, and cloud shadow, ac-
count for high frequent coverages and are provided by the
scene classification mask of SEN2COR extracted from the
raster dataset.

If POIs were located at the border of multiple classes, class labels
have been weighted with respect to a local 30m neighborhood.

4.3 Dataset Partitioning

Commonly, two sets of parameters need to be determined when
selecting and training the neural network architecture. Weights
W ∈ Rn×m are adjusted during the training process by back-
propagation of residuals and hyper-parameters θ are chosen fol-
lowing a grid search regime in order to find the optimal network
structure for the classification task. To ensure that these param-
eters are chosen independently, training of network weights and
evaluation of hyper-parameters was performed on training and
validation datasets, respectively. A third evaluation dataset
is used for to calculate accuracy measures of neural network
independently from network weights and parameters. While
the evaluation dataset remained unchanged, training and
validation were redistributed in multiple folds. This practice
maximizes the number of training samples and avoids misrepre-
sentations of classes containing small numbers of features in the
respective dataset. Hence, the body of POIs was divided in the
three respective datasets.

As discussed in Section 1.1, the dates of phenological events are
influenced by environmental conditions which vary at large spatial
distances. To average these environmental conditions, the body of
data is divided randomly with respect to the extent of the AOI. A
pure random assignment of individual POIs would ensure an even
distribution of POIs but may assign POIs of the same field to the
different datasets and thus cause dependencies between datasets.

For these reasons, the POIs were not assigned completely ran-
domly to the respective datasets, but have been first partitioned in
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Figure 6. Illustration of the field dataset overlayed with
3 km× 3 km blocks dedicated for training (blue),
evaluation (lightblue), and validation (orange). A

circumferential margin of 200m ensures that field plots are not
located in two distinct datasets. Training and evaluation

datasets are randomly reassigned at each cross-validation fold.

blocks. These 476 blocks of 3 km× 3 km were in turn randomly
assigned to training, validation, and evaluation in a 4:1:1
ratio (cf. Figure 6). A circumferential margin of 200m ensures
that POIs located on the same field were not assigned to differ-
ent datasets. At each fold, training and evaluation blocks
got reassigned randomly while the validation dataset remained
unchanged.

4.4 Experimental Setup

In total, 135 networks of each architecture have been trained
the body of training data over 30 epochs with varying hyper-
parameters l ∈ {2, 3, 4} and r ∈ {110, 220, 330, 440, 880}.
This process has been repeated in 9 folds of randomly reassigned
training and validation datasets. Dropout with probability
pdropout = 0.5 was used for regularization. Additional to the inves-
tigated neural network architectures, a baseline SVM with radial
basis function (RBF) kernel was trained on a balanced dataset
of 3,000 samples per class extracted from the training dataset.
The optimal hyper-parameters, i.e., slack penalty C and RBF
scaling factor γ, have been chosen based on a grid search over
C ∈

{
10−2, ..., 106

}
and γ ∈

{
10−2, ..., 103

}
. All networks

have been trained within 8 hours on a NVIDIA DGX-1 server
equipped with eight NVIDIA TESLA P100 GPUs and 16GB
VRAM each. Five networks have been able to be trained on each
GPU in parallel, making the large grid search of parameters possi-
ble. While neural networks were implemented in TENSORFLOW,
the SVM baseline based on the SCIKIT-LEARN framework.

The best network performances have been achieved by networks
with hyper-parameter settings θLSTM = (l = 4, r = 440), θRNN =
(4, 880), and θCNN = (3, 880). The SVM baseline performed best
with θSVM = (C = 10, γ = 10).

4.5 Results

In this section, we evaluate the performance of the trained net-
works at multiple scales from general performance of each neural
network architecture to the performance of best networks on indi-
vidual classes.

4.5.1 Training performance Figure 7 shows the overall ac-
curacy of each architecture on the validation dataset within
the training process by means of the average overall accuracy as
indication of general performance of the respective architecture.
Variations of observed accuracy were presumably caused by the
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Figure 7. Evolution of overall validation accuracy performance
during the training process of 135 networks of each CNN, RNN,
and LSTM architecture with different hyperparameter settings.
Means (dashed lines) and standard deviation intervals (shaded

areas) indicate the general performance of each architecture, the
most performand network is superimposed separately (solid line).

chosen hyper-parameter sets and are indicated by their standard
deviation intervals. These standard deviations turned out to be rel-
atively small compared to the performances of LSTM, RNN, and
CNN models and suggest that, on this dataset, the choice of the ac-
tual architecture has larger influence on classification performance
than the choice of the involved hyper-parameters. Overall, LSTM
networks and RNNs achieved significantly better accuracies over
the entire training process with LSTM models performing slightly
better than their RNN competitors. The networks which achieved
best accuracies are plotted separately as solid lines, as these will
be evaluated in detail in the following.

4.5.2 Accuracy measures per best network The best per-
forming networks, opposed to the SVM baseline, have been tested
in detail on the evaluation dataset. Results of these experiments
are compiled in Table 1. Additionally, covered and field classes
have been separated from each other. Similarly to the previous fig-
ure, multi-temporal models achieved better accuracies compared
to mono-temporal competitors. This performance gain is supposed
to be largely caused by the field classes which—in contrast to cov-
ered classes—contain temporal phenological characteristics likely
to be utilized by LSTMs and RNNs. Covered classes achieved
similar accuracies in all of the models with also the baseline SVM
achieving good classification accuracies. Apparently, the charac-
teristics of these classes are more distinctive and can be utilized
by all models.

4.5.3 Class confusions Similar results can be observed from
the confusion matrices shown in Figure 9 based on the best per-
forming networks and the SVM baseline shown in Figure 8. The
class frequencies are normalized by the sum of ground truth classes
to obtain the precision measure. While some classes represent
distinct cultivated crop, other classes—such as meadow, fallow, or
other—can not be defined precisely. Consequently, these classes
performed worse during our experiments and were more likely
confused with a variety of other classes, as becoming apparent
in in the confusion matrix. Further chance for confusion was
observed in the case of classes with are botanically related to each
other and thus share similar spectral and temporal features. For
instance, the classes triticale, wheat, and rye have been commonly
confused, as triticale is a hybrid of the latter two classes. The CNN
model, in general, performed worse compared to LSTM and RNN.
Some classes (e.g., sugar beets, wheat) achieved good accuracies,
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Table 1. Performance evaluation of our proposed LSTM-based method in comparison to standard RNNs and mono-temporal baselines
based on CNNs and SVMs. As cover classes (i.e.,, cloud, cloud shadow, water, and snow) are usually comparatively easy to recognize,

we restrict our evaluation to unbiased performance measures with respect to the remaining field classes,

Measure Multi-temporal models Mono-temporal models

LSTM (ours) RNN CNN SVM (baseline)

all cover field all cover field all cover field all cover field

ov. accuracy 84.4 98.5 76.2 83.4 98.4 74.8 76.8 98.4 59.9 40.9 90.4 31.7
AUC 97.2 99.4 96.8 96.5 99.2 95.9 91.7 99.3 90.2 87.1 98.9 84.8
kappa 56.7 65.8 54.9 54.5 64.1 52.7 28.6 61.9 22.2 34.3 83.2 24.9
f-score 57.7 67.5 55.8 55.6 66.0 53.6 30.1 64.3 23.6 40.3 85.0 31.7
precision 63.8 74.8 61.8 59.2 72.3 56.7 47.3 69.1 42.2 40.3 83.1 32.2
recall 56.0 62.8 54.7 55.0 62.1 53.6 29.1 61.4 22.9 40.6 87.4 31.7
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classified well, field classes were confused broadly.

while others have not been classified at all or got interchanged
with classes showing particular spectral similarities. Presumably
the spectral characteristic of some crops are distinct enough for
classification without temporal information, while other crops are
not distinguishable solely by spectral features. The SVM model
showed broad confusion for all field classes which indicates that
this classifier does not provide a sufficient amount of capacity
to encode detailed crop-specific characteristics. SVM, though,
performed especially well on the covered classes, of which the
spectral characteristics are more distinctive.

4.5.4 Accuracy over sequence of observation As LSTM and
RNN networks utilize additional information of previous observa-
tions, accuracy is expected to improve with increasing sequence
length. Figure 10 illustrates this relationship, where the recall
values on field classes of the three respective networks were cal-
culated by day of observation. While all models, in general, per-
formed equal during the first couple of observations, the accuracy
of LSTM and RNN models increased with the sequence of obser-
vations. The later the observation is registered, the more context
information is available to the temporal models to evaluate the
classification decision. The performance of temporal models in-
creases especially at the beginning of vegetation period between
March and April (day of year 100), likely due to characteristic
phenological events. This trend continues to late summer, up to
which crops are harvested, and fields are prepared for the next
season, which may cause the slight decrease by the end of growth
season.

5. DISCUSSION

In this work, we have shown how to employ LSTM and RNN
models for land cover classification. Large-scale experiments
have been conducted on a real-world dataset acquired from open-
access satellite data together with in-situ annotations provided by
local authorities. These experiments have shown that LSTM and
RNN networks are able to directly utilize temporal information,
namely phenological characteristics of crops, for classification and
achieve superior results compared to models which—by design—
can not benefit from these features but solely rely only on spectral
and textural characteristics. All models performed well on classes
which do not incorporate characteristic temporal information, such
as clouds, while crops can be reliably better classified by LSTM
networks and RNNs utilizing distinct phenological events.

Our LSTM model achieved good classification accuracies com-
pared state-of-the art, while considering a notably larger number
of crop classes (Foerster et al., 2012; Siachalou et al., 2015). While
the hidden markov model approach of Siachalou et al. (2015) is
methodically closest to our deep learning strategy, their relatively
small study area together with their small number of classes im-
pede direct comparison. Our deep learning approach achieved
better accuracy performance than the approach of Foerster et al.
(2012) using spectro-temporal NDVI profiles and adjusting these
by additional agro-meteorological information (cf. Figure 11).
Their considerably large test area is located in north-east Germany
and fields are comparable with ours in terms of cultivated crops
and farming practices. Hence, their work is most comparable in
terms of data.

In this work, LSTM and RNN architectures have been shown to
perform similar, with the LSTM model achieving slightly better
accuracies consistently over all evaluation schemes. With increas-
ing observation length, LSTM models may be able to exhaust their
full long-term memory capabilities which may be advantageous
for monitoring multiple years or data with a higher temporal fre-
quency. As a side effect, the LSTM model have learned cloud
and cloud shadow detection along with field classifications with
good overall accuracy of 98.5% by providing additional covered
classes to the network. Hence, no preprocessing or cloud filtering
is necessary, as the network learns to distinguish these coverages
in the training process based on provided class labels. This ar-
gues for the flexibility of deep learning approaches allowing large
amounts of data to be processed without the need of manual data
preprocessing and feature selection.
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observations have been registered, the more context information
was available to multi-temporal LSTM and RNN networks to
assist the classification decision. CNN models can not utilize
temporal information, thus performance remained at a nearly

constant level with increasing observation length.

6. CONCLUSIONS

Many applications and architectures of the deep learning com-
munity can be applied to the domain of earth observation for
efficient, large scale data processing. This work has demonstrated
the applicability of long short-term memory (LSTM) networks,
originating from speech and text generation, for earth observation.
Earth observation, in particular, has to face increasing amounts of
data from a variety of multi-modal sensors, such as the SENTINEL,
LANDSAT, or MODIS satellite series. The acquired information
needs to be processed on a large scale and in an efficient manner ex-
ploiting all available information. Considering these requirements,
neural networks provide flexibility in terms of preprocessing and
provided data, as, e.g., no cloud filtering is necessary if the net-
work has been trained on additional cloud classes. Additionally,
data which is not significant for the given task will be ignored. We
believe that a holistic data approach—comprising temporal, spec-
tral, and textural information—has the potential to yield superior
results in future applications. Our presented approach limits textu-
ral and spatial features by only observing a small neighborhood of
30m around each POI to concentrate on available temporal infor-
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Figure 11. Confusion matrix reporting class-wise average
accuracy values reported by Foerster et al. (2012).

mation. In future work, a CNN encoder prepended to the LSTM
network could additionally benefit the classification accuracy, as
richer textural features would be extracted in a perceptive field
optimally chosen by the network.
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