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ABSTRACT: 

Unmanned Aerial Vehicles (UAVs) have gained popularity in acquiring geotagged, low cost and high resolution images. However, 

the images acquired by UAV-borne cameras often have poor georeferencing information, because of the low quality on-board Global 

Navigation Satellite System (GNSS) receiver. In addition, lightweight UAVs have a limited payload capacity to host a high quality 

on-board Inertial Measurement Unit (IMU). Thus, orientation parameters of images acquired by UAV-borne cameras may not be very 

accurate. 

Poorly georeferenced UAV images can be correctly oriented using accurately oriented airborne images capturing a similar scene by 

finding correspondences between the images. This is not a trivial task considering the image pairs have huge variations in scale, 

perspective and illumination conditions. This paper presents a procedure to successfully register UAV and aerial oblique imagery. The 

proposed procedure implements the use of the AKAZE interest operator for feature extraction in both images. Brute force is 

implemented to find putative correspondences and later on Lowe’s ratio test (Lowe, 2004) is used to discard a significant number of 

wrong matches. In order to filter out the remaining mismatches, the putative correspondences are used in the computation of multiple 

homographies, which aid in the reduction of outliers significantly. In order to increase the number and improve the quality of 

correspondences, the impact of pre-processing the images using the Wallis filter (Wallis, 1974) is investigated. This paper presents the 

test results of different scenarios and the respective accuracies compared to a manual registration of the finally computed fundamental 

and essential matrices that encode the orientation parameters of the UAV images with respect to the aerial images. 

1. INTRODUCTION

During the last decades, Unmanned Aerial Vehicles (UAVs) 

have been used to acquire high resolution imagery for geo-

information applications. They provide a low-cost alternative to 

the traditional airplanes as platforms for spatial data acquisition 

(Nex & Remondino, 2014). They also tend to have high 

repeatability and flexibility in data acquisition making them 

popular platforms for image acquisition. Additionally, UAVs 

acquire images that have a Ground Sampling Distance (GSD) of 

up to 1 cm, which is relatively high compared to images taken by 

manned aircrafts. 

However, UAV images often have poor georeferencing 

information due to the low quality on-board Global Navigation 

Satellite System (GNSS). To add to that, most UAVs have a 

limited payload capacity to host a high quality on-board Inertial 

Measurement Unit (IMU) to ascertain accurate orientation 

parameters. 

A crucial part in trying to solve this problem involves image 

registration to identify a sufficient number of tie points, which 

are used to retrieve the orientation parameters of the UAV images 

with respect to the aerial images whose orientation parameters 

are known. There exist different algorithms for image 

registration, because the images being registered may have 

different characteristics in terms of resolution, geometry and 

radiometry (Shan et al. 2015). Different surveys (Brown, 1992; 

Zitová & Flusser, 2003) have been done on image registration 

and these surveys show that the different characteristics of 

images ought to be accounted for when developing a suitable 

registration algorithm.  
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The registration procedure presented in this paper relies on state-

of-the-art algorithms for feature extraction of distinct keypoints 

between an image pair. The algorithms ought to be invariant to 

differences in scale, rotation, illumination and viewpoints. Such 

algorithms are, e.g. KAZE (Alcantarilla et al. 2012), AKAZE 

(Alcantarilla, Nuevo, & Bartoli, 2013), LATCH (Levi & 

Hassner, 2015) and ORB (Rublee & Bradski, 2011). 

This paper aims at addressing the problem of automatically 

registering oblique UAV images to airborne oblique images by 

presenting a matching strategy that relies on the use of the 

AKAZE interest operator, which is used due to its invariance to 

large scale differences between our images of interest. Default 

settings used in AKAZE do not yield suitable keypoints for 

successful matching, hence the need to adjust the parameters, 

such as the number of octaves and the detection threshold. 

Since the number of detected features decays from lower to 

higher octaves, the detection threshold is lowered to have 

sufficient features that have a good distribution in the matching 

octaves of the images. 

The data set used in this paper is a sample of images availed to 

researchers in the framework of the multi-platform 

photogrammetry benchmark (Nex et al. 2015) undertaken by a 

scientific initiative of ISPRS and EuroSDR. Figure 1 shows a 

sample pair used in our experiments. The great variations in scale 

between the pair is evident, making the registration process a 

challenge. 

The following section gives a brief literature review on similar 

research work already done. This is followed by section 3, which 

outlines the methodology adopted in our research work.
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Figure 1. A pair of test images captured in Dortmund, Germany. Left: Aerial oblique. Right: UAV oblique image

The subsequent section presents the experimental results and 

finally the paper is concluded in section 5 where future research 

work is outlined. 

 

 

2. RELATED WORKS 

Various authors have presented different strategies to register 

images with different resolutions. For instance, Geniviva et al. 

(2014) proposed an automated registration technique that could 

be used to improve the positional accuracy of oblique UAV 

images using orthorectified imagery. The technique implemented 

the A-SIFT (Morel & Yu, 2009) algorithm to find 

correspondences between the image pairs. A-SIFT was used due 

to its ability to vary the camera-axis parameters in order to 

simulate all possible views. However, this technique makes the 

algorithm computationally expensive. 

 

More recently, Koch et al. (2016) proposed a new method to 

register nadir UAV images and nadir aerial images. An 

investigation was done to assess the viability of using SIFT 

(Lowe, 2004) and A-SIFT. The authors concluded that these 

methods did not yield satisfactory results because the images to 

be matched had a large difference in scale, rotation and temporal 

changes of the scene. This led to the proposed method, which 

used a novel feature point detector, SIFT descriptors, a one-to-

many matching strategy and a geometric verification of the likely 

matches using pixel-distance histograms. 

 

Jende et al. (2016) proposed a novel approach for the registration 

of Mobile Mapping (MM) images with high-resolution aerial 

nadir images. The approach involves using a modified version of 

the Förstner operator to detect feature keypoints only in the aerial 

ortho-image. The feature keypoints are then back-projected into 

the MM images. A template matching strategy is used to find 

correspondences as opposed to using feature descriptors. The 

approach was compared to combinations of AGAST detector & 

SURF descriptor as well as Förstner detector & SURF descriptor. 

 

Gerke et al. (2016) performed experiments to investigate on how 

current state-of-the-art image matching algorithms perform on 

similar platform and across platform images such as UAV images 

and terrestrial images and concluded that standard image 

matching algorithms suffer from differences in illumination and 

geometry between image pairs. 

 

Previous research methods do not offer reliable strategies for 

image registration between UAV images and aerial oblique 

images. This research proposes a reliable method to accurately 

register UAV images to already georeferenced aerial oblique 

images. 

 

 

 

 

3. METHOD 

Figure 2 depicts a flowchart showing an overview of the strategy 

adopted to develop our proposed image registration algorithm. 

 

The following sub sections give detailed explanations to the key 

components of the proposed methodology. 

 

3.1 Feature extraction: In order to restrict the search area for 

potential matching features in the aerial image, the availed 

orientation parameters of the input images were exploited to 

create a search window within the area of overlap in the aerial 

image. This was done by back-projecting the UAV image 

location into the aerial image and later on creating a 1000 by 1000 

pixel search window around the back-projected point. 

 

Figure 2. Flowchart showing an overview of the proposed 

method 

AKAZE features are extracted within the search window of the 

aerial image and the entire UAV image. We use the AKAZE 

interest operator due to its invariance to scale and ability to 

preserve boundary features, thereby detecting more distinct 
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features for matching. Moreover, SIFT, SURF (Bay et al. 2008), 

KAZE, BRISK (Leutenegger, Chli, & Siegwart, 2011), and 

BRIEF (Calonder et al. 2010) were tested and AKAZE gave 

better results. 

 

The number of octaves in the aerial image is then adjusted to two 

while the default number of four octaves is retained in the UAV 

image. The GSD ratio between the image pair is used to extract 

only features from the third and fourth octaves of the UAV image 

while features from the first and second octaves are discarded, 

because they are unlikely to match due to huge differences in 

scale. 

 

Since the number of detected features decays from lower octaves 

to higher octaves and the higher octaves of the UAV image yield 

potential features for successful matching, the Hessian threshold 

which determines which features are to be detected is lowered 

progressively from the default value to detect a sufficient number 

of features in the higher octaves of the UAV image. 

 

3.2 Feature matching: Brute force hamming distance 

(Hamming, 1950) is used to match the corresponding features 

due to the binary nature of the AKAZE descriptor. The putative 

matches contain a set of wrong matches that need to be discarded. 

Lowe’s ratio test (Lowe, 2004) is employed to select the best 

matches and significantly reduce the number of outliers. The ratio 

test suggests that two closest matches are unlikely to share the 

same descriptor distance. If the descriptor distance ratio is above 

a certain threshold, then the matches are removed. If the distance 

ratio is below the predefined threshold, then the match with the 

lower descriptor distance is retained. 

 

3.3 Multiple homographies: Feature matching alone is not 

able to provide a set of reliable correspondences, and many 

mismatches are still visible in the images. The direct estimation 

of a fundamental matrix using RANSAC for outlier removal does 

not yield reliable results. It was therefore decided to employ the 

computation of multiple homographies to filter out wrong 

matches in every iteration. Zuliani, Kenney, & Manjunath, 

(2005) used a similar approach and they called it multiransac. 

 

The computation of a homography between a pair of images is 

dependent on planar elements in a scene, and it is therefore 

suitable for images capturing urban environments. The buildings 

have structured surfaces with varying shapes and orientations 

making them multi-planar. Figure 3 illustrates this concept. 

 

With this hypothesis in mind, multiple homographies are 

computed iteratively using the putative matches, earlier 

computed, as the only input. To derive a homography, at least 

four point pairs are required. RANSAC is used to look for points 

conforming to a homography. The first iteration takes the whole 

set of putative matches and computes the first homography. The 

inliers are stored while the outliers are used in the next iteration 

to compute the second homography. This is done iteratively until 

no more inliers are found. A condition is set to stop the iteration, 

whenever less than ten points are detected to compute a 

homography. This choice was made to avoid the computation of 

degenerate sets of inliers. 

 

3.4 Fundamental (F) and Essential (E) matrices: The next 

step involved the computation of a global geometric relationship 

that exists between the image pairs. This is done by computing 

an F matrix using the eight point algorithm (Longuet-Higgins, 

1981) that implements the use of RANSAC to remove any 

possible outliers that may have been computed as inliers during 

the computation of multiple homographies. 

 

Figure 3. A building scene represented as having two planes. 

Homologous points from each plane have a homography 

mapping (Szpak et al. 2014) 

 

The computation of the F matrix becomes suitable whenever the 

cameras’ interior orientation parameters are unknown. On the 

other hand, since the orientation parameters of the oblique 

camera are precisely known and the UAV camera parameters can 

be approximated to a certain extent, the problem can be reduced 

to an E-matrix estimation only. This entails reducing the number 

of parameters to estimate and potentially leads to a better result. 

 

3.5 Accuracy evaluation: Accuracy evaluation is done by 

making use of the epipolar constraint. Corresponding epipolar 

lines are computed and metric distances from these lines to their 

corresponding points are derived. An ideal case will result to 

distances equalling to zero, but in reality, this might not always 

be the case possibly due to localisation errors encountered during 

feature detection. Computation of the average residual error, as 

shown in equation 1, is used to assess the accuracy of the F matrix 

in mapping point features from the aerial image to corresponding 

epipolar lines on the UAV image. The average residual error is 

compared with the average residual error computed from 

manually identified matches throughout the scene. 

 

 1

𝑁
∑𝑑′(𝑥𝑖

′, 𝐹𝑥̂𝑖)

𝑁

𝑖

 (1) 

Where N is the total number of matching points and d(x, Fx) is 

the distance between a point to its corresponding epipolar line in 

the other image. 

 

Since the objective is to register the UAV image to the aerial 

image, the residual errors between matched points are computed 

in the UAV image. 

 

 

4. EXPERIMENTS 

In order to test the developed registration algorithm, we use eight 

sample pairs of the benchmark images acquired in the city centre 

of Dortmund, Germany. The image pairs were selected, because 

they comprise of buildings posing a challenge in registration by 

having repetitive patterns. In addition, the image pairs reflect 

great differences in viewpoint, illumination and scale. 

 

The eight pairs of images have different combinations and 

capture different scenes in order to test the reliability of the 

developed algorithm under different scenarios. 
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All experiments were conducted in MATLAB using integrated 

OpenCV functions together with MATLAB built-in functions. 

 

4.1 Experimental results 

This section gives an illustration of the results derived after 

testing the developed algorithm on different image pairs. A good 

number of images were successfully matched, whereas a few 

image pairs did not return satisfactory results. 

Pair 1: 

Figure 4 shows an image pair, both taken at a viewing angle of 

45 degrees. 206 correct matches were computed without a single 

outlier. This is because the ratio test provided a robust solution in 

retaining distinct matches. Moreover, computing multiple 

homographies proved reliable in filtering out the few mismatches 

that evaded the ratio test, because multiple planes present in the 

scene were estimated successfully. 

 
 

Figure 4. 206 correct matches of the Stadthaus building scene 

Pair 2: 

Figure 5 shows the results achieved when a UAV image, captured 

at an almost horizontal angle to the building, was matched with 

an aerial oblique image with a vertical viewing angle of 45 

degrees. 41 correct matches were computed and they were only 

on the façade. The facade has a good texture, a phenomenon that 

presumably led to a successful registration. 

 
 

Figure 5. 41 correct matches of the Stadthaus building scene 

 

Pair 3: 

The result depicted in Figure 6 shows 76 correct 

correspondences. The configuration is almost similar to the one 

in pair 1, but the only difference is that the UAV image had a 

slightly different vertical viewing angle of about 10 degrees and 

captured a portion of the side of the building. Despite this 

difference in viewpoint, the registration was still successful. 

 

Pair 4: 

Pair 4 shows a challenging configuration where there was a huge 

difference of approximately 45 degrees in the horizontal viewing 

angles between the UAV camera and the aerial camera. There 

was also a difference in the vertical viewing angles between the 

two cameras with the aerial camera having a viewing angle of 45 

degrees and the UAV camera having a viewing angle of about 10  

 
 

Figure 6. 76 correct matches of the Stadthaus building scene 

 

 
 

Figure 7. No correct match due to drastic differences in viewing 

angles of the Stadthaus building scene 

 

degrees. Unfortunately, no correct matches were computed as 

shown in Figure 7. This can be attributed to the extreme 

differences in viewing angles between the two images that causes 

some features to be distorted and occluded in the UAV image, 

thus hampering the process of detecting corresponding features 

in both images. 

 

Pair 5: 

Figure 8 shows the registration results of a pair of images 

comprising of a different building scene that has many repetitive 

features. Both cameras captured the respective images at a 

viewing angle of 45 degrees. 229 correct matches were computed 

throughout the scene. The scene captured has a favourable texture 

that is suitable for matching. In addition, multiple planes were 

present in the scene, which contributed to a successful result. 

 
 

Figure 8. 229 correct matches of the Rathaus building scene 

 

Pair 6: 

Pair 6 represents a slightly similar scenario to pair 5 with the only 

difference being the viewing angle of the UAV camera, which is 

about 5 degrees off nadir. Figure 9 shows a successful 

registration of 155 correct matches, all of which are on the 

rooftop of the Rathaus building, since this part was mostly 

captured by the UAV camera, which was looking almost 

vertically downwards. Despite having repetitive features, the 

images were successfully matched. 
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Figure 9. 155 correct matches of the Rathaus building scene 

 

 
 

Figure 10. 234 correct matches of the Friedensplatz scene 

 

Pair 7: 

The UAV image used in pair 7 comprises mainly the open space 

in front of the Stadthaus and the Rathaus buildings. Figure 10 

illustrates 234 correct matches. The successful registration can be 

attributed to the good texture and the pattern of the ground area. 

In addition, the similar viewing angles between the cameras, i.e. 

45 degrees, also contributed to the correct correspondences. 

Pair 8: 

The last pair shows a configuration where the registration failed. 

This configuration has a drastic difference in viewing angles 

between the two cameras, i.e. both cameras were facing different 

sides of the Rathaus building – the aerial camera faced the south 

façade and the UAV camera faced the east façade. Figure 11 

depicts the mismatches computed. 

 
 

Figure 11. Mismatches between different views of the Rathaus 

building 

 

4.2 Accuracy evaluation 

Table 1 shows an analysis of the residual errors of the respective 

F matrices computed, both automatically and manually, for the 

eight image pairs. In addition to the average residual errors, the 

minimum and the maximum residual errors are also given. 

 

For the image pairs that were successfully registered, the average 

residuals computed are all below five pixels on the UAV image. 

The same applies to the average residual errors computed from 

manual registration. These values are slightly lower than the 

values computed automatically with an exception in pair 4, which 

gave an average residual error of 65.86 pixels from automatic 

registration. No residual errors were computed for pair 8, because 

the image pair barely had corresponding features that were easily 

distinguishable. 

 

Pair 

Residual error (pixels) 

Automatic registration Manual registration 

Mean Min Max Mean Min Max 

pair 1 4.91 0.11 27.46 3.12 0.04 15.35 

pair 2 3.45 0.13 10.18 3.26 0.44 10.29 

pair 3 2.53 0.02 10.91 2.42 0.03 9.92 

pair 4 65.86 0.17 449.41 7.75 0.45 29.9 

pair 5 4.43 0.01 39.22 3.67 0.05 11.09 

pair 6 4.61 0.01 28.83 3.35 0.3 19.25 

pair 7 2.98 0.02 27.03 2.04 0.21 12.23 

pair 8 24.85 0.35 84.85 - - - 

Table 1. Summary of the residual errors of the respective F 

matrices computed automatically and manually 

 

4.3 Influence of Wallis filter 

An additional experiment was conducted to assess the impact of 

pre-processing the images using the Wallis filter. We chose pair 

1 due to the variation in illumination between the images. Figure 

12 shows the image pair with a zoomed in version of the aerial 

image around the area of overlap. It is evident that the aerial 

image has less contrast compared to the UAV image. This is most 

likely due to the different daytimes or days that the images were 

acquired. 

 

The Wallis filter (Wallis, 1974) has five adjustable parameters 

(size of the filter, target mean, target standard deviation, contrast 

and brightness factors). The main objective is to apply the filter 

on both images to reduce the differences in illumination. Since 

the images also have different scales, it was decided to readjust 

the size of the filter on the UAV image while the filter size on the 

aerial image was kept at a constant (default value). This choice 

was made because the image pair have varying resolutions hence 

the need to use varying filter sizes for both images. 

 

Although the overall result did not improve significantly, it was 

observed that upon increasing the filter size, the number of 

matches increased progressively as shown in Figure 13. Figure 

14 shows the result of matching image pair 1 after applying the 

Wallis filter with a filter size of 40 by 40 pixels on the aerial 

image and a filter size of 200 by 200 pixels in the UAV image. 

 

 
 

Figure 12. Pair 1. Left: Zoomed in aerial image. Right: UAV 

image 
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Figure 13. Increasing number of matches as the Wallis filter 

size is increased on the UAV image 

 

 
 

Figure 14. 106 matches after applying Wallis filter on the image 

pair 

 

5. DISCUSSION 

The developed methodology has showed reliable results in most 

of the performed tests. Scale changes can be efficiently handled 

by modifying the number of octaves considered in the extraction 

of salient features while multiple homographies can cope with the 

larger percentage of outliers that usually occur with multi 

resolution images. The repetitive nature of some buildings does 

not prevent the correct detection of several corresponding 

features within the image pairs.  

 

However, the achieved results show that the registration 

procedure can reliably work when the differences in looking 

directions are less than 25 degrees. The number of matches is 

usually related to the differences in viewing directions of the 

images. As it could be expected, the presence of well-textured 

surfaces can greatly influence the number of corresponding 

features and their distribution throughout the image.  

 

The performed tests have then showed that the residuals of the 

automated procedure are of the same order to those of the manual 

registration. The residuals are 3-5 cm GSD (of the UAV images) 

and this corresponds to 1 cm GSD of the aerial image, which is a 

fairly satisfying result. The only exceptions are when the 

registration is not successful. In these cases, high values are a 

clear indication of the failure of the procedure. 

 

The Wallis filter does reduce the illumination variations but it 

does not increase the number of matched features. However, 

increasing the filter size for the UAV image has the consequence 

to increase the number of matched features. This might be 

attributed to the different resolutions of the images and that 

reflects the need to use different filter sizes to compensate for 

their different resolutions. 

6. CONCLUSIONS AND FUTURE OUTLOOK 

The main aim of this paper was to present a strategy to accurately 

orient UAV images via feature matching with already 

georeferenced aerial oblique images. The image pairs adopted in 

the tests presented challenging scenarios due to differences in 

scale, geometry and even lighting conditions.  

 

The achieved results looked promising in most of the cases, 

showing the suitability of the state-of-the-art interest operators 

for this task. Nonetheless, the developed procedure is still 

exploiting the availed orientation parameters of the image pairs 

as input to restrict a search area for candidate features in the area 

of overlap in the aerial image. 

 

Many tests have been previously performed using different 

interest operators (Onyango, 2017) and AKAZE showed to 

outperform all the others in most of the cases. Some strategies 

were then adopted on the original AKAZE implementation to be 

more effective in registering images with different resolutions. A 

first successful strategy was to lower the Hessian threshold in 

order to yield a sufficient number of features in the higher octaves 

of the UAV images. The respective GSDs of the images were 

used to automatically infer which octaves in both the images had 

a similar resolution  and which features detected in the octaves of 

the UAV image looked more similar to the features in the octaves 

of the aerial image. The implementation of Lowe’s ratio test 

played an instrumental role in reducing the number of outliers in 

the matching step. Moreover, the computation of multiple 

homographies further reduced the number of outliers thereby 

necessitating the computation of a reliable F matrix whose 

residual errors depicted acceptable accuracies apart from image 

scenarios that had extreme differences in geometry. 

 

The limitations in matching features on images from very 

different viewing directions are mainly due to the current limits 

faced by interest operators. The differences in scale do not play a 

major role in this context.  

For image pairs that did not achieve a good distribution of 

matches, other matching and image processing techniques can be 

exploited in an attempt to solve this problem. Such techniques 

include graph matching and image segmentation. Another 

promising solution could be represented by deep learning 

approaches as reported in (Altwaijry et al. 2016). 

Next research would be to register between terrestrial images and 

already oriented UAV images. Here the scale difference between 

the image pairs are of a lower magnitude compared to the scale 

differences between aerial and UAV images. A challenge that 

might hamper the registration process is the differences in 

viewing angles that lead to geometrical differences between the 

images. 
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