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ABSTRACT: 

This paper investigated the potential utility of Landsat-8 Operational Land Imager (OLI) for change detection analysis and mapping 

application because of its superior technical design to previous Landsat series. The OLI SVM classified data  was successfully 

classified with regard to all six test classes (i.e., bare land, built-up land, mixed trees, bushes, dam water and channel water). OLI 

support vector machine (SVM) classified data for the four seasons (i.e., spring, autumn, winter, and summer) was used to change 

detection results of six cases: (1) winter to spring which resulted reduction in dam water mapping and increases of bushes; (2) winter 

to summer which resulted reduction in dam water mapping and increase of vegetation; (3) winter to autumn which resulted increase 

in dam water mapping; (4) spring to summer which resulted reduction of vegetation and shallow water; (5) spring to autumn which 

resulted decrease of vegetation; and (6) summer to autumn which resulted increase of bushes and vegetation . OLI SVM classified 

data resulted higher overall accuracy and kappa coefficient and thus found suitable for change detection analysis. 

1. INTRODUCTION

Change detection is of challenging problem. Remote sensing is 

used for planning at local and regional level. Remote sensing 

provides the efficient and cheaper means of spatial and temporal 

classification of inland water studies (Gardelle et al., 2010; 

Prigent et al., 2012; Zhang et al., 2015). Landsat-8 Operational 

Land Imager; OLI superior design is useful for mapping 

application as compared to previous Landsat series (Irons J. R., 

Dwyer J. L. Barsi, J. A., 2012; Markham, B. L. et al., 2010; 

Pehlevan, N., Schott, J. R., 2011; U.S Geological Survey, 

2012). Landsat-8 OLI is appropriate for land use/cover mapping 

(Czapla-Myers, et al., 2015; Flood, N., 2014; Jiag, P., Li, Feng, 

Z., 2014; Knight, E., Kvaran, G., 2014; Ke, Y., et al., 2015; 

Pervez, W., 2016; Morfitt., R., 2015; Markham, B., 2014; Roy 

D., et al., 2014.  This paper presents a change detection study of 

Landsat-8 Operational Land Imager (OLI) data of the study area 

for the four seasons and for six different cases. The post 

classification techniquehas been used in this paper due to its 

advantages. Different change detection methods were used in 

the literature depending upon its application (Almutairi, A., 

Warner, T. A., 2010;  Hecheltjen, A., Thonfeld, F., Menz, G., 

2014. The objective of the paper was: (i) to evaluate SVM 

classification on OLI data for the four seasons; (ii) to evaluate 

post classification change detection analysis of OLI SVM 

classified data for the six cases 

2. STUDY AREA AND DATA SETS

This paper describes change detection analysis of SVM 

classified OLI data for the four seasons. OLI data parameters of 

the study area is shown in Table 1. 

Table 1 : Imaging geometry conditions and scene center 

latitudes and longitudes for Landsat-8 OLI 

23 Nov 

2015 

27 Feb 

2015 

2 Jun 

2016 

24 Oct 

2016 

Sensor 

Altitude 

705 km 705 km 705 km 705 km 

Off-

nadir/Nadir 

Nadir Nadir Nadir Nadir 

Sun Azimuth 156.08º 111.55° 135.07 

º 

159.10 º 

Sun 

Elevation 

42.78 º 68.45° 58.58 º 31.57 º 

Scene center 

latitude 

33.17 º 33.27° 33.17 º 33.17 º 

Scene center 

longitude 

72.88 º 72.87° 72.85 º 72.88 º 
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3. RESULTS AND DISCUSSION 

 

3.1 OLI SVM Classified Data and Change Detection 

Analysis 

OLI SVM classified data was used for change detection analysis 

of six cases.   

 

3.2 Experimental Setup 

The ROI were selected by using high resolution imagery and 

maps. Following values were assigned for experimental setup: 

Kernel parameter gamma (γ) =1/No of bands= 0.143 

Penalty parameter C = 100  

pyramid parameter = zero  

classification probability threshold = zero  

 

 

 

 

 

 

 
 

Figure 1. OLI SVM classified data  (a) winter (23 November, 

2015), (b) spring (27 February, 2016) (c) summer (2 June, 

2016), and (d) autumn (24 October, 2016) 

 

 

3.3 Case 1: Change Detection from Winter to Spring  

Change detection matrix (Table 2) from winter to spring shows 

decrease of spatial distribution of bare land 66.99%, dam water 

43.85 %, built-up land 50.95 and increase of mixed trees 9.2%, 

shallow water 40.4 % and shrub 514.4%. Figure 2 shows a 

change of category from dam water to channel water, dam water 

to bushes, and dam water to bare land. Similarly, a change of 

category from bare land to bushes, bushes to mixed trees, built-

up area to bushes and built-up area to bare land resulted 

increase of bushes in spring from winter. Change detection from 

winter to spring resulted reduction in dam water mapping and 

increases of bushes. 

 

 
 

 

Figure 2. Change detection results of OLI SVM classified data 

from winter to spring 

 

3.4 Change Detection from Winter to Summer (Case 2) 

 

Change detection matrix (Table 3) shows decrease of spatial 

distribution of bare land 16.01%, dam water 32.52%, built-up 

land 40.3 and increase of mixed trees 22.1%, channel water 

181.5% and bushes 121.5%. Figure 3 shows a change of 

category from dam water to channel water, dam water to bare 

land. Similarly, a change of category from bare land to bushes, 

built-up land to bare land, bushes to mixed trees resulted 

increases of vegetation in summer compared to winter. A 

change of category from mixed trees to dam water resulted near 

the shoreline. Change of category from bare land to built-up is 

due to seasonal variation. Change detection from winter to 

summer resulted reduction in dam water mapping and increase 

of vegetation. 
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Figure 3.  Change detection results of OLI SVM classified data 

from winter to summer 

 

3.5 Change Detection from Winter to Autumn (case 3)  

 

Change detection matrix (Table 4) from winter to autumn shows 

decrease of spatial distributions of mixed trees 90.81%, bare 

land 21.50% and increase of channel water 2.1 %, dam water 

172.7%, bushes 94.3% and built-up land 16.72%. Figure 4 

shows category changes with increase in dam water mapping 

from bare land to deep water and from bare land to bushes. 

Similarly, small category changes from built-up land to bare 

land result due to seasonal variations. 

 

 
 

 

Figure 4. Change detection results of OLI SVM classified data 

from winter to autumn 

 

3.6 Change Detection from Spring to Summer (case 4) 

 

Change detection matrix (Table 5) from spring to summer 

shows decrease of spatial distributions of mixed trees 88.35%, 

channel water 32.97%, bushes 72.75% and increase of bare soil 

201.05%, built-up land 157.58% and dam water 288.69%. 

Figure 5 shows category changes from mixed trees to bushes, 

bare land to bushes. Similarly category change from bushes to 

built-up land and bare land to built-up land, bushes to bare land, 

channel water to built-up land resulted due to decrease of 

vegetation. Category change from dam water to bare land 

resulted  due to seasonal variation. Change detection from 

spring to summer resulted reduction of vegetation and shallow 

water. 

 

 
 

 

Figure 6. Change detection results of OLI SVM classified data 

from spring to summer 

 

3.7 Change Detection from Spring to Autumn (case 5) 

 

 

Change detection matrix (Table 6) from spring to autumn shows 

decrease of spatial distribution of  mixed trees 91.59%, Channel 

water 27.29%, bushes 68.37% and increase of bare land 137%, 

deep water 385.85% and built-up land 137.96%. Figure 6 

shows category changes with increases in dam water mapping 

from bushes to dam water, bare land to dam water in areas near 

the shoreline. Similarly change of category from bushes to bare 

land, built-up land to bare land, mixed trees to bushes resulted 

decrease of vegetation. Change of category from bare land to 

built-up land, bushes to built-up land resulted decrease of 

vegetation. Small category changes from bare land to bushes 

resulted due to seasonal variation. 
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Figure 7. Change detection results of OLI SVM classified data 

from spring to autumn 

 

 

3.8 Change Detection from Summer to Autumn (case 6) 

 

 

Change detection matrix from Summer to Autumn shows 

(Table 7) decrease of spatial distributions of bare land 

21.01%,  mixed trees 27.78% and increase of dam water 

24.99%, channel water 8.48% and bushes 16.04%. Figure 

7 shows a category changes with an increase in dam water 

mapping from bare land to dam water, channel water to 

dam water in areas near the shoreline. Similarly, category 

changes from bare land to bushes, built-up land to bushes, 

mixed trees to bushes resulted increase of bushes. Change 

of category from bare land to built-up area, built-up area 

to bare land, and bushes to bare land resulted due to 

seasonal variations. 

 
Figure 7. Change detection results of OLI SVM classified data 

from from summer to autumn 

 

 
 

4. CLASSIFICATION ACCURACY ASSESSMENT 

Classification accuracy assessment was carried outby using 

confusion matrix. The overall classification accuracy for OLI 

winter , spring, summer and autumn season data were classified 

by SVM were 92.20 (Kappa coefficient=0.90), 94.81 (Kappa 

coefficient=0.94), 93.80 (Kappa coefficient=0.92) and 92.77 

(Kappa coefficient=0.90) respectively based on the confusion 

matrix. Thus OLI SVM data is appropriate for change detection 

analysis. 

 
 

5. CONCLUSIONS 

 The results of this study confirmed the potential utility of OLI 

data change detection analysis The OLI SVM classified data  

was successfully classified with regard to all six test classes 

(i.e., bare land, built-up land, mixed trees, bushes, dam water 

and channel water) after pre-processing and atmospheric 

correction. OLI SVM classified data resulted higher overall 

accuracy (more than 92%) and kappa coefficient and thus 

suitable for change detection analysis. The OLI SVM-classified 

data for the four seasons were used for change detection 

analysis of six cases. Case1: change detection from winter to 

spring resulted reduction in dam water mapping and increases 

of bushes. Case2: change detection from winter to summer 

resulted reduction in dam water mapping and increase of 

vegetation. Case3: change detection from winter to autumn 

resulted with increase in dam water mapping. Case 4 : Change 

detection from spring to summer resulted reduction of 

vegetation and shallow water. Case 5: change detection from 

spring to autumn resulted decrease of vegetation. Case 6: 

Change detection from summer to autumn resulted increase of 

bushes and vegetation. 

These results established that the new OLI technology, with its 

higher overall accuracy suitable for post classification change 

detection analysis.  

 

 

 

 

 

 

 

 

 

 

Table 2:  Change Detection Percentage Operational Land Imager Data from Winter to Spring Season 

Class Bare Land Dam Water  Mixed Trees  Channel Water Bushes Built-up  Land 

Bare Land 11.4 25.3 0.13 14.6 20.1 18.9 

Dam Water  0.004 56.1 0 0.05 0 0 

Mixed Trees 1.8 2.3 99.4 0.73 26.6 0.1 

Channel Water 1.9 4.2 0.01 52.6 1.4 9.4 

Bushes 83.9 11.6 0.5 19.5 51.8 28.7 

Built-up Land 0.9 0.5 0 12.5 0.1 42.8 

Class Total 100 100 100 100 100 100 

Class Changes 88.6 48.8 0.6 47.4 48.2 57.1 

Image Difference -66.9 -43.8 9.3 40.4 514.4 -50.9 
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Table 3:  Change Detection Percentage Operational Land Imager Data from Winter to Summer Season 

Class Bare Land Dam Water  Mixed Trees  Channel Water Bushes Built-up  Land 

Bare Land 61.0 6.5 11.1 4.2 48.5 43.01 

Dam Water  0 70.4 0 0 0 0 

Mixed Trees 3.9 5.9 68.9 2.0 7.5 0.61 

Channel Water 2.5 6.5 1.3 78.5 4.3 5.7 

Bushes 30.0 3.9 17.9 3.1 40.3 13.01 

Built-up Land 3.7 7.1 0.3 14.1 2.5 38.05 

Class Total 100 100 100 100 100 100 

Class Changes 40.1 31.61 31.5 21.3 62.7 63.1 

Image Difference -16.01 -32.52 22.1 188.5 121.5 -40.3 

Table 4:  Change Detection Percentage Operational Land Imager Data from Winter to Autumn Season 

Class Bare Land Dam Water  Mixed Trees  Channel Water Bushes Built-up  Land 

Bare Land 62.6 4.5 0.2 18.4 15.1 27.1 

Dam Water  0.02 95.1 91.2 0.3 0 0 

Mixed Trees 0.01 0.01 7.9 0 5.6 0 

Channel Water 1.75 0.1 0.01 56.2 0.5 5.1 

Bushes 19.1 0.1 0.6 3.1 72.1 5.7 

Built-up Land 16.5 0.1 0.02 22.1 6.5 62.1 

Class Total 100 100 100 100 100 100 

Class Changes 37.3 4.9 92.1 43.9 27.9 37.9 

Image Difference -21.5 172.7 -90.8 2.1 94.2 16.7 

 

Table 5:  Change Detection Percentage Operational Land Imager Data from Spring to Summer Season 

 

Class Bare Land Dam Water  Mixed Trees  Channel Water Bushes Built-up  Land 

Bare Land 45.2 22.3 2.6 17.6 67.3 7.2 

Dam Water  0 72.5 83.5 0 0 0 

Mixed Trees 2.5 0 9.6 0.1 0.7 0 

Channel Water 4.6 5.1 0.1 38.3 0.4 0.5 

Bushes 28.7 0 3.8 8.7 14.5 1.3 

Built-up Land 18.9 0.1 0.2 36.1 17.0 90.9 

Class Total 100 100 100 100 100 100 

Class Changes 54.7 27.8 90.3 61.6 85.4 9.1 

Image Difference 201.1 288.7 -88.3 -32.9 -72.7 157.6 

 

Table 6:  Change Detection Percentage Operational Land Imager Data from Spring to Autumn Season 

 

Class Bare Land Dam Water  Mixed Trees  Channel Water Bushes Built-up  Land 

Bare Land 20.4 0.02 1.5 13.1 60.3 15.1 

Dam Water  29.9 99.9 84.5 13.4 2.8 1.1 

Mixed Trees 0.2 0 8.2 0 0.1 0 

Channel Water 5.0 0.03 0.1 34.1 1.9 3.5 

Bushes 28.0 0 5.3 7.7 18.1 0.9 

Built-up Land 16.5 0 0.4 31.6 16.7 79.4 

Class Total 100 100 100 100 100 100 

Class Changes 79.6 0.1 91.8 65.9 81.8 20.6 

Image Difference 137.8 385.8 -91.6 -27.3 -68.4 137.9 

 

Table 7:  Change Detection Percentage Operational Land Imager Data from Summer to Autumn Season 

 

Class Bare Land Dam Water  Mixed Trees  Channel Water Bushes Built-up  Land 

Bare Land 62.8 0 0.3 9.6 15.9 23.2 

Dam Water  17.5 99.9 0.1 33.6 0.1 3.4 

Mixed Trees 0.01 0 64.9 0 2.3 0 

Channel Water 3.1 0 0 52.1 0.5 2.3 

Bushes 4.4 0 34.6 1.3 72.5 11.3 

Built-up Land 12.0 0 0.02 3.2 8.6 59.6 

Class Total 100 100 100 100 100 100 
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Class Changes 37.1 0 35.0 47.9 27.5 40.4 

Image Difference -21.0 24.9 -27.8 8.5 16.04 -7.6
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