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ABSTRACT: 

Determining appropriate spatial resolution of digital elevation model (DEM) is a key step for effective landslide analysis based on 

remote sensing data. Several studies demonstrated that choosing the finest DEM resolution is not always the best solution. Various 

DEM resolutions can be applicable for diverse landslide applications. Thus, this study aims to assess the influence of special 

resolution on automatic landslide mapping. Pixel-based approach using parametric and non-parametric classification methods, 

namely feed forward neural network (FFNN) and maximum likelihood classification (ML), were applied in this study. Additionally, 

this allowed to determine the impact of used classification method for selection of DEM resolution. Landslide affected areas were 

mapped based on four DEMs generated at 1m, 2m, 5m and 10m spatial resolution from airborne laser scanning (ALS) data. The 

performance of the landslide mapping was then evaluated by applying landslide inventory map and computation of confusion matrix. 

The results of this study suggests that the finest scale of DEM is not always the best fit, however working at 1m DEM resolution on 

micro-topography scale, can show different results. The best performance was found at 5m DEM-resolution for FFNN and 1m DEM 

resolution for results. The best performance was found to be using 5m DEM-resolution for FFNN and 1m DEM resolution for ML 

classification. 

* Corresponding author

1. INTRODUCTION

A landslide is defined as a mass movement of rock, debris or 

earth down a slope (Cruden, 1991) and is a common natural 

hazard that has an effect on economic, environmental and social 

issues (Leshchinsky et al., 2015). Therefore, mapping of 

landslides and producing landslide inventory maps are of 

interest to a wide range of specialists (Moosavi et al., 2014). 

Identifying landslide areas and producing landslide inventory 

maps (LIM) are fundamental for hazard assessments and 

disaster prevention. However, rapid mapping and LIM have 

different goals. 

Rapid mapping needs fast analysis of data to provide maps 

depicting landslide affected areas. In contrary to rapid mapping, 

LIM  provides detailed information about landslide types, 

estimated volumes of colluviums, main landslide features, 

morphometric parameters of landslide etc. The main goal of 

rapid mapping is to present landslide affected areas and its size 

immediately after major events to support disaster response 

(Stumpf,  2013). Rapid mapping typically targets map creation 

at a regional scale while more detailed characterization and 

monitoring often require site specific investigations (Stumpf, 

2013).  

Generally, landslide identification can be performed by 

applying of different approaches including geomorphological 

field reconnaissance (Ardizzone et al., 2007), interpretation of 

stereoscopic aerial photographs (Li et al., 2016), surface and 

sub-surface monitoring and innovative remote sensing 

technologies such as the interpretation of synthetic aperture 

radar (SAR) images (Zhao et al., 2012, Del Ventisette et al., 

2014), the interpretation of high resolution multispectral images 

(Cheng et al., 2004) or the analysis of high quality digital 

elevation models (DEMs) obtained from space or airborne 

sensors (Booth et al., 2009, Ardizzone et al., 2007, Van Den 

Eeckhaut et al., 2005, Tarolli et al., 2012, Tarolli., 2014). 

However, many of them are time-consuming (geomorphological 

field reconnaissance, surface and sub-surface monitoring) or are 

not applicable in forested regions (e.g. interpretation of high 

resolution multispectral images). Therefore, the versatile 

technique of rapid landslide mapping seems to be those, which 

remains to utilize DEM, especially  delivered by Airborne Laser 

Scanning (ALS) data.  

However, information provided by  DEM depends on its spatial 

resolution (Mora et al., 2014, Tarolli, 2014). Spatial resolution 

of DEM reveals the surface features, patterns and morphology. 

It is known that  inappropriate DEM resolution may entail 

misjudgment of landslide identification or misinterpretation of 

landslide features or morphology (Mora et al., 2014). Moreover, 

different landslide investigations can require various DEM 

resolutions. For instance, high resolution DEM allows to 

examine landslide morphology and recognize landslide features. 

On the contrary landslide susceptibility mapping does not 

require such high resolution of DEM (Pawłuszek and 
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Borkowski, 2016, Pawłuszek and Borkowski, 2017, Mora et al., 

2014). Some studies demonstrated that choosing the finest 

DEM resolution is not always the best choice (Mora et al., 

2014, Tarolli and Tarboton, 2006, Penna et al., 2014). Thus, it 

is an open question, if small divergences in micro-topography 

scale, which are represented in DEM of a fine resolution 

increase the performance of landslide mapping process. 

Therefore, the main objective of this study is to investigate the 

impact of DEM pixel resolution on landslide mapping using 

pixel-based approach. 

 

2. GENERAL SETTINGS OF THE STUDY AREA AND 

DATA USED 

2.1 Study area 

The study area is located in the central part of the Outer West 

Carpathians in Poland. This 28km2 area is located in the eastern 

part of Rożnów Lake. The geographical location is 49o44'N to 

49o45'N latitude and 20o40′E to 20o43′E longitude.  

From the geological point of view, the study area is built on 

flysch geological units which provides favourable conditions for 

of landslides development (Borkowski et al., 2011). According 

to the hydrological data, precipitation occurs frequently in the 

form of rain and snow throughout the winter. The annual mean 

precipitation of this area over the period of 1981–2010 is 800 

mm (Woźniak, 2014). The main reasons of the landslide 

occurrence within the study area are sedimentary rocks and 

rainfalls. Moreover, landslide activity is also mostly associated  

with the fluctuation of water level in the Rożnów Lake and the 

flysch type of rocks (Borkowski et al., 2011). Three diverse 

land uses dominant within the study area: forest, agricultural 

and urban areas. Landslides mainly occur in forested areas and 

cropland, which makes them difficult to identify. Figure 1 

depicts the location of the study area with existing landslides 

divided into two groups: training and testing subsets. 

 
 

Figure 1. Study area with existing landslides (dataset divided 

for training and testing datasets) 

2.2 Airborne laser scanning data 

The airborne laser scanning (ALS) data was captured at the 

southeast edge of Rożnów Lake (Wojciechowski et al., 2012). 

The ALS data was obtained during the early spring in April 

2010, to minimize the negative impact of the vegetation. The 

data was obtained using the Lite Mapper 6800 scanning system 

of Riegl with a nominal resolution of 4 points per square meter 

(Borkowski et al., 2011). Up to 4 echoes were registered from 

each pulse. The ALS data filtering was performed using a 

method proposed by Borkowski and Jóźków (2008) which is 

based on iterative terrain approximation with two-dimensional 

active contour model (Borkowski and Keller, 2003).  

 

2.3 Landslide inventory map 

Landslide inventory map was obtained from “Landslide 

Counteracting System” called SOPO. Figure 1 presents existing 

landslides from SOPO, which were divided into training and 

validation dataset. SOPO system is created by Polish Geological 

Institute (Wójcik et al., 2015a, Wójcik et al., 2015b, Borkowski 

et al., 2011) to mitigate the negative effect of landslide activity. 

The goal of this system was to create landslide inventory maps 

and collect them in one database. The online database content is 

available to the public to browse and is free of charge. The 

SOPO database provides information about around 250 

landslides within the study area (fig. 1). The landslide affected 

areas cover 6.14 km2, which means that 22% of total area is 

affected by landslides. Therefore, for training and testing 30% 

and 70% of randomly selected landslide areas were used, 

respectively. 

 

3. METHODOLOGY 

To examine the influence of DEM-resolution on automatic 

landslide mapping, four DEM-resolutions were tested. From 

each DEM, 12 DEM-derivatives were calculated. These 

derivatives were   then utilized for landslide classification   by 

means of two classification methods. The methodology 

flowchart is presented in Figure 2 and commented in the 

following subsections.   

 

 

 

3.1 Fine to coarse DEM generation 

The optimal pixel size of DEM depends on different aspects 

including the resolution of original data, complexity of the 

terrain and the purpose of the research. To examine the 

Figure 2. Methodology flow diagram 
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performance of classification with diverse DEM resolutions, 

DEMs of 1m, 2m, 5m and 10m were generated. However, the 4 

pts/m2 data resolution responds to 0.5 by 0.5 m nominal 

resolution. This resolution was not tested because of computing 

time processing. Natural neighbor interpolation method was 

used to prevent from smoothing effect caused by other methods 

(Tarolli et al., 2012). Figure 3 shows differences between two 

DEM resolutions. It can be observed that 1m resolution of 

DEM makes it possible to map also smaller 

convergences/divergence which is critical for investigation of 

landslide morphology (Tarolli et al., 2012). However it is 

unknown if it is significant for effective rapid landslide 

mapping or rather provides too detailed, noisy information. 

 

 

 

3.2 Rapid landslide mapping 

Landslide mapping was performed by creating a composition of 

DEM and 12-DEM derivatives and then by applying pixel-

based classification. The main objective of this study is to check 

if the resolution coarser than 1m has  a meaningful influence on 

accuracy for automatic landslide mapping. Therefore, other 

post-processing algorithms such as filtering of classification 

results or false positive removal, which would increase 

classification accuracy, have not been applied to not disturb the 

results of classification by additional post classification steps. 

More precise descriptions of the further steps are provided by 

following subsections. 

 

 

 

 

3.2.1  Generation of DEM-derivative compositions  

 

All DEM-derived layers were provided in GRID format with the 

cell size calculated correspondingly to the tested DEM 

resolution. The most frequently used in the literature, 12 diverse 

morphometric indicators were calculated independently for four 

DEMs. Some of them are presented in Figure 4. Table 1 

presents main information, calculation patterns and references 

of DEM-derivatives used in this study. 

 

DEM-derivatives Information and references 

slope [Spatial Analyst in ArcGIS™] 

curvature [Spatial Analyst in ArcGIS™] 

mean aspect moving mean aspect filter using 3 x 3 

pixel kernel size [Focal statistic in 

ArcGIS™] 

flow direction GIS Geomorphometry & Gradient 

Metrics toolbox by Evans et al. 2014 

mean slope moving mean slope filter using 3 x 3 

pixel kernel [Spatial analyst toolbox in 

ArcGIS™] 

side exposure 

index 

GIS Geomorphometry & Gradient 

Metrics toolbox by Evans et al. 2014 

slope 2nd 

derivative 

GIS Geomorphometry & Gradient 

Metrics toolbox by Evans et al. 2014 

slope position GIS Geomorphometry & Gradient 

Metrics toolbox by Evans et al. 2014 

standard 

deviation of 

aspect 

moving standard deviation filter  of 

aspect using 3 x 3 pixel kernel size 

[Focal statistic in ArcGIS™] 

standard 

deviation of slope  

moving standard deviation filter of 

slope using 3 x 3 pixel kernel size 

[Focal statistic in ArcGIS™] 

standard 

deviation of 

elevation 

moving standard deviation filter of 

elevation using 3 x 3 pixel kernel size 

[Focal statistic in ArcGIS™] 

multiple shaded 

relief 

summed values of eight raster created 

from hillshade analysis from eight 

diverse angle of sun [Spatial Analyst in 

ArcGIS™] 

 

Table 1 DEM-derivatives explanation and references 

a) 

Figure 3 Landslide morphology on 

diverse DEM-resolutions 
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3.2.2 Classification  

 

As previously mentioned, 30% of landslide areas and 20% of 

non-landslide areas were used for the training. Based on the 

same training data set, classifications were performed for the 

four compositions created from morphometric indicators. Here, 

pixel-based classifications were used to classify each 

compositions for two classes: landslide areas and non-landslide 

areas. It is obvious that classification accuracy depends on 

selected classification methods. Therefore, to better evaluate the 

effectiveness of each pixel resolution for automatic landslide 

mapping, two classification techniques were tested: feed 

forwarded neural network (FFNN) and maximum likelihood 

(ML) classifications. These two classification methods were 

used as examples of parametric and non-parametric classifiers.  

 

 

3.2.3 Feed Forward Neural Network  

 

Artificial Neural Network (ANN) is the useful tool for data 

classification and have considerable potential for the 

classification of remotely sensed data. ANN is an empirical 

modelling tool that has an ability to identify underlying highly 

complex relationship from input-output data only. The FFNN 

utilizes standard backpropagation for supervised learning. The 

feed-forward neural network (FFNN) allows signals to travel 

only in one direction: from input to output. In FFNN there are 

no loops Thus, it tends to be straight forward network to 

associate input with outputs. FFNN  are widely used in remote 

sensing applications, especially in pattern recognition 

(Ndehedehe et al., 2013). Some researchers concluded that 

multilayer feedforward neural network classification is universal 

approximation technique (Hornik et al., 1989). However, FFNN 

appears as a black box and the results strictly depends on used 

parameters (Ndehedehe et al., 2013). Therefore, in this study 

diverse numbers of iteration were tested. 

Neural Network Classification 

Composition size 

 

5357mb 

 

1343 mb 

 

496 mb 

 

124mb 

DEM resolution 1m 2m 5m 10m 

Test number 
Test 

1 

Test 

2 

Test 

3 

Test 

4 

Test 

5 

Test 

6 

Test 

7 

Test 

8 

Test 

9 

Test 

10 

Test 

11 

Test 

12 

Test 

13 

Test 

14 

Test 

15 

Test 

16 

Number of 

iterations 
10 20 50 100 10 20 50 100 10 20 50 100 10 20 50 100 

Number of hidden 

layers 
1 1 1 1 

Training threshold 

contribution/ 

training momentum 

0.9 0.9 0.9 0.9 

Training 

Rate/Training RMS 

Exit  Criteria 

0.2/0.1 0.2/0.1 
 

0.2/0.1 
0.2/0.1 

OA [%] 59.1 67.8 64.5 63.0 62.0 75.6 64.3 76.5 58.6 61.6 71.4 69.2 62.6 62.5 69.4 71.8 

Kappa 0.20 0.22 0.21 0.22 0.20 0.17 0.25 0.13 0.14 0.24 0.25 0.27 0.16 0.20 0.17 0.13 

PA (landslides) 75.4 55.1 63.4 70.2 68.6 25.3 72.3 17.1 62.5 77.7 50.5 61.0 55.9 65.6 39.7 27.2 

UA (landslides) 31.2 34.3 32.9 32.9 32.2 39.7 34.4 39.6 23.3 33.9 38.6 37.8 32.0 33.7 35.2 35.3 

PA (non-landslides) 54.6 71.3 64.8 64.0 60.2 89.4 62.1 92.8 57.9 56.9 77.3 71.6 64.6 61.5 78.2 85.1 

UA(non-landslides) 89.1 85.3 86.7 88.3 87.5 81.3 89.1 80.3 90.5 90.0 84.6 86.6 83.1 85.7 81.3 79.6 

Maximum Likelihood Classification 

DEM resolution 1m 2m 5m 10m 

OA [%] 70.6 73.7 72.0 69.9 

Kappa 0.20 0.19 0.14 0.12 

PA (landslides) 44.9 33.2 29.8 39.7 

UA (landslides) 35.3 37.7 34.5 35.2 

PA (non-landslides) 77.6 84.9 84.0 81.7 

UA(non-landslides) 83.8 82.2 80.8 79.7 

Table 2 Accuracy parameters of classification for FFNN and ML. Explanation in the text.  
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Figure 4 Examples of DEM-derivatives 
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3.2.4 Maximum Likelihood Classification 

 

ML is a supervised classification method which is based on the 

Bayes theorem. ML utilize a discriminant function to determine 

pixel to the class with the highest likelihood. The class mean 

vector and the covariance matrix are the fundamental sources 

for the function and can be estimated from the training pixels of 

a specific class (Asmala, 2012). The ML classification has 

commonly been assumed as unsuited to the classification of 

data types that can disturb various assumptions of parametric 

statistical techniques, such as categorical or non-Gaussian 

distribution of data sets (Duro et al., 2012). The ML algorithm 

tends to be not as much effective in the overall classification 

accuracy as modern non-parametric machine learning classifiers 

(e.g. ANN, support vector machine). Despite of these 

reservations, the MLC is still extensively applied in some 

studies aiming at comparison of various classifiers (Duro et al., 

2012). On the contrary, Platt and Rapoza (2008) demonstrated 

that ML classifier exceeds the accuracy of the k-NN 

classification in pixel-based comparisons where the feature 

space (i.e. number of input variables) was not optimized. 

 

3.3 Accuracy assessment 

The implementation of classification was software-based in 

ENVI 5.4, and the results were validated by computation of 

Kappa (K) estimates, producer accuracy (PU), user accuracy 

(UA) and overall accuracy (OA). The OA is calculated by 

summing the number of correctly classified values and dividing 

by the total number of values. The Kappa can be used as a 

measure of agreement between model predictions and reality 

(Congalton, 1991) or to determine if the values contained in an 

error matrix represent a result significantly better than random 

(Jensen, 1996). Therefore, based on achieved K, OA and PA 

(tab. 2) evaluation of achieved results were performed. 

 

 

4. RESULTS AND DISCUSSION 

Table 2 summarizes the results of accuracy assessment for 

performed classification tests. Moreover, figures 5 and 6 show 

some representative landslide mapping results. Based on that, it 

can be concluded that finer DEM resolution classifies more 

landslide areas which increases the number of false negative 

pixels. This situation is mostly located in areas close to the 

river. Base on Table 2, it can be observed that the most effective 

landslide mapping results were achieved by using the 5m 

resolution of DEM and FFNN. The Kappa coefficient equal to 

0.27 was achieved. In the contrary, for the DEM resolution of 1 

m, the most effective classification results were achieved using 

LM classification. However, the Kappa coefficient does not 

differ significantly. It can be seen that the selected classification 

method have a significant impact on the classification 

performance and also for the selection of DEM resolution.  

 

Based on achieved results, it can be concluded that non-

parametric classifiers (FFNN) provide better performance but 

their effectiveness highly depends on used number of iteration. 

It is worth to emphasize that the number of iterations used in 

FFNN classification is crucial. As can be observed, not always 

the same number of iteration for diverse DEM resolution 

provides the best accuracy. For example, for 1m resolution it 

was 20 iterations, but for 2m and 5m resolution it was 100 

iterations. Moreover, it indicates that more sophisticates 

classifiers allow for using a coarser resolution of DEM and 

simultaneously increase the performance of classification when 

selecting appropriate parameters of classification. Based on 

Table 2, the Kappa coefficient is the highest for 5 meter 

resolution of DEM and OA for 2 meter resolution. Additionally, 

the highest PA of landslide areas also appeared for 5m 

resolution. In the case of ML classification, it can be seen that 

coefficient decreases proportionally to the coarser DEM 

resolution. Based on that it can be assumed that performance of 

parametric classifiers such as ML decreases proportionally to 

the DEM resolution. However, the highest OA and PA of 

Figure 5 Examples of classification results for 2m resolution of DEM 
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landslide areas, were found to be 2m and 5m resolution, 

respectively. 

 

On the other hand, it is also worth to consider the size of data 

because for composition created from DEM and 12 DEM 

derivatives it is more than 5 Gb. Applying more DEM 

derivatives with such a resolution could be problematic and 

significantly increase computing time. 

 

5. SUMMARY AND CONCLUSIONS 

The objective of this study was to evaluate the impact of DEM 

resolution on automatic landslide mapping by using pixel-based 

approach. Four various spatial resolutions of DEM were 

generated from ALS data with a point density of 4 points per 

square meter. In order to evaluate the selected classification 

method in reference do DEM resolution, two different 

classification methods were used, namely FFNN and ML.  

 

The presented study suggests that the finest scale of analysis is 

not always the best. Similar results were demonstrated by Hengl 

(2006),  Paudel et al. (2016), Tarolli and Tarboton (2006), 

Penna et al. (2014) and Mora et al. (2014). Based on achieved 

results, it can be determined that selected spatial resolution of 

DEM depends mostly on objective of the study and used 

methodology. In the presented paper, pixel-based approach was 

tested by using non parametric and parametric classifiers. ML as 

an example of parametric classifiers presents a strong 

relationship between performance and resolution of the DEM. 

On the contrary, non-parametric classifiers presents that setting 

the appropriate parameters (number of interactions) allows for 

using a coarser resolution of DEM. 

 In this study we omitted application of post-classification 

algorithms. Implementation of these algorithms should  increase 

the low value of Kappa coefficient. 
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