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ABSTRACT:

Rough roads influence the safety of the road users as accident rate increases with increasing unevenness of the road surface. Road
roughness regions are required to be efficiently detected and located in order to ensure their maintenance. Mobile Laser Scanning
(MLS) systems provide a rapid and cost-effective alternative by providing accurate and dense point cloud data along route corridor.
In this paper, an automated algorithm is presented for detecting road roughness from MLS data. The presented algorithm is based on
interpolating smooth intensity raster surface from LiDAR point cloud data using point thinning process. The interpolated surface is
further processed using morphological and multi-level Otsu thresholding operations to identify candidate road roughness regions. The
candidate regions are finally filtered based on spatial density and standard deviation of elevation criteria to detect the roughness along
the road surface. The test results of road roughness detection algorithm on two road sections are presented. The developed approach
can be used to provide comprehensive information to road authorities in order to schedule maintenance and ensure maximum safety
conditions for road users.

1. INTRODUCTION

Road roughness is generally considered to be the deviation of
the road surface from a designed surface grade that influences
safety conditions for road users (De Farias and De Souza, 2009).
Road roughness conditions can be categorized into surface de-
fects, joints, cracks and distortion which may develop as a result
of road use, fatigue, thermal changes, moisture damage, construc-
tion or utility repair processes. Rough roads are often associated
with some of the typical types of road accidents such as loss of
control, running off the road and hitting fixed or moving objects
(Bester, 2003). Several studies have indicated that the accident
rate increases with increasing unevenness of the road surface (Ihs,
2004; Davies et al., 2005). They may also affect rolling resis-
tance, ride quality, vehicle operating costs and fuel consumption
(Sayers and Karamihas, 1998). These roughness conditions are
required to be precisely recorded, located, measured and classi-
fied in order to schedule maintenance, repair and effective man-
agement of road networks (Kumar et al., 2016). Road safety con-
siderations must result in a road environment that should be self-
explaining and forgiving, in the sense that users are not faced with
unexpected situations and their mistakes can be, if not avoided,
corrected (ERSO, 2006).

The detection of these road roughness conditions until now has
been based on either manual road inspections or digital annota-
tion of images acquired along route corridor. The information
collected through these surveys is sometimes incomplete and in-
sufficient for qualitative evaluation of road roughness (Kumar et
al., 2014). It can also be time consuming and expensive to con-
duct these inspections on a large scale. Mobile Laser Scanning
(MLS) systems provide a robust alternative by facilitating the ac-
quisition of accurate and dense point cloud data along route cor-
ridor in a rapid and cost-effective way (Kumar, 2012). The use
of LiDAR technology for mapping route corridor enables acqui-
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sition of spatially referenced 3D data which contain elevation,
intensity and pulse width attributes. These data attributes can be
used for reliable detection of any roughness conditions present
along the road surface. Moreover, the accuracy and point density
of LiDAR data influences the process of precise road roughness
detection. The accuracy refers to an error in vertical and horizon-
tal positions of the targeted object while the point density is the
number of points per square meter. The use of dense and uniform
LiDAR point cloud data along the road surface enables a reliable
detection of surface distortion, joints, cracks and other roughness
conditions.

Several methods have been developed for characterising and de-
tecting rough road surfaces from digital imaging and LiDAR point
cloud datasets. Gavilán et al. (2011) proposed a seed-based ap-
proach based on Multiple Directional Non-Minimum Suppres-
sion (MDNMS), while Oliveira et al. (2010) applied Parzen den-
sity estimation and entropy reduction methods to detect road cracks
from digital images. Other image-based works have been re-
ported on cracks retrieval for bridge inspection (Adhikari et al.,
2014) and subway tunnel monitoring (Zhang et al., 2014). Yu et
al. (2014) presented a algorithm for extracting pavement crack
skeletons from highly dense 3D MLS data. In their work, crack
skeletons were extracted from intensity data attribute by step-
wise implementing Otsu thresholding, spatial density filter and
Euclidean distance clustering methods. Later, they reported Iter-
ative Tensor Voting (ITV) based pavement crack extraction from
high density LiDAR point cloud (Guan et al., 2015a,b). Diaz-
Vilarino et al. (2016) developed an approach for automatic clas-
sification of urban pavements into asphalt and stone types using
MLS data. In their work, each pavement segment was evalu-
ated based on various roughness parameters and then k-means
algorithm was used to cluster them. Many other approaches have
been reported in which a linear regression plane was fitted to the
LiDAR points in order to estimate the vertical offset values (Pat-
tnaik et al., 2003; Zhang and Frey, 2005; Yen et al., 2010). These
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offset values were then used to find grade and cross-slope param-
eters of a road segment. Similarly, Kumar et al. (2015b) devel-
oped an approach in which Random Sample Consensus (RANSAC)
model was used to fit a surface grid to MLS points and then stan-
dard deviation of elevation residual values were used to estimate
the roughness along the road surface. Apart from these, Inertial
Measurement Units (IMUs) mounted on mobile mapping vehi-
cles have also been used for measuring road roughness (Barsi et
al., 2006; Kertesz et al., 2007; Wen, 2008). Some works have
been reported based on estimating roughness over soil and other
terrain surfaces from LiDAR data (Zhang and Russell, 2004; Hol-
laus and Hofle, 2010). Stavens and Thrun (2006) applied a self-
supervised machine learning approach to estimate terrain rough-
ness from laser range data for off-road autonomous driving while
Diaz et al. (2010) characterised surface roughness in agricultural
soil by interpolating surface grid model from MLS data.

A priori knowledge of the road surface area facilitates a more ef-
ficient estimation of roughness along its surface. An automated
algorithm for extracting road edges from MLS data was presented
in Kumar et al. (2013). The extracted road edge information is ap-
plied to identify the LiDAR points that belong to the road surface.
The identified points are then processed to detect the roughness
present along the road surface. In this paper, an automated algo-
rithm for detecting road roughness from MLS data is presented.
The developed approach is based on the assumption that LiDAR
elevation and intensity attributes can be used to detect roughness
regions along the road surface. LiDAR points are interpolated to
generate smooth intensity raster surface using point thinning pro-
cess. This is followed by the implementation of morphological,
thresholding and cluster filtering approaches to detect the road
roughness. In Section 2, a detailed description of automated road
roughness detection algorithm is provided. Section 3 presents the
tests of algorithm on two road sections. In Section 4, the exper-
imental results are discussed while the conclusions are drawn in
Section 5.

2. METHODOLOGY

The input to road edge extraction algorithm consists of n LiDAR
point cloud datasets (30m width; 10m length; 5m height) and also
n 10m navigation data sections (Kumar et al., 2013). The dimen-
sions of the input data sections were based on empirical tests as
they impact on the efficiency of the process in terms of computa-
tional cost. The selection of a 30m width ensured the inclusion of
the road surface in the data; a 5m elevation removed the impact
of vertical objects along the route corridor; while a 10m length
was selected on the basis of the computational cost analysis (Ku-
mar et al., 2015a). The automated road edge extraction algorithm
as presented in Kumar et al. (2013), outputs the road boundary
which is then used to identify the LiDAR points belonging to the
road surface. The road roughness detection algorithm is applied
to the estimated road surface LiDAR points. A workflow of the
road roughness detection algorithm is shown in Figure 1. In the
following sections, various processing steps involved in the algo-
rithm are described in detail.

2.1 ROAD SURFACE ESTIMATION

The inputs to road roughness detection algorithm are LiDAR dataset
and estimated road boundary. In its first step, a road boundary is
overlaid on the LiDAR data such that the points outside the road
boundary are removed, while inner points are retained to estimate
the road surface.

The estimated road surface points are rotated around the elevation
axis and towards the easting axis based on an average heading
angle of the mobile van (Kumar et al., 2015b). This rotation is
carried out to assist the process of implementing interpolation and
threshold approaches to the LiDAR points.

2.2 INTENSITY RASTER SURFACE

In the second step, the LiDAR points are interpolated into inten-
sity raster surface as it ensures a more computationally efficient
approach to road roughness detection. However, the LiDAR data
can suffer from unusual intensity values which can lead to the
generation of noisy raster surface. In order to generate smooth
raster surface, the effect of this noise is minimised with a point
thinning process (Crawford, 2009). Point thinning is used to gen-
erate multi resolution terrain pyramids by reducing the number of
data points required to represent a terrain model in each pyramid
level. The point thinning operation is applied based on a window
size filter method in which the data points are partitioned into
equally sized window areas. In the first level terrain pyramid, the
window size is twice the selected cell size of the raster surface,
while the window size in the subsequent levels is increased by a
power of two. In each window of the pyramid level, a data point
nearest to the mean value is selected as representative of the ter-
rain model in each pyramid level. Thus, multi resolution terrain
pyramids are generated from the LiDAR intensity attribute where
the original full resolution corresponds to the highest resolution
terrain model, the first level corresponds to the second-highest
resolution terrain model and the last level corresponds to the low-
est resolution terrain model for each attribute.

Intensity raster surface is generated from the first level terrain
pyramid using natural neighbourhood interpolation. The first level
terrain pyramid is found to be useful for generating the smooth
raster surface than other levels, as it minimises the noise effect
without affecting much of the object details and accuracy. The
cell size, c parameter required to generate the raster surface is
selected based on an average spacing of LiDAR points. In the
natural neighbourhood interpolation method, the thinned LiDAR
points are partitioned into Voronoi polygons which are created
with each polygon constituting a single point and every location
within the polygon is closer to its constituted single point than
to any other point. A raster surface with its selected cell size is
laid over the Voronoi polygons. The value of each raster cell is
then interpolated based on the proportion of overlapping areas
between the raster cell and Voronoi polygons.

The intensity raster values are normalised with respect to their
global minimum and maximum values, and then converted to an
8-bit data type. This allows for a two-way transformation be-
tween the 8-bit values and their original LiDAR values for the
road sections.

2.3 MORPHOLOGICAL OPERATIONS

In third step of the algorithm, closing morphological operation is
applied to the grey-scale intensity surface. In closing operation,
image is dilated followed by its erosion using a structuring ele-
ment which helps in smoothing dim regions of intensity surface
(Bai et al., 2012). A structuring element consists of a binary ma-
trix that represents the selected shape and size. A central element
of the matrix represents an origin and the elements with a value
of 1 describe a neighbourhood of the structuring element. The
origin of the structuring element is positioned over each cell in
the raster surface to dilate and erode that cell along the neigh-
bourhood of the structuring element.
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Figure 1: Road roughness detection algorithm.

Figure 2: Multi-level Otsu threshold values determined for inten-
sity surface.

2.4 MULTI-LEVEL OTSU THRESHOLDING

In fourth step of the algorithm, multi-level Otsu thresholding is
applied to the intensity raster surface which provides an estima-
tion of candidate roughness regions. The Otsu thresholding per-
forms non-parametric and unsupervised thresholding based on
gray-level histogram of the input image (Otsu, 1979). It divides
the image into two classes, C1 and C2 and then determines a
global optimal threshold value, t by maximising the between-
class variance, σ2

b (t) as (Balarini and Nesmachnow, 2016),

σ2
b (t) = q1(t)q2(t)[µ1(t)− µ2(t)]

2, (1)

where q1(t), q2(t) are class probability functions and µ1(t), µ2(t)
are mean values for classes C1 and C2 respectively.

Multi-level Otsu thresholding is applied to intensity surface by
dividing it into three classes which led to the estimation of two
optimal threshold values, t1 and t2 as shown in Figure 2. The in-
tensity values of the laser returns received from the roughness re-
gions are usually lower than from the normal road surface (Guan
et al., 2015a). Based on this assumption, the intensity values be-
low the lower threshold, t1 are identified as candidate roughness
regions and are retained. The intensity values in between t1 and
t2 belong to the road surface while those above t2 are found to be
road marking regions, which are removed. The candidate rough-
ness regions are clustered using connectivity analysis and each
cluster is fitted with convex hull. The 3D LiDAR points which
are contained within each cluster are then extracted, as shown in
Figure 3.

Figure 3: 3D LiDAR points contained within convex hulls be-
longing to candidate road roughness regions.

2.5 3D CLUSTER FILTERING

The clustered LiDAR points may be the outliers belonging to nor-
mal road surface or nearby vehicles. In fifth step of the algorithm,
these clusters are filtered based on their dispersion and elevation
criteria. The spatial density of outliers is usually lower than of
points belonging to roughness regions (Yu et al., 2014). The den-
sity of each cluster is estimated and then the clusters whose den-
sity is below the pre-defined threshold, td are removed. In this
way, the outlier points belonging to normal road surface are fil-
tered out. In order to remove the outliers belonging to nearby ve-
hicles, the standard deviation of elevation values of each cluster
is estimated and then the clusters with values higher than pre-
defined threshold, tsd are removed. The values of these pre-
defined thresholds, td and tsd are determined empirically. The
filtering of these clusters provides the estimation of 3D LiDAR
points belonging to road roughness regions. The estimated Li-
DAR points are then finally rotated back to their original position
based on an average heading of the mobile mapping van. The next
section presents the tests of developed road roughness detection
algorithm on road sections.

3. EXPERIMENTATION

The developed road roughness detection algorithm was tested on
two 10m sections of urban road. These road sections were se-
lected to demonstrate the effectiveness of the algorithm to es-
timate the roughness present along their surfaces. The two se-
lected sections of urban road are shown in Figure 4. These road
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Figure 4: Digital image of (a) first and (b) second section of urban
road with roughness regions indicated in red boxes.

sections consisted of roughness along their surfaces which oc-
curred due to utility repairing. The processed data was collected
using the experimental Platform (XP-1) MLS system which has
been designed and developed at the Maynooth University, Ireland
(Kumar et al., 2010, 2011).

The road roughness detection algorithm was applied to the se-
lected road sections. The cell size, c = 0.06m was selected to in-
terpolate the intensity surface from LiDAR points based on their
average point spacing. The closing morphological operation was
applied to the intensity raster surface using a rectangular struc-
turing element of 3 × 3 size. This shape was selected due to the
general rectangular pattern of roughness regions present along
the road surface in the tested sections. The use of multi-level
Otsu thresholding approach provided the optimal threshold val-
ues of t1 = 57, 50 and t2 = 50, 101 within 8-bit range for the
two road sections. The threshold values of td and tsd were se-
lected empirically as 25 and 0.2m respectively for both the road
sections. The extracted 3D road roughness regions in the first and
second road sections are shown in Figure 5. In the next section,

Figure 5: 3D road roughness regions represented in red in the (a)
first and (b) second section of urban road.

the experimental results are discussed.

4. RESULTS & DISCUSSION

The road roughness detection results were visually validated, which
corresponded to linear and square shaped roughness patches as
indicated in Figure 4. The algorithm was able to identify the
roughness regions in both the road sections. In the first road sec-
tion, the roughness was linearly spread along the cross-sectional
profile. The algorithm was not able to detect the roughness along
right side of the first section due to a lower point density of the
LiDAR data along that side. This was due to the use of single
laser scanner in the XP-1 MLS system which was driving along
left side of the road section during the data acquisition process.
It led to the acquisition of LiDAR data with a lower point den-
sity along the right side of the road section compared with its
left side. In the tested road sections, the average of the LiDAR
point density samples collected over the left and right sides of
the sections was 880.66/m2 and 142.18/m2 respectively. The

use of dense and uniform point cloud data along both sides of
the road section will provide a complete estimation of roughness
along the road surface. In the second road section, the roughness
was in the form of square patch along its left side which the algo-
rithm detected correctly. In this section, the identified candidate
roughness regions consisted of some LiDAR points belonging to
near-by vehicles along the right side. These points were filtered
out based on standard deviation of elevation criteria. The use of
interpolated raster surface led to more efficient detection of road
roughness, which would not be possible with the direct use of 3D
LiDAR point cloud with low and non-uniform point density.

The value of LiDAR intensity attribute primarily depends upon
incidence angle of the laser pulse, the distance from the laser
scanner and the illuminated surface. The normalisation of in-
tensity attribute with respect to these factors will provide the re-
flectance values from the targeted objects. The use of such nor-
malised intensity values will again improve the process of road
roughness detection. The point thinning process was effective in
interpolating smooth intensity surfaces while the use of closing
morphological operation provided to smooth dim roughness re-
gions. The three-level Otsu thresholding approach was useful in
dividing the image into dim, gray and bright classes which ap-
proximately corresponded to roughness, road surface and road
marking regions in the intensity raster surface. In the next sec-
tion, the presented work is concluded.

5. CONCLUSION

In this paper, an automated approach for detecting road roughness
is presented. The developed approach is based on utilising the
LiDAR intensity and elevation attributes to detect roughness re-
gions along the road surface. The LiDAR values are smoothly in-
terpolated from the first level terrain pyramid using natural neigh-
bourhood method and then closing morphological operation is
applied to further smooth the dim roughness regions in the in-
tensity raster surface. The use of multi-level Otsu thresholding
provides to identify candidate road roughness regions which are
then filtered based on spatial density and standard deviation of
elevation criteria. The algorithm was successfully tested on two
urban road sections. The developed tool can be used to provide
rapid, cost-effective and comprehensive information to road au-
thorities in order to schedule maintenance and repairing of road
surfaces.

In future work, the algorithm will be tested on MLS data with
dense point cloud along both sides of the road section and nor-
malised values of intensity attribute. The use of such dataset
will provide an improved estimation of road roughness. The al-
gorithm will be further extended to detect the cracks, joints and
other defects present along the road surface. More robust thresh-
old approach will be developed in order to accurately estimate
the candidate road roughness regions. The developed approach
will also be tested on longer and distinct road sections in order to
validate its efficiency and robustness.
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