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ABSTRACT: 
 
In the last decade, applications of unmanned aerial vehicles (UAVs), as remote-sensing platforms, have extensively been 
investigated for fine-scale mapping, modeling and monitoring of the environment. In few recent years, integration of 3D laser 
scanners and cameras onboard UAVs has also received considerable attention as these two sensors provide complementary 
spatial/spectral information of the environment. Since lidar performs range and bearing measurements in its body-frame, precise 
GNSS/INS data are required to directly geo-reference the lidar measurements in an object-fixed coordinate system. However, such 
data comes at the price of tactical-grade inertial navigation sensors enabled with dual-frequency RTK-GNSS receivers, which also 
necessitates having access to a base station and proper post-processing software. Therefore, such UAV systems equipped with lidar 
and camera (UAV-LiCam Systems) are too expensive to be accessible to a wide range of users. Hence, new solutions must be 
developed to eliminate the need for costly navigation sensors. In this paper, a two-fold solution is proposed based on an in-house 
developed, low-cost system: 1) a multi-sensor self-calibration approach for calibrating the Li-Cam system based on planar and 
cylindrical multi-directional features; 2) an integrated sensor orientation method for georeferencing based on unscented particle 
filtering which compensates for time-variant IMU errors and eliminates the need for GNSS measurements. 
 
 

1. INTRODUCTION 

1.1 Technology Overview 

Techniques of visual three-dimensional (3D) mapping are either 
based on passive imaging (e.g. application of photogrammetry) 
or active ranging (e.g. laser scanning) (Nouwakpo et al., 2015). 
The sensors (e.g. digital cameras or 3D light detection and 
ranging (lidar) sensors) can be integrated either to terrestrial 
mobile/static platforms or, alternatively, to aerial platforms such 
as manned aircrafts and unmanned aerial vehicles (UAVs). 
Terrestrial platforms have several advantages. For instance, 
their control is simpler; they have considerable payload 
capacity; and they are closer to the terrain, thus, the data can be 
acquired with higher spatial resolution. However, their access to 
areas of interest can be limited. In comparison with manned 
aerial platforms, unmanned aerial vehicles (UAVs) have 
recently gained higher relevance in different fields of remote 
sensing. This is mainly due to the fact that by integrating 
consumer-grade imaging and ranging sensors to UAVs, data 
with high temporal and spatial resolutions can be acquired at 
considerably lower costs and by less effort (Shahbazi et al., 
2014). In several studies, investigations have been performed to 
compare the advantages and disadvantages of 3D reconstruction 
using photogrammetry versus laser scanning. The simple 
conclusion could be that any 3D-vision technology has its own 
pros and cons. There is no technology which is completely 
robust against all the sources of error and noise caused by 
sensor characteristics and/or environmental factors, such as light 
intensity variations, shadows, adverse weather conditions (rain, 
snow, mist and dust), reflectivity variations (caused by material, 
colour and texture), different penetration strengths, moving 
objects in the scene, occlusions, systematic and random errors 
of georeferencing, etc. Thus, depending on the application, 
different sensors can be fused so that their integrated data can 
provide a more robust performance. 
 

Various commercial systems that incorporate both sensors 
(camera and lidar) within a UAV platform have recently been 
developed. The most popular systems, manufactured by 
Phoenix and Riegl, host a tactical-grade inertial navigation 
system (INS) that helps directly georeference the sensors data 
with centimetre-level accuracy. The cost of the high-accuracy 
INS systems drive the overall price of these systems up making 
them inaccessible to a large range of potential users. This paper 
proposes a solution that utilizes an industrial-grade INS instead 
to achieve similar accuracy in merging point clouds and 
georeferencing data.  
 
1.2 Related Work 

A key factor to maximize the geometric quality of the data 
acquired by a sensor is to ensure its accurate calibration and 
modeling of systematic errors that affect its measurements. In 
the case of a Li-Cam system, three basic types of geometric 
calibration are required: intrinsic camera calibration, intrinsic 
lidar calibration, extrinsic system calibration. 
  
1.2.1. Calibration: Camera calibration using photogrammetric 
techniques is a well-studied topic, and the integration of digital 
cameras to UAVs has also been investigated extensively during 
the last few years (Remondino and Fraser, 2006; Shahbazi et al., 
2015). The method implemented in this paper is based on the 
work described in (Shahbazi et al., 2017), in which a sparse 
free-network self-calibrating bundle adjustment (BA) is used to 
estimate the calibration parameters; in this work, multiple 
cameras are calibrated simultaneously, and the BA unknown 
parameters are decorrelated considerably.  
 
There are also several studies in the literature that are dedicated 
to the analysis of the intrinsic and extrinsic calibration of 
airborne laser scanners (ALS) (Habib et al., 2010). The 
definition of additional parameters, which are used to model 
systematic errors, depends mainly on the type of the lidar sensor 
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and its scanning mechanism (Glennie et al., 2016; Lichti, 2007; 
Glennie and Lichti, 2011, 2010; Atanacio-Jiménez et al., 2011). 
Apart from the intrinsic errors, other important factors are the 
errors of the platform position and orientation as well as the 
errors of system calibration (Skaloud and Lichti, 2006). Early 
studies of system calibration are based on recovering the 
misalignment of INS-lidar through signalized target points. 
However, target points cannot be directly recognized in an ALS 
point cloud due to its large point spacing and low density. That 
is, interpolation of the target points from the lidar point cloud 
(PC) limits the pointing and calibration accuracy. 
Comparatively, the recent methods using features of known 
shape are more rigorous for lidar system calibration. These 
methods can be broadly divided into two categories. The first 
category includes methods based on iterative closest point (ICP) 
estimation of calibration parameters through minimizing the 
inconsistency between the points of overlapping scan strips 
which are located on common features (Habib et al., 2010). The 
ICP solution can be computationally expensive since a high 
number of iterations are required and the volume of ALS data is 
relatively large (Chan et al., 2013). The second category 
includes methods based on least-square (LS) estimation of 
calibration parameters through conditioning points lying on 
specific features, e.g. planar features (Glennie et al., 2016), 
linear features (Le Scouarnec et al., 2014), catenary features 
(Chan et al., 2013), and pole-like features (Chan et al., 2015). 
Due to depending on INS/GPS observations, all the studies need 
to consider the level of uncertainty of these observations in the 
self-calibration adjustment and to re-perform the calibration to 
measure bore-sight and lever-arm uncompensated errors during 
the flight when the INS/GPS observations become more 
accurate.  
 
Another issue, reported by previous studies, is the high 
correlation between calibration parameters in the LS 
adjustment. Studies have shown that using multiple features 
(e.g. several planes) and multiple geometric primitives (e.g. 
catenary and planar features) can considerably reduce the 
correlation between the calibration parameters. When it comes 
to the UAVs as airborne lidar platforms, the calibration problem 
should be treated differently due to the following reasons. First, 
because of UAV payload limits, compact lidar sensors are built 
with specific mapping characteristics compared with traditional 
airborne lidar devices (e.g. different vertical field of view, 
footprint size, penetration strength, numbers of returns, density 
per square meter, etc.). Second, compact and low-cost GNSS-
based inertial navigation systems (usually non-differential) are 
used for georeferencing the lidar point clouds, which have low 
accuracy and precision. Therefore, the calibration of UAV-
based lidar systems is still an active area of research (Kasturi et 
al., 2016; Guerreiro et al., 2014; Tulldahl et al., 2015; Teichman 
et al., 2013; Wallace et al., 2012). Most of the current studies 
analyse the extrinsic calibration of lidar with respect to the INS. 
However, less attention is given to the intrinsic calibration of 
the sensors. 
 
Studies have also been performed for extrinsically calibrating a 
lidar sensor with respect to a camera, or to perform their joint 
calibration (e.g. Gong et al., 2013). Simultaneous internal 
calibration of 3D lidar and extrinsic calibration between a lidar 
and a Ladybug camera based on planar features was proposed in 
(Mirzaei et al., 2012), where a mean distance error of -0.67 mm 
with a standard deviation of 55 mm was achieved. Park et al. 
(2014) proposed using the vertices of a polygonal planar boards 
to find point correspondences between 2D images and 3D lidar 
data. For extrinsic calibration of sparse 3D lidar sensors such as 
Velodyne VLP-16, this method would be prone to erroneous 

estimation of the polygon edges, which would propagate into 
the vertices calculation and, thus, would affect the estimated 
calibration parameters adversely. Furthermore, the edge 
estimation is based only on a few points and any outlier would 
have a significant impact on the resulting calibration 
parameters. 
 
1.2.2. Georeferencing:  One of the objectives of the project 
described in this paper is to correct the trajectory of the UAV 
derived from Inertial Measurement Unit (IMU) measurements 
using camera poses, derived via robust structure-from-motion 
and bundle adjustment (Shahbazi et al., 2015, 2017). As it is 
commonly known, the position derived from IMU 
measurements can rapidly drift due to accelerometer and 
gyroscope biases and their random walks. Since the position is 
derived from the integration of acceleration and angular velocity 
measurements, errors in these raw measurements propagate 
exponentially causing large errors in the estimated positions. 
Most inertial navigation systems integrate IMU and Global 
Navigation Satellite System (GNSS) measurements together 
using various Bayesian recursive filtering techniques to 
compensate for their errors. The GNSS measurements are used 
to estimate IMU errors and correct the position. This sensor 
integration works quite well when multipath-free GNSS signals 
can be consistently received from a good geometric 
configuration of satellites. However, in many cases such as 
urban canyons, forested areas, and indoor environments, GNSS 
signals are not reliable or available. In the case of low-cost 
UAV platforms, due to their payload and cost constrains, low-
cost GNSS receivers are used whose positioning accuracy can 
be insufficient for certain applications. UAVs are usually 
equipped with digital cameras which are used to capture 
imagery and generate photogrammetric point clouds. One of the 
outputs of this process include optimized 3D position and 
orientation of the camera at each epoch, which even without any 
ground control points can have high relative accuracy. Thus, 
camera-based position and orientation can be strong alternate 
observations to be integrated with IMU measurements (if the 
relative orientation parameters between the IMU and digital 
camera are known). Particle filtering is a Bayesian recursive 
filtering method that can be used to accomplish this objective. 
As explained in (Doucet and Johansen, 2011), particle filters 
have several advantages over other popular methods (e.g. 
Extended Kalman Filter), such as its ability to yield optimal 
estimations with non-Gaussian believes.  
 
1.3 System Overview 

The low-cost mapping system developed in this study is 
equipped with a 3D spinning laser scanner (Velodyne VLP-16), 
a DSLR optical camera (Sony a6000), and an industrial-grade 
INS (VectorNav VN-200), as shown in Figure 1. 
 

  
Figure 1. UAV-LiCam System 
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2. METHODOLOGY 

In the case of our UAV-LiCam system, three basic types of 
geometric calibration are performed: intrinsic camera 
calibration, intrinsic lidar calibration, and extrinsic system 
calibration. In this approach, the camera calibration takes place 
separately. Once the camera calibration is accomplished and the 
camera is firmly attached to the system, the relative orientation 
parameters between the three sensors (camera, IMU, lidar) as 
well as the lidar intrinsic parameters are estimated 
simultaneously through a combined bundle adjustment. In this 
study, an external camera to the system (a DSLR Canon M5) is 
also used in the process of system calibration. Therefore, the 
two cameras need intrinsic calibration. The systematic errors 
caused by : 1) lens radial distortion; 2) lens decentring 
distortion; 3) affinity and non-orthogonality of sensor are 
modelled, and interior orientation parameters (principal point 
offsets and focal length) are estimated for both cameras in one 
adjustment procedure.  The readers are referred to our previous 
work (Shahbazi et al., 2015 and 2017) where the details of our 
sparse free-network multi-camera self-calibrating bundle 
adjustment approach can be found.  
 
2.1 System Calibration 

Intrinsic lidar calibration involves the modelling of the 
systematic errors of range, elevation-angle and horizontal-
direction measurements. The VLP-16 sensor includes 16 lasers, 
each of which has a specific set of intrinsic calibration 
parameters. In this study, only three intrinsic parameters are 
calibrated: range zero-error; horizontal circle scale error; 
vertical circle zero index error. The local 3D coordinates of a 
point (i) at time (t) measured by the j’th laser via observing 
range (ri,t), horizontal direction (βi,t), and elevation angle (θi,t) 
can be calculated as in Equation (1),  
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 + +
 

 
(1) 

 
where  aj , bj, and cj are range zero-error, horizontal circle scale 
error, and vertical circle zero index error of the j’th laser, 
respectively. Furthermore, to estimate the relative orientation of 
the lidar local coordinate frame with respect to the camera 
frame and the IMU body-frame, mounting parameters of the 
system need to be measured. As such, given the exterior 
orientation parameters (EOPs) of the camera (denoted by c) at 
time t (ωt , φt , κt ,  Ct) and the relative orientations between 
camera and lidar (bore-sight angles ωL , φL , κL, and lever-arm 
TL), one can transform the local coordinates to the same object 
coordinate system (denoted by w) at which the camera EOPs are 
represented (See Figure 2). 
 

( ), ,X C ( , , ) T ( , , )xw c
i t t c t t t L L L L L i tj j

ω ϕ κ ω ϕ κ= + +R R  (2) 

 
Also, given the relative orientations between the camera and 
IMU (bore-sight angles ωI , φI , κI, and lever-arm TI), one can 
transform any vector (yk) expressed in the IMU-body frame to 
the same mapping coordinate system (See Figure 2). 
 

( ), ,Y C ( , , ) T ( , , )yw c
k t t c t t t I I I I I k tω ϕ κ ω ϕ κ= + +R R  (3) 

 

 
Figure 2. Demonstration of system mounting parameters 

 
A rigorous calibration strategy is developed which 
simultaneously calibrates both the lidar sensor and the system 
mounting parameters. 
 
i) A multi-feature, multi-directional test-field is built using 
primitive geometric features; i.e. planar and cylindrical objects 
(Figure 3a). This incorporates multiple feature types with the 
goal of decreasing correlation between parameters and 
increasing overall accuracy.   
 
ii) The sensor-package is placed at various 
locations/orientations in the test-field (Figure 3b). Images and 
lidar data are recorded at each location increasing the variations 
in orientations and, thus, strengthening the geometric network.  
 
iii) An additional network of images is acquired using a 
previously calibrated camera (Canon M5) at each location such 
that the IMU board can be imaged with high resolution as well 
(Figure 3c). These observations are used to define the position 
and orientation of the IMU-body frame w.r.t the mapping 
coordinate system, as well ad estimating the 3D coordinates of 
the targets placed on the primitive geometric features. 
 
iv) A multi-sensor, integrated, controlled bundle adjustment is 
performed. The observations include lidar range and encoder 
angle measurements over the planar and cylindrical, image 
observations of target points installed on the features, and image 
observations of the IMU body-frame (centre, a point along x-
axis, a point along y-axis). The unknowns are the intrinsic 
calibration parameters of the lasers (aj , bj, and cj for j=1,..,16), 
the relative orientation (RO) of the lidar sensor to the camera 
(ωL , φL , κL, TL), the relative orientation of the IMU to the 
camera (ωI , φI , κI, TI), the EOPs of the cameras in each 
location (ωt , φt , κt ,  Ct), and the parameters of the test field 
features. Given the strong geometry of the network, these 
parameters are all simultaneously estimated.  
 
The parameters of a cylindrical feature include the central axis 
direction W, a point P on the axis, and radius r. Any point with 
3D coordinates X that lies on this feature satisfies Equation 4. 
The parameters of a  planar feature include the normal direction 
N and negative distance from the origin, d. Any point with 3D 
coordinates X that lies on this feature satisfies Equation 5. 
 

( ) ( )2
3X P ( WW ) X Pr

Τ Τ= − − −I  (4) 

N X 0d+ =  (5) 
 
The most important characteristic of this solution is that both 
the lidar intrinsic parameters and the system relative orientation 
parameters are solved simultaneously. That is, the extrinsic 
parameters of lidar do not need to be considered as separate 
unknowns. As previous studies have shown there are high 
correlations between lidar EOPs and its intrinsic parameters. 
Our approach eliminates the risk of such correlations.  
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a) 
 

 
b) 
 

 
c) 
 

 
d) 
 

 
e) 

Figure 3. Calibration fields; a) system/lidar calibration field; b) 
stations (black frames), where data with the Li-Cam system is 
collected from the field of Figure 3a; c) stations (red frames), 
where images with the external camera are collected from the 

test-field; d) camera calibration test-field; e) checkerboard panel 
for camera calibration accuracy validation 

 

2.2 Georeferencing 

To represent non-Gaussian probability distributions, particle 
filters sample multiple particles from the non-Gaussian belief. If 
sufficient particles are sampled, then a close approximation of 
the belief can be obtained. Each particle is a hypothesis of the 
current state. The true state lies where the highest density of 
particles is. Particle filters make use of importance sampling to 
assign a weight to each randomly sampled particle. This weight 
is inversely proportional to the difference between the proposal 
function (prediction) and the actual belief distribution (based on 
external measurements). The closer a particle represents the true 
belief, the higher its weight will be. Once a weight is assigned 
to every particle, a re-sampling of the particles based on their 
associated weights replaces the least probable particles by more 
probable ones. In this study, unscented particle filtering (UPF) 
is used to integrate the IMU measurements (3D acceleration and 
angular velocity) with camera observations (exterior orientation 
parameters as well as parameters of geometric primitives 
present in the scene) and lidar observations (points lying on 
those geometric primitives). The reason to use unscented 
filtering is to deal with non-linearity of both transition and 
measurement functions with respect to measurements, controls, 
and the state. The details of this approach are presented in 
Figure 4. The general structure of the implemented UPF is as 
follows:  
i) The state vector includes: 3D position of the lidar origin, 3D 
rotations of the lidar frame w.r.t. the object-fixed coordinate 
system, 3D velocity of the lidar, 3D bias of the accelerometer, 
3D bias of the gyroscope. 
 
ii) The control data includes: 3D accelerations and angular 
velocities measured by the IMU. 
 
iii) The transition probability is based on kinematic motion 
models, and the process noises include: 3D velocity impulses, 
3D rotation perturbations, random walks of accelerometer and 
gyroscope biases.  
 
iv) The importance weights are derived from the measurement 
probabilities that are based on two types of observations: lidar 
pose relative to known camera poses, and lidar measurements 
from geometric primitives, e.g. planes, present in the scene 
assuming that the parameters of such primitives are derived 
using camera observations. 
 

 
Figure 4. Workflow of lidar point cloud geo-referencing using 

UPF 
The mathematical details of UPF are avoided, and readers are 
referred to (Ducet and Johansen, 2010). 
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3. EXPERIMENTS 

3.1 Camera Calibration 

The camera calibration was first carried out separately. A 
calibration test field (Figure 3d) was designed based on the 
specifications of the Sony a6000 and Canon M5 cameras. A few 
targets (3 to 12) on each wall were surveyed with a total station 
to establish an object space coordinate system. The 3D 
coordinates of all the other targets were approximated via ray-
casting; these approximate coordinates were only used for 
facilitating the target labelling without the need for coded 
targets and also for estimating the initial EOPs of images. 2D 
target observations from a total of 30 images (per camera) were 
then extracted using our semi-automated target detection and 
labelling software. An additional set of 10 images (per camera) 
of a calibration checkerboard panel (Figure 3e) were used to 
validate the accuracy of the estimated calibration parameters. 
   
3.2 System/Lidar Calibration 

The data collection for lidar and system calibration took place in 
an open hallway at the University of Calgary engineering 
building. As it can be seen in Figure 3a, circular targets were 
placed on all the features of interest. In total, 3 cylindrical 
concrete pillars and 11 different planes formed the calibration 
test field. These features covered an area of 4x14x3 meters at 6 
different directions, including floor and ceiling. All targets were 
surveyed with a total station; some of these coordinates were 
used as control-point observations in the integrated bundle 
adjustment. 

 
3.3 Georeferencing 

Due to regulation barriers, the real flight tests are not yet 
performed. Therefore, to test the particle filtering 
georeferencing method, IMU observations were simulated 
based on post-processed camera poses from an actual UAV 
flight. This involved applying a 3D spline interpolation between 
camera positions. The images were taken every 0.5 seconds and 
9 positions were interpolated between each camera position 
interval to obtain the hypothetical “error-free” INS-derived 
positions at a rate of 20 Hz (Figure 5a). Knowing the IMU 
position and time stamps allowed us to compute 3D acceleration 
as IMU measurements based on basic kinematic motion models. 
Next, camera orientation matrices were converted to quaternion 
form, and a normalized linear interpolation algorithm was 
applied to interpolate orientations between each known camera 
pose. Knowing the time interval between each interpolated 
orientation, the angular velocity measurements from IMU were 
also simulated. Once the “true” simulated observations were 
acquired, random noise corresponding to the specifications of 
VectorNav-200 IMU was added to the estimated measurements. 
Lidar scans and planar feature observations were also simulated 
by casting rays from the simulated trajectory to the 3D mesh of 
the scene at the scan rate of the Velodyne VLP-16 (Figure 5b). 
 

 
a) 

 
b) 

Figure 5. a) simulated trajectory based on 3D spline 
interpolation; b) simulated lidar observations 

 
4. RESULTS 

4.1 Camera Calibration 

To determine the quality of the camera intrinsic calibration, 
controlled bundle adjustment with 4 control points was 
performed on the check images, while considering the 
calibrated intrinsic parameters of the cameras as fixed known 
values. Ten tie points were excluded from this BA. After the 
BA, given the known coordinates of these points and the BA-
estimated EOPs of check images, these ten points were back 
projected to the images and the average reprojection errors 
(between the back-projections and real positions of the corners 
on the images) were calculated. Results are presented in Figure 
6a. The mean reprojection error was found to be 0.41 pixel with 
a standard deviation of 0.25 pixel; the RMSE came to be 0.47 
pixel. Additionally, the absolute errors of the BA check points 
(118 corners) were determined. Results are illustrated in Figure 
6b; the mean, standard deviation and RMS of the errors at all 
directions were 0.62mm, 0.17mm and 0.96 mm, respectively. 
Figure 6c represents the results of a similar test where the BA is 
performed using nominal interior orientation parameters of the 
cameras instead of their calibrated ones. The reduction of errors 
from a systematic pattern to a random one and by order of 3.68 
proves the accuracy of the calibrated intrinsic parameters. 
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a) 

 
b) 

 
c) 

Figure 6. Calibration accuracy validation; a) reprojection errors 
on check points that not entered to BA; b) absolute errors on BA 

check points; c) absolute errors on BA check points before 
calibration 

 
4.2 System Calibration 

The estimated extrinsic calibration parameters of the camera 
and lidar with respect to the IMU body frame are summarized in 
Table 1. The estimated range zero-errors were less than 1.4 cm 
for all lasers; the horizontal circle scale errors were smaller than 
0.004, and the vertical circle zero index errors were less than 
0.03 radians.  
 

Table 1. Summary of system mounting parameters 

 x (cm) y z 

TL 1.78 -25.52 5.95 

TI -3.30 -8.88 9.58 

 ω (rad) φ κ 

 1.579 -0.002 3.127 

 3.273 0.067 -1.546 

 
To analyse the quality of lidar calibration, the lidar points on 
two check planes (planar features not entered in the self-

calibration) from one station were considered. Planes were 
fitted to these points both before and after applying the intrinsic 
calibration parameters. The average, StD and RMS of residuals 
from the planes before calibration were 0.008, 0.006, 0.010 m, 
respectively, which were improved to 0.005, 0.003, 0.006 m 
after calibration; i.e. 37.5% error reduction. These results are 
shown in Figure 7. 
 

 
a) 

 
b) 

Figure 7. Residuals from corresponding planes after (a) and 
before (b) applying the intrinsic calibration parameters 

 
4.3 Geo-referencing 

A section of the computed trajectory based on UPF is shown in 
Figure 8. This illustration clearly shows the positional error 
predicted via IMU measurements increasing while there are no 
external measurements. When an external measurement (here 
the camera pose estimated via structure-from-motion) is 
received, the predicted particles (blue dots) are re-weighted 
based on the camera observations (red circle). The particle with 
highest probability (black circle) is chosen as the current state 
and the correction is made. Finally, the particles with high 
weights are re-sampled (green dots) and the next epoch of IMU 
observations are predicted. 
To evaluate the camera-aided trajectory, two other scenarios are 
tested, IMU measurements alone and GNSS-aided one (Figure 
9). Evidently, IMU drifts result in error accumulations and the 
trajectory cannot be estimated only with the IMU (see Figure 
9c). The GNSS-assisted trajectory yields much better results 
with a maximum error of 4.5 meters (see Figure 9b). The most 
promising results come from the camera-assisted estimation of 
the trajectory, which demonstrates positional errors with 
average of 20 cm, and not exceeding 1.2 meters (see Figure 9a). 
However, as seen in Figure 9a, there are spikes in the errors at 
an almost constant rate. These spikes take place at the instances 
where the UAV is turning 90 degrees to change direction, which 
leads us to believe it is due to the method used to simulate the 
IMU data and not relevant to the UPF estimations. Investigation 
of this issue as well as the impact of planar-feature observations 
on the trajectory estimation are left to the future work. 
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Figure 8. A section of the computed trajectory by the particle 

filtering method compared to the true trajectory 
 
 

 
a) 

 
b) 

 
c) 

Figure 9. Positional errors of three different trajectories; a) 
camera-aided UPF; b) GNSS aided UPF; c) IMU alone 

 
5. CONCLUSION 

This paper presented our methodological workflow for 
developing a cost-effective UAV Li-Cam system. Apart from 
the hardware-integration aspects, the main challenges in 
developing this UAV-LiCam system include system-calibration 
and geo-referencing. Traditionally, relative pose of the lidar 
with respect to the IMU is measured in an offline self-
calibration procedure. However, because of the dependence on 
GNSS/INS observations, the system calibration needs to be re-
performed during the flight to measure bore-sights and lever-
arms uncompensated errors when the GNSS/INS observations 
become more accurate. Another issue with which this type of 
calibration should deal is the high correlation between unknown 
parameters in the self-calibrating adjustment. The integrated 
calibration method proposed in this study solved for all system 
and lidar parameters simultaneously, which reduces the risk of 
such correlations and does not require any GNSS/INS 
measurements. Improvement of 37% on precision of lidar 
observations was achieved after calibration. Another challenge 
with this system is geo-referencing the lidar point clouds with 
an accuracy comparable to the high accuracy of indirectly geo-
referenced, image-based point clouds. High accuracy cannot be 
achieved via direct geo-refencing using an industrial-grade 
GNSS/INS. Therefore, we proposed using the camera pose data, 
obtained via structure-from-motion, to replace the GNSS. 
Camera-assisted geo-referencing improves the results more than 
3 times when compared to GNSS-assisted georeferencing. 
 
In the future, real flight tests will be performed to evaluate the 
proposed UAV Li-Cam system. Evaluations of correlations 
among the calibration parameters will be done in order to 
identify other scanner intrinsic parameters that might be able to 
be calibrated without being correlated to existing parameters. 
Temporal stability analysis of both the lidar observations as 
well the estimated calibration parameters will also be performed 
via monthly regular calibrations. 
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