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ABSTRACT:

There is a fundamental relationship between projective geometry and the perspective imaging geometry of a pinhole camera. Projective
scales have been used to measure within images from the beginnings of photogrammetry, mostly the cross-ratio on a straight line. How-
ever, there are also projective frames in the plane with interesting connections to affine and projective geometry in three dimensional
space that can be utilized for photogrammetry. This article introduces an invariant on the projective plane, describes its relation to
affine geometry, and how to use it to reduce the complexity of projective transformations. It describes how the invariant can be use to
measure on projectively distorted planes in images and shows applications to this in 3D reconstruction. The article follows two central
ideas. One is to measure coordinates in an image relatively to each other to gain as much invariance of the viewport as possible. The
other is to use the remaining variance to determine the 3D structure of the scene and to locate the camera centers. For this, the images
are projected onto a common plane in the scene. 3D structure not on the plane occludes different parts of the plane in the images. From
this, the position of the cameras and the 3D structure are obtained.

1. INTRODUCTION

Photogrammetry deals with images and an image can be consid-
ered as a recording of spectral properties of rays. In the simplest
case (pinhole camera) the rays meet in a point (camera center),
are equally distributed (no distortion), straight (no atmospheric
or relativistic distraction), and not subject to optical issues like
out-of-focus blur. Projective geometry deals with the one dimen-
sional subspaces (lines through the origin) of a vector space. It
appropriately describes the imaging geometry of the pinhole cam-
era by identifying the camera center with the origin of the vector
space and the rays of light with the corresponding lines through
the origin.

In order to reconstruct the depicted scene, the usually way is to
calibrate the camera and to find its position and orientation rel-
ative to the scene. This way, a ray of light through the scene
can be associated to each image pixel. New scene points can be
triangulated by intersecting the rays of light from different im-
ages. This approach is especially suited when the imaging geom-
etry of a camera does not change and only one set of parameters
has to be estimated for the whole sequence of images. But of-
ten, the imaging geometry of the camera changes significantly
between frames. This is the case e. g. for variable zoom cameras
or for cameras with a software image stabilization that warps each
frame to better align with the previous frame. In this case it might
be more suitable to project the images onto a common plane in
the scene instead of their own sensor planes. The advantage is
that the common plane has to be “calibrated” just once for all
images.

The first part of the article describes the connection between
affine and projective geometry. Applying affine geometry to pro-
jective geometry shows that there is just a very small delta be-
tween them. In some sense, projective transformations diago-
nalize under some kind of affine transformation. A projective

invariant will be developed based on this observation. The invari-
ant is called barycentric ratio. The barycentric ratio will be used
to measure projectively invariant in images. This article mainly
concerns measurements on a plane. But it will also be shown how
the cross-ratio on a line relates to the barycentric ratio. Moreover,
there are also applications to the barycentric ratio in 3D space
(Erdnüß, 2017).

The second part of the article explains how projections on com-
mon planes of a scene can be used to reconstruct the depicted
scene. The main idea is that a plane in a scene can conceptu-
ally be extended to cover the whole image plane. Therefore, each
scene point in the scene intersects the plane and the location of
the intersection on the plane can be determined. The camera cen-
ter, the scene point, and its known projection point onto the plane
are collinear. The article shows how this information can be used
for the triangulation of the camera centers and scene points. The
resulting equation system will be linear and provides a solution
without requiring an initial estimate.

2. PROJECTIVE SCALES

A projective scale refers to a method to measure within an image.
Conceptually, the scale is projected into the image and measure-
ments are read from it there. Figure 1 shows a ruler at the bottom
that is projectively distorted. Its scale is not longer affine like the
scale of the ruler at the top where same distances equal the same
number of ticks on the scale. The first part of this article deals
with the question how to measure on a projective scale by just
using an affine scale (like the top ruler in Figure 1).

2.1 Homogeneous Coordinates

It is common in computer vision to represent a point (x, y)t in
homogeneous coordinates (x, y, 1)t by appending a one as ad-
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ditional component (Hartley and Zisserman, 2004, p. 2). Scal-
ing a vector of homogeneous coordinates by a real number does
not change the point it refers to. This is motivated by the
idea that a pinhole camera located at the origin projects a point
P = (X,Y, Z)t in space along the line through the origin and
P onto a screen at z = 1. On the screen the projected point
has coordinates (X/Z, Y/Z, 1)t. Conversely, a point measured
at the coordinates (x, y, 1)t on the screen corresponds to a point
(kx, ky, k)t in space with some non-zero distance factor k.

The choice to put the screen at position z = 1 is arbitrary but con-
ventional. The line corresponding to a homogeneous vector with
0 as the last component will never intersect the screen at z = 1.
In projective geometry one interprets this as an intersection at in-
finity and calls such an object a direction instead of a point. E. g.
the homogeneous vector (1, 0, 0)t corresponds to the direction of
the x-axis, the homogeneus vector (0, 1, 0)t corresponds to the
direction of the y-axis and the homogeneous vector (0, 0, 1)t is a
point on the screen and corresponds to its origin.

The mapping from (x, y)t to (x, y, 1)t is called homogenization
and the mapping from (X,Y, Z)t to the point (X/Z, Y/Z)t is
called dehomogenization.

2.2 Barycentric Coordinates

In the vector space R2 each vector x can be decomposed into a
linear combination of two basis vectors a and b:

x = α · a+ β · b . (1)

Let B = (a, b) denote the matrix composed of the two basis
vectors. One can find the coordinates (α, β)t of a vector x by the
inverse of B: (

α
β

)
= B−1x . (2)

The affine plane is closely related to the vector space R2. Addi-
tionally, it has an explicit origin O. The point X = O + x can
be rewritten in terms of the points A = O + a andB = O + b
using Equation (1) as (cf. Figure 2):

X = O + α · (A−O) + β · (B −O)

= α ·A+ β ·B + (1− α− β) ·O .
(3)

The coefficients ξ = (α, β, 1−α−β)t of the basis pointsA,B,
and O are the barycentric coordinates of X with respect to the
triangleA,B,O.
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Figure 1. An affine scale (top) and a projective scale (bottom).
Both scales agree at 0 and 1. The bottom ruler would already
show infinity where the top rule is just at 10. In this case the

bottom ruler shows 9x
10−x

when the top ruler shows x, e. g. the
bottom ruler shows 6 = 9·4

10−4
when the top ruler shows x = 4.

In general, the value of a projective scale on a line can be found
by measurements of an affine scale using the cross-ratio (cf.

Section 2.5).

Barycentric coordinates usually sum up to 1, but this requirement
can be relaxed by understanding them as homogeneous coordi-
nates. They allow the same interpretation as the homogeneous
coordinates in Section 2.1 as lines through the origin. But they
do not project onto the screen at z = 1. Instead they project onto
the screen at x + y + z = 1. This screen contains all three unit
vectors (1, 0, 0)t, (0, 1, 0)t, and (0, 0, 1)t. The first two unit vec-
tors correspond to the unit point of the x- and y-axis, and the last
one corresponds to the origin. The choice to put the coefficient
of the origin in the last position is arbitrary but complies with the
convention in Section 2.1.

The homogeneous coordinates in Section 2.1 could be dehomge-
nized by dividing them trough their last component. In opposite,
barycentric coordinates have to be divided by their sum for deho-
mogenization. The last component can than be stripped since it
will always be 1 minus the sum of the remaining components.

2.3 The Barycentric Ratio

A projective transformation, or homography, is a linear transfor-
mation H of homogeneous coordinate vectors. It is uniquely de-
fined by four point correspondences where no three points are
collinear. Let

A↔ A′ , B ↔ B′ ,

C ↔ C′ , D ↔D′
(4)

be such correspondences. Consider the perspective transforma-
tion that maps barycentric coordinates with respect to the triangle
A,B,C to barycentric coordinates with respect to the triangle
A′,B′,C′. Since (1, 0, 0)t are the barycentric coordinates ofA
in the first coordinate system and also the barycentric coordinates
of A′ in the second coordinate system, H must map (1, 0, 0)t to
a multiple of itself. In other words, (1, 0, 0)t is an eigenvector of
H . Analogously, (0, 1, 0)t and (0, 0, 1)t are eigenvectors of H .
Therefore, H must be diagonal.

Let (α, β, 1− α− β)t be the barycentric coordinates ofD with
respect toA,B,C and (α′, β′, 1− α′ − β′)t be the barycentric
coordinates of D′ with respect to A′,B′,C′. H has to map the
first set of coordinates to a multiple of the second one, therefore
H must itself be a multiple of the diagonal matrix

H ∼ diag

(
α′

α
,
β′

β
,
1− α′ − β′

1− α− β

)
. (5)

This formulation is also used in computer graphics for efficient
texture mapping (Blinn, 2003, chap. 13).

Let X ↔ X ′ be another correspondence with barycentric coor-
dinates (ξ, η, 1− ξ − η)t and (ξ′, η′, 1− ξ′ − η′)t, respectively.

A

B

O

ab

X = (0.7, 2.6)

x

Figure 2. Affine grid. Vector x can be written as linear
combination x = 0.7 · a+ 2.6 · b of the vectors a and b.
Moreover, (0.7, 2.6, 1− 0.7− 2.6)t are the barycentric
coordinates ofX with respect to the triangleA,B,O.
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Figure 3. Pool and Pavement (Photo by GregoryButler, 2013). Vanishing pointsX and Y are estimated by the joints in the pavement.
O and S are arbitrary chosen and define the origin and unit square. The position of an arbitrary point P on the ground plane can be

found by the barycentric ratio (X,Y ,O;S,P ).

Applying H from Equation (5) to the barycentric coordinates of
X and rearranging α′, β′, and 1 − α′ − β′ to the left-hand side
yields(

ξ′

α′
,
η′

β′
,
1− ξ′ − η′

1− α′ − β′

)t

∼
(
ξ

α
,
η

β
,
1− ξ − η
1− α− β

)t

. (6)

The value of the equation is independent of H since the right-
hand side depends only on A,B,C,D, and X . Therefore, it
provides a projective invariant. The numerators of Equation (6)
contain the barycentric coordinates of X and the denumerators
contain the barycentric coordinates of D. This motivates the
name barycentric ratio of X to D with respect to the triangle
A,B,C for the term in Equation (6) (Erdnüß, 2017). In the fol-
lowing, it will be denoted as

(A,B,C;D,X) , (7)

with the barycentric basisA,B,C in front of the semicolon and
the reference point and target point following. Barycentric coor-
dinates and the barycentric ratio are not limited to the plane but
directly extend to arbitrary dimension (Erdnüß, 2017).

2.4 An Interpretation of the Barycentric Ratio

Figure 3 shows a pool in the backyard. The image is dominated
by the ground plane. Two of its vanishing pointsX and Y can be
estimated by the joints in the paving. The pointO marks the (ar-
bitrarily) chosen origin of a perspective grid on the ground plane
with axes throughX and Y . The point S defines the scale on the
plane and is located diagonally opposite to the origin on the unit
square (drawn in blue). The point P is another (arbitrary chosen)
point. It happens to have the coordinates (−1, 2)t in the projec-
tive coordinate system defined by X,Y ,O, and S, i. e. starting
from the originO, the point P is two units towards the vanishing
point Y and one unit away from the vanishing pointX .

The position ofP on the perspective grid can be calculated by the
barycentric ratio of P to S with respect to the triangleX,Y ,O.
In Figure 3 the barycentric coordinates of S with respect to the
triangle X,Y ,O are (0.149, 0.143, 0.707)t and those of P are

(−0.176, 0.340, 0.836). Their ratio is given by

(X,Y ,O;S,P ) =

(
−0.176
0.149

,
0.340

0.143
,
0.836

0.707

)t

= (−1.18, 2.36, 1.18)t .
(8)

To better understand how to interpret this result, consider the fol-
lowing barycentric ratios

(X,Y ,O;S,X) ∼ (1, 0, 0)t

(X,Y ,O;S,Y ) ∼ (0, 1, 0)t

(X,Y ,O;S,O) ∼ (0, 0, 1)t

(X,Y ,O;S,S) ∼ (1, 1, 1)t .

(9)

As stated in Section 2.1, in the usual interpretation of homoge-
neous coordinates as projected onto the screen z = 1, the ho-
mogeneous vector (1, 0, 0)t corresponds to the direction of the
x-axis. That corresponds to the interpretation that X is the van-
ishing point of the x-axis in Figure 3. The same holds true for
Y corresponding to the vanishing point of the y-axis, and for O
corresponding to the origin. The homogeneous vector (1, 1, 1)t

corresponds to the point (1, 1)t that is located diagonally oppo-
site to the origin on the unit square. That corresponds to the in-
terpretation of S as well. Therefore, dehomogenizing the homo-
geneous vector in Equation (8) by dividing all coordinates by the
last component yields the coordinates (−1, 2)t of the point P on
the distorted projective grid defined byX,Y ,O, and S.

2.5 An Application of the Cross-Ratio

The cross-ratio can be used to measure in a perspectively dis-
torted image. Equally spaced dots on a line in space captured by
a photo appear closer together the further they are away from the
camera.

Figure 4 shows a street scene in Paris. Some parallel lines on the
facade of the left building were identified, and their correspond-
ing vanishing point was estimated. The borders of the balcony
railings on the second floor are marked with green dots and the
length of the railing on the balcony above the main door is set to
unit length.

The lines on the facade appear perspectively distorted in the im-
age, similar to the ruler on the bottom of Figure 1. The rectified
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0
1

∞

x

Figure 4. Place Dalida, Paris (Photo by endmondlafoto, 2018). Red lines show parallel lines found on the facade of the left building
meeting in their vanishing point (∞). The other greed dots are placed on a line and mark the edges of the ralings on the second floor
of the building. The length of the first railing is defined as unit length. The rectified position of an arbitrary other point x on that line

can be found by the cross-ratio (∞,0;1,x).

position ξ of an arbitrary point x on the line with the green dots
is given by the cross-ratio

ξ = (∞,0;1,x) =
‖x− 0‖
‖1− 0‖ :

‖∞− x‖
‖∞− 1‖ . (10)

Here, the bold letters 0,1,x and ∞ denote the vectors with
the image coordinates of the corresponding points in an arbitrary
(affine) grid (e. g. in the pixel grid of the image).

Consider the line segment between 0 and ∞ and the ratios in
which the segment is divided by the two points x and 1, respec-
tively. Using a straight edge on the print of Figure 4, the division
ratios are roughly

‖x− 0‖ : ‖∞− x‖ ≈ 0.26 : 0.74

‖1− 0‖ : ‖∞− 1‖ ≈ 0.10 : 0.90 .
(11)

Note that the cross-ratio in Equation (10) relates these two ratios
to each other:

ξ =
0.26

0.1
:
0.74

0.9
≈ 2.6 : 0.82 ≈ 3.17 . (12)

The point 1 divides the line segment between 0 and ∞ in the
ratio 0.1 : 0.9 and the barycentric coordinates of 1 with respect
to ∞ and 0 are (0.1, 0.9)t. The two concepts are very closely
related. Moreover, the barycentric ratio of x to 1 with respect to
∞ and 0 is

(∞,0;1,x) =

(
0.26

0.1
,
0.74

0.9

)t

. (13)

Dehomogenizing this vector by dividing the first value by the
second value leads to the same result as in Equation (12). That
justifies the use of the same notation for the cross-ratio and the
barycentric ratio, and allows to understand the barycentric ratio
as a generalization of the cross-ratio.

2.6 Other Interpretations of the Barycentric Ratio

The previous section showed a typical application of the cross-
ratio. Given a line and four points on the line, the cross-ratio
is invariant under perspective transformations. Given a certain

interpretation of the four points on the line, one can interpret the
cross-ratio as the rectified position of one point with respect to
a scale defined by the other three points. Here, the scale was
defined by the vanishing point, the origin, and the unit point. The
unit point together with the origin fixed the scale on projectively
distorted line.

Section 2.4 showed a similar interpretation for a plane with five
points on it, where four of them defined the scale; two vanishing
points, the origin, and one unit point defining the size of the unit
square. The barycentric ratio of the fifth point and the four points
fixing the scale could be interpreted as the rectified coordinates of
the fifth point on that scale. But that’s not the only interpretation
possible.

Equation (9) states that the four basis points of the projective grid
correspond to the three unit vectors and the vector with all com-
ponents equal to 1. The interpretation stated in the last paragraph
is based on the mental image that the homogeneous vectors would
be projected onto the screen z = 1. Different interpretations are
possible when projecting on other screens.

Section 2.2 already introduced the screen x + y + z = 1 where
the first two basis points correspond to the unit points on the axes
instead of their vanishing points. However, the last basis point
corresponded to the barycenter of the unit triangle (bounded by
the origin and the other two basis points). To project (1, 1, 1)t on
the screen x+ y+ z = 1 one has to divide the vector by the sum
of its components 1 + 1 + 1 = 3. The first two components of
the resulting vector (1/3, 1/3)t are then the affine coordinates of
the projected point.

A very handy screen is given by the equation x+y−z = 1, where
the basis points correspond to the unit square. As with the screen
x+ y + z = 1, the first three basis points correspond to the unit
point on the x-axis, the unit point on the y-axis, and the origin,
respectively. However, the last unit point is not the barycenter
of the unit triangle, but instead completes the unit square. The
point (1, 1, 1)t is already on the screen since 1 + 1 − 1 = 1.
Stripping off the last component of the projected point leads to
the coordinates (1, 1)t of the last point on the unit square.

Hence, let O,X,S,Y be a projectively distorted square (cf.
Figure 5) and P some point on it (or outside of it), when
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O

X

S

Y

Figure 5. Perspectively distorted square.

(X,Y ,O;S,P ) = (ξ, η, ζ)t is their barycentric ratio then(
x
y

)
=

1

ξ + η − ζ

(
ξ
η

)
(14)

are the rectified coordinates of P .

3. PLANES IN AN IMAGE

The previous chapter demonstrated how to use a projective in-
variant to measure on a projective grid defined by some control
points in an image. This can be used to construct grids on planes
in images that are invariant of the camera pose. A structure in an
image defining a plane might only cover a small region of the im-
age; however, the plane can conceptionally always be extended to
cover the whole image plane. This turns out to be very valuable,
since any scene point seen in the image projects on that plane.
I. e. one can exactly determine the coordinate on the plane, in
front of which the scene point appears in the image. The camera
center, the scene point, and the projected point onto the plane are
collinear. This is a very precise information about the positions
of the camera and the scene points. It is comparable to aiming a
riffle with notch and bead sights, that have to be aligned with the
target to make sure the barrel points in the right direction.

3.1 The Projection onto the Plane at Infinity

Consider a scene in front of the night sky (cf. Figure 6). The night
sky can be understood as the plane at infinity and the position of
a scene point relative to the night sky holds some useful informa-
tion. E. g. the green point in Figure 6 (corner of the building) is
located at the right ascension of about 11h30m and declination of
about 40◦ in the celestial coordinate system in which astronomer
report the positions of the stars. This is a spherical coordinate
system and the direction of (11h30m, 40◦) corresponds to the
unit vector

v =

cos(11h30m) cos(40◦)

sin(11h30m) cos(40◦)
sin(40◦)

 ≈
−0.760.01

0.64

 . (15)

The direction vector X − C from the camera center C to the
corner of the building X is a multiple of v. While the points
C and X are unknown, the direction vector v can be calculated
directly from the projection of the scene point onto the plane at
infinity in the image.

A reconstruction of the scene can be done by just the direction
vectors v of the projections onto the plane at infinity. Consider

several images of the scene taken at the same time (i. e. the scene
did not move with respect to the night sky). Number the images
by n = 1, . . . , N and denote the (unknown) projection center of
the respective camera by Cn. Find some point correspondences
in the images, number them by m = 1, . . . ,M , and denote the
corresponding (unknown) scene points by Xm. Let vmn be the
direction vector between camera centerCn and scene pointXm.
I. e. calculate vmn by Equation (15) from where the scene point
Xm appears to be in image n, relatively to the night sky. As
stated before,Xm −Cn is a multiple of vmn, i. e.

Xm −Cn = λmnvmn (16)

for some real valued scaling factor λmn. This type of equation
system can be solved by a direct linear transformation (DLT). Let

P⊥mn = I − vmnv
t
mn

‖vmn‖2
(17)

be the orthogonal projection onto the plane through the origin
with normal vector vmn. Here, I denotes the 3-by-3 identity
matrix . The optimal solution to Equation (16) is then given by(

M∑
m=1

P⊥mn

)
Cn =

M∑
m=1

P⊥mnXm for n = 1, . . . , N ,(
N∑

n=1

P⊥mn

)
Xm =

N∑
n=1

P⊥mnCn form = 1, . . . ,M .

(18)

This is an homogeneous system of linear equations in the cam-
era centers Cn and the scene points Xm. Its nullity is at least
four. This reflects the fact that the origin of the reconstruction
(three degrees of freedom) and the overall scale (one degree of
freedom) cannot be determined by the data. Choosing an arbi-
trary origin (e. g. by requiring

∑M
m=1Xm = 0 as additional lin-

ear equations) usually leads to a nullity of one (for non-singular
data), and choosing any non-zero solution gives a reconstruction
at an arbitrary scale.

It’s remarkable that in this setting it’s possible to perform a full

Figure 6. Nightsky over Munich (Image by Stellarium, 2018). A
corner of the building (green) and the LNB of the satellite dish
(red) are marked with dots. From the perspective of the image

the corner of the building (green dot) is seen in front of the night
sky at the right ascension of about 11h30m and declination of

about 40◦ on the celestial coordinate system, and the LNB (red
dot) is seen at the right ascension of about 14h10m and

declination of probably 47◦.
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multi-view reconstruction by solving a single system of linear
equations. Usually, a reconstruction has seven degrees of free-
dom, the location of the origin, the rotation, and the overall scale.
In this case the degree of freedom is just four, for the rotation
has already been fixed by the celestial coordinate system on the
plane at infinity. Instead of calibrating the camera and finding
its rotation, the plane at infinity was “calibrated” into the camera
image and only the position of the camera has still to be found.
And finding the camera positions and scene points together is
possible with a single system of linear equations. Note also, that
by shifting the camera rotation problem into the plane at infinity,
Equation (18) is fully symmetric in the camera centers and scene
points.

Moreover, in this case the reconstruction is Euclidean, since the
celestial coordinate system is based on an orthogonal coordinate
system. Furthermore, measurement errors are therefore well bal-
anced in Equation (18). However, usually one does not have ac-
cess to the plane at infinity and an orthogonal coordinate system
on it in real-world images. But most of the method can be gener-
alized to more realistic scenarios.

3.2 The Projection onto an Arbitrary Plane

Often, photos show a dominating plane like the ground plane or
the facade of a building. Figure 7 shows a tennis court. The
original photo (Photo by HeungSoon, 2016) showed the game in
oblique view. However, Figure 7 was perspectively rectified to
simulate an orthogonal view from above (i. e. the markings are
perpendicular and form factor corresponds to that of a standard
tennis court). But because of the rectification of the ground plane
of the tennis court, everything above the ground plane was per-
spectively distorted, like the players and the net. They now look
like shadows of themselves, just in color. Indeed, suppose the
camera would have been replaced by a strong spotlight and the
scene would have been captured from above, the shadows from
the additional spotlight would have exactly the shape of the now
distorted players and net.

In Figure 7 the tennis ball appears to be about one feet left and
one feet above the very middle of the tennis court. In space co-
ordinates this could be expressed as P = (−1, 1, 0)t where the
first axis goes to the right, the second axis goes up in the image
plane and the third axis goes up in space perpendicular to the
tennis courts ground plane and the origin is in the middle of the
tennis court.

Let C be the position of the camera in this fixed coordinate sys-
tem and X be the position of the tennis ball. The three points
C,X and P must be collinear since P is the projection of X
through C onto the ground plane. This information is similar to
that of Equation (16). But there, the direction vector v between
the camera center C and a scene point X could immediately be
calculated by Equation (15). Unfortunately, some more work has
to be done in this case.

By writing

C = (Cx, Cy, Cz, 1)
t

X = (Xx, Xy, Xz, 1)
t

P = (Px, Py, 0, 1)
t

(19)

as homogeneous coordinates and applying the homography that
exchanges the last two components, the ground plane will be

exchanged with the plane at infinity. This homography maps
C = (Cx, Cy, Cz, 1)

t to

C′ = (Cx, Cy, 1, Cz)
t

∼
(
Cx

Cz
,
Cy

Cz
,
1

Cz
, 1

)t

= (C′x, C
′
y, C

′
z, 1)

t

(20)

and forX analogously. P will be mapped to the direction vector

v′ = (Px, Py, 1, 0)
t . (21)

In this setting, Equation (18) can be applied to C′,X ′, and v′.
After solving for C′ and X′ the original coordinates can be re-
trieved by

C =

(
C′x
C′z

,
C′y
C′z

,
1

C′z

)t

(22)

and forX analogously.

The ambiguity in scale and origin in the solution of Equation (18)
has stronger influence in this case, and only projective reconstruc-
tion can be expected. The ambiguity can be resolved and a met-
ric reconstruction can be obtained given the position of one more
point outside the ground plane. Here the top tip of the middle
of the net is appropriate. That is supposed to be exactly three
feet above the middle of the court. Unfortunately, measurement
errors in the directions v′ in this projectively distorted space will
not balance as well as in the original Equation (18), but this could
probably be improved by a meaningful reweighing of the sum.

It is worth noting that in the case of Figure 7, a reconstruction is
even possible from the single image. Similar as the camera center
C, a scene point X (e. g. the tennis ball) and it’s projected point
P on the ground are collinear, also the sun S, the scene point
X and its shadow Q on the ground plane are collinear (e. g. the
shadow of the tennis ball is located about at Q = (−2.5, 4, 0)t
on the ground plane). Therefore, the shadows in the image are
equally well suited for reconstruction. However, it might be use-
ful to enforce that the sun is (virtually) infinitely far away from
the scene. In homogeneous coordinates, S = (Sx, Sy, Sz, 0)

t

must therefore be mapped to a pointS′ = (Sx/Sz, Sy/Sz, 0, 1)
t

on the ground plane of the distorted projective space. Then, af-
ter the reconstruction of S′ the direction to the sun is given by
S = (S′x, S

′
y, 1)

t.

Figure 7. Rectified tennis court (Photo by HeungSoon, 2016).
The original photo shows a scene of a tennis game in oblique

perspective. The ground plane was rectified assuming a standard
78 ft by 36 ft tennis court. Objects not on the ground plane (like

the players and the net) appear distorted. They are projected
through the camera center onto the ground plane.
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Figure 8. One of Donald Judd’s concrete blocks in Marfa, Texas (Photo by Emanue3, 2011, left) and (Photo by Kbennett0016, 2011,
right). The green dots are measured on the outer corners of the 2.5 m × 2.5 m × 5 m concrete block. The blue and red plane are

defined by the four corresponding green outer corners of the corresponding sides of the concrete block. The yellow squares show the
unit squares on each plane (1 m × 1 m). The red and blue plane could principally be arbitrarily extended over the whole image plane
(in the image they reach about 25 cm over the dimensions of the concrete block). The white dots show two more homologue points in
the two images. It is easy to see that e. g. a′ projects on the red plane at y-z-coordinates of about (2, 2). However, a′ also projects on

the blue plane at x-z-coordinate of roughly (−2, 2). The image does not show the extension of the blue plane over the white dots
since it would mess up the drawing too much.

3.3 Two planes in an image

In Section 3.1 and Section 3.2 the projections of scene points
through the camera center onto a plane in the scene was used for
reconstruction. The reconstruction problem is reduced to a single
homogeneous system of linear equations in the positions of the
scene points and camera centers. However, this system of linear
equations is still large and the position of all the scene points
and all the camera centers couple together. This can be further
simplified by a second known plane in the image.

Figure 8 shows two photos of a concrete sculpture by Donald
Judd in Marfa. The sculpture is a rectangular prism and as such
well suited to define some planes in the image. Two planes are
indicated in the image, the red plane on the long 2.5 m by 5 m
side and the blue plane on the short squared side. A coordi-
nate systems is drawn on each plane, the x-z-coordinate sys-
tem on the blue plane and the y-z-coordinate system on the red
plane. Here, the z axis is common to both planes and their origins
agree. Moreover, they are placed in a way such that the x, y and z
axes form also an orthogonal coordinate system in the Euclidean
space. Despite the fact that the red and blue plane are only shown
to some extent, they virtually cover the whole image plane. Thus
each point in the image has coordinates on the red plane, as well
as on the blue plane.

Let A and B be the two inner corners of the backside of the
sculpture denoted a′ and a′′, respectively b′ and b′′ in the im-
ages. It is easy to estimate their coordinates on the red plane.
Roughly they are

a′
red = (1.9, 2.0)t , a′′

red = (0.6, 1.9)t ,

b′red = (1.9, 0.7)t , b′′red = (0.6, 0.9)t .
(23)

It’s harder to estimate their coordinates on the blue plane by just
looking at the images but using the pixel coordinates of the defin-
ing greed corner points of the planes, by Equation (14) they are

roughly

a′
blue = (−1.7, 1.9)t , a′′

blue = (−0.4, 1.9)t ,
b′blue = (−1.7, 0.9)t , b′′blue = (−0.4, 1.0)t .

(24)

Furthermore, a′ is a point on the red plane with coordinates
A′

red = (0, 1.9, 2.0)t in space and can be understood as the pro-
jection of the pointA through the camera centerC′ of the left im-
age onto the red plane in space. On the other hand the projection
of A onto the blue plane in space is at A′

blue = (−1.7, 0, 1.9)t
and the four pointsC′,A,A′

red, andA′
blue are collinear.

Because there are four collinear points, one can decompose the
reconstruction in two independent problems. The camera center
C′ corresponding to the left image is the intersection of the line
through A′

red and A′
blue with the line through B′

red and B′
blue,

both determined in the left image. The scene pointA is the inter-
section of the line throughA′

red andA′
blue determined in the left

image with the line through A′′
red and A′′

blue determined in the
right image. This decomposes the large system of linear equa-
tions in Equation (18) into independent small systems; one for
each scene point and one for each camera center.

4. DISCUSSION

The previous chapter showed some applications to 3D reconstruc-
tion using planes in the scene. The main idea behind the approach
is to separate the reconstruction problem into two distinct parts.
One is the aspect of the position of the camera, it’s perspective.
The other is the imaging geometry of the camera.

The first aspect, the position or perspective of the camera, is actu-
ally the three dimensional problem. It decides about which parts
of the scene are visible and which parts are occluded. The occlu-
sion structure is key to the question where the camera was, even
for more complex camera models as e. g. fish eye cameras; given
just, there still exists something like a camera center in which all
lines of sight meet (in opposite to e. g. a push broom camera).
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The approach presented in this article was to use two consecutive
scene points mapped exactly behind one another in the image to
determine a line in space where the camera center must be lo-
cated on. Ideally, one would like to use two feature points in
the image that are mapped exactly on the same place. However,
this rarely happens and if it happens, one likely would not recog-
nize this double feature as corresponding to any of the individual
features anymore. Therefore, another method was chosen. One
target point was compared to a reference plane in the scene. The
reference plane has to be established by four feature points, but
then, it’s virtually omnipresent in the image, and the intersec-
tion with the target scene point can be exactly determined. This
yields two consecutively mapped scene points in the image, the
target scene point, and it’s projection through the camera center
onto the reference plane.

The second aspect is that of the imaging geometry. It’s a purely
two dimensional problem. Here, a pinhole camera model was ac-
tually assumed, that does project the scene through the camera
center onto a plane with an affine grid on it (i. e. without e. g. ra-
dial distortion or the like). For this reason, affine geometry could
be used to defer the camera calibration problem into the scene.
By choosing three point correspondences as basis for an affine co-
ordinate system (in form of barycentric coordinates), the camera
calibration becomes irrelevant, since the barycentric coordinates
are already invariant to the affine grid on the sensor plane. More-
over, the corresponding three points in the scene already define
a unique reference plane, where the images will be commonly
projected onto.

The remaining problem is to find a fourth point correspondence
on that plane to establish a projective grid on it. The problem is
equivalent to determining the direction of the principal axis of the
camera with respect to the reference plane in the scene. It com-
prehends the projective component of the camera projection, as
the rotation around the principal axis already entered the affine
part of the transformation. If the scene does not offer an obvious
choice like markings of a court or tie point markers arranged into
the scene, a robust homography based image registration algo-
rithm like (Hartley and Zisserman, 2004, Algorithm 4.3) might
reveal a dominant plane from which four inlier can be selected.
However, if prior knowledge of the scene is not available it might
be difficult to find an affine grid on the reference plane such that
measurement errors balance well in Equation (18).
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