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ABSTRACT:

The worker productivity, a critical variable in project management, significantly affects the progress of a project. The key to measuring
productivity is analysis of activities, which provides necessary information by identifying how workers spend their time at certain areas
in the site. In this work, we propose a novel joint image-trajectory space for automatic detection and tracking of workers using a single
fixed camera. A two-branch convolutional neural network detects workers and their body joints. Instead of tracking the body joints
in the image space, we transform detected joints onto virtual parallel planes called “Anthropometric Planes”. The detected joints are,
then, tracked using a Kalman Filter on these planes which are created based on anthropometric measures of an average American male.
Finally, an uncertainty measure is introduced to reduce the number of identity changes and to handle missing joints. The experiments
conducted on an image sequence captured in a nuclear plant shows promising detection and tracking results.

1. INTRODUCTION

In the United States, many nuclear power plants (NPPs) were
built more than 40 years, and they require regular refueling and
maintenance, which are called outages. NPP outages are chal-
lenging because they require tracking and coordinating thousands
of activities in a short span of time, usually between twenty to
thirty days. Moreover, any delays in the NPP outage processes
will cause significant economic losses. If an NPP is shut down
for one more day because of a delay from an outage, the defi-
ciency of power will lead to up to two million dollars losses for
the energy company. NPP outages require a significant supple-
mental workforce that consists of thousands of contract workers,
which increases the complexity of communication and informa-
tion flows. Other challenges, including scheduling, work group
coordination, nuclear safety concerns arising from different sys-
tem configurations, and resource allocation issues, can create de-
lays and schedule overruns, driving up outage costs. These fea-
tures of NPP outages call for a real-time, robust, effective work-
flow progress monitoring to identify and resolve delays or critical
path changes.

For timely and effective outage coordination at an NPP, it is re-
quired to have efficient and effective monitoring and control of
non-wrench time activities (e.g., obtaining parts, tools or instruc-
tions, the travel associated with tasks) and tasks that are near
the critical path(s). Duration variations and non-wrench time as-
sociated with tasks near critical paths could cause critical path
changes and unexpected delays. The first step for achieving such
monitoring and control of non-wrench-time and near-critical-path
activities is to automatically and precisely detect and track work-
ers during each activity to estimate future non-wrench time and
task variations, which will help with effective scheduling and de-
cision making. In this research, we proposed the automatic com-
puter vision-based workflow monitoring methodology and car-
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ried out the following analysis of documentation and video data
collected during two outages (April 2017, and October 2017).

To validate the proposed methodology, we collected 24-hour
video data in the Radiation Protection Island (RPI) the spring
outage in Palo Verde Nuclear Power Plant in Arizona. This pro-
posed methodology tested on collected data shows promising
results and will help prevent the delays in advance and quickly
identify and diagnose the deviations between as-planned and
as-is workflows for decision support.

2. RELATED WORK

Workflow monitoring is a major aspect in determining whether
a project can be finished on time and on budget (Cheng et al.,
2013, Ghanem and AbdelRazig, 2006, Girardeau-Montauta et al.,
2005). Many researchers have explored to develop an effective
and timely method to manage workers activity and thereby to im-
prove the productivity. (Cheng et al., 2013) used the data fusion
of spatio-temporal and workers posture data to monitor workers
activity. (Ghanem and AbdelRazig, 2006) used Radio Frequency
Identification (RFID) system to collect the trajectories of work-
ers to monitoring the work done on construction sites. However,
tag-based human tracking technologies are not suitable for NPP
outages because NPP has restrictions on the devices that can be
installed on the site and trackable tasks may cause confidential
issues (Zhang et al., 2017). Visual tracking, on the other hand,
is inexpensive solution which can be adapted to the confidential
needs of a project.

With the appearance of deep convolutional neural networks
(CNNs) many obstacles in the field of computer vision have
been successfully overcome. Especially, significant improve-
ment in prediction and estimation of human poses. (He et al.,
2017) proposed a top-down method to first locate a bounding
box around humans, and then estimate their body joints. (Cao
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et al., 2017) instead proposed a bottom-up approach, where first
body joints are detected, and then human pose is estimated af-
ter grouping joints into individual skeletons. One perk of using
a bottom-up over top-down approach is when partial occlusion
happens, in order to detect a human, most of his body should be
visible, while a partial skeleton can be made using only visible
joints.

Human tracking is still an active area of research as there are
challenging problems in real-world cases that need to be solved.
The formulation of tracking as a bipartite matching problem (Pir-
siavash et al., 2011) and solving it using the Hungarian algo-
rithm (Kuhn, 1955) has been a common practice among the track-
ing community. However, it always has been prone to frequent
change of identity and losing track of people due to occlusion.
More recent methods use graphical model to predict the joints lo-
cations over time (Insafutdinov et al., 2017, Iqbal et al., 2016).
The complexity of these models is a serious drawback despite
their promising performance.

3. METHODOLOGY

We propose to use an joint image-trajectory space that creates
a new space to efficiently and accurately tracks workers across
time. We use a 2D human pose predictor (Cao et al., 2017) which
takes as input an online video stream and predicts the poses of
all people in the video. To track the instances in time, first, we
transform detections to a new trajectory space which consists of
a set of parallel planes. Then, we perform tracking in the new
space. We show how our proposed space overcome challenges
that most tackers face in the regular image space.

3.1 Human Joint Detection

The first space of our joint image-trajectory space is the image
space, I, where detection occurs. Although our approach can
build upon any frame-based pose estimation system, we use the
top-down 2D human pose estimator (Cao et al., 2017) due to
its robust and near real-time detection performance. A person
is represented with a skeleton and the joints are labeled accord-
ingly. A two-branch network (Fig. 1) takes an image as input,
and through a refining process, it detects the body joints and their
connecting limbs along with their orientations. A graph matching
algorithm is responsible for mixing and matching the joints of a
person. Given the orientation and the limbs as the edge weights
of the k−partite graph, and the labeled joints as the vertices of
the graph, the matcher finds the joints that belong to a person.
However, since the detection randomly chooses an id for people
in the video per frame, keeping track of the assigned id, when a
person first appears in the scene, remains as a challenge. Further-
more, missing joints due to partial or complete occlusion or even
simply failing to detect a worker aggravates the situation.

The output of this stage, which is the group of the labeled joints
for a person, is the input to our joint trajectory space, where track-
ing occurs.

3.2 Anthropometric Planes

Tracking different body joints on a single camera image is prone
to inconsistent displacements. A consistent tracking algorithm
must be able to track a worker regardless of his position in an en-
vironment. Consider the case when a worker approaches a single
fixed camera. As he gets closer to the camera, his displacement in
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Figure 1. Joint Detection Architecture: Images are fed to
VGG16, and generated feature maps are fed to a two branch

network. Branch 1 (top) finds the confidence map for a labeling
a joint. Branch 2 (bottom) is in charge of estimating the

orientation of the limb between two detected joints

the image space becomes larger and larger. In other words, his ve-
locity changes although in the object space he has a constant ve-
locity. Now, consider another worker who moves away from the
same camera. The worker’s displacement becomes smaller and
smaller resulting in a lower velocity in the image space. There
could be other workers walking across the room, running, stand-
ing still, etc. These issues created by loss of depth due to the
fact that we have only a single fixed camera, makes any tracking
algorithm unreliable. On top of loss of depth and workers walk-
ing patterns, the pattern of each joint across time varies from one
joint to another. We will study these patterns in the experiment
section.

To overcome these issues, we propose to transform detected joints
from the camera image to a set of virtual planes parallel to the
floor.

The creation of anthropometric planes is inspired by the work of
(Lai and Yilmaz, 2008) where they eliminate the use of camera
calibration for shape reconstruction and instead adopt the silhou-
ette images. The basic idea is to utilize homography transform to
generate virtual planes at the level of all the body joints, parallel
to a reference plane.

Let a set of points, X = {x1, x2, . . . , xn}, n ≥ 4, be located
on a reference plane, π, defined in the object space O. De-
fine a transform, T (X, z), which (de-)escalates X to a new set
of points, Xz , by z ∈ R in the direction of π’s normal. Xz =

{x(z)
1 , x(z)

2 , . . . , x(z)
n } are in the new plane, πz which is parallel

to π. Now, consider the set of lines, L, passing through all the
pairs, (xi, x(z)

i ), i ∈ {1, 2, . . . , n}. From the definition, one can
see that li’s are parallel and they intersect in infinity.

The two point sets X′ and X′z are the projection of the two point
sets X and Xz from the object space O to the image space I.
It can be shown that the set of vanishing lines, Lv are the lines
passing through X′ and X′z , which intersect at the vanishing point,
vz (Fig 2).

The relation between X′ and X′z is, then, established as follows:

λix′(z)i = Px′i =
[
p1 p2 p3 p4

] 
X ′i
Y ′i
Z′i
1


=
[
p1 p2 p4

] X ′iY ′i
1

+ p3Z

(1)
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Figure 2. Vanishing Lines and Points: va and vb are the
vanishing points in the horizontal direction. vz is the vanishing

point in the vertical direction

Figure 3. Anthropometric Planes for Human: body joints are
tracked on their corresponding planes

where λ = scale factor
P = projection matrix.

Substituting vz in equation (1) as p3 yields:

λix′(z)i = six′i + vzZ, (2)

where λi =
∑
si + Z.

Given two points x1 and x2 the scale factor si can be calculated
as follows:

s1x′1 − s2x′2 = (s1 − s2)v (3)

where v = the vanishing point in the direction of −−→x1x2.

Fig. (3) illustrates anthropometric planes for head, shoulder, hip,
knees, and feet created for an average American male. Depending
on the application, one can produce more planes intersecting with
other joints. Fig. (4) shows projected anthropometric planes onto
the image space.

3.3 Multi-People Multi-Joint Tracking

In this section, we break down a general tracking scheme and
define necessary terms that help formulating it.

Figure 4. Anthropometric Planes: A new trajectory space for
tracking joints of multiple people

Object State The object comprises of 15 body joints, for which
the state is defined as its location if the joint is visible or labeled
as occluded if the joint is not visible. Since, the joints are be-
ing detected and labeled in the detection phase, it is no longer
needed to use spatial similarities such as overlap between bound-
ing boxes or nearest neighbors. Instead, we use the Hungarian
algorithm to solve the assignment problem.

Object Appearance At each frame, the object is represented
as the mean value of all the observed or predicted locations of
joints, and an uncertainty region, which is defined by the standard
deviation of all the locations of the joints for one person.

Object Trajectory The history of the object written by its state
and appearance in the image sequence encapsulates the trajectory
of the object. The trajectory is readily available by connecting
the mean locations in the previous frames.

Object Tracking Given body joint predictions grouped in the
image space for the latest frame, the main task is to correctly
find a person who corresponds to the same person in the previ-
ous frame. Our strategy is to construct anthropometric planes
at the level of an average American male anthropometric mea-
sures. The object trajectory for each joint will be transformed to
the corresponding plane. These anthropometric planes, in fact,
create a new space in which one can perform all the previous
tracking methods. For this work, we focus only on the Kalman
Filter (Kalman, 1960). Therefore, our Model Update strategy is
defined using the Kalman Filter.

3.4 Uncertain Joints

Anthropometric measures used in this paper are based on aver-
age anatomy measures. If a person is taller or shorter than the
average, the anthropometric planes do not exactly intersect with
the joints. This will cause uncertainty in projecting joints from
the image space onto the joint space. For example, consider the
situation in Fig. 5. Given are the four points locating under, on,
and above an anthropometric plane. We can see that unless a
joint is exactly on the plane, its projection will have an uncer-
tainty corresponding to how far the joint is from the plane. Fig.
6 demonstrates a stack of anthropometric planes with joints and
their projections on the joint space.

The two main reasons that projected joints won’t coincide exactly
the same pixel are: 1) The uncertainty associating with difference
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Figure 5. Projection uncertainty arisen from the fact that
anthropometric planes are based on average measures

in anthropometric planes and actual person’s height, 2) Although
neck and head are on the same line splitting the body into half, left
and right shoulders are located on each side of this line. There-
fore, even for joints locating exactly on an anthropometric plane,
projections won’t coincide. 3) Detection results are not reliable.

We formulate this uncertainty with the following strategy:

Let µx the mean value and σx the variance of a stochastic variable
x describing the projected joints on the joint space for one worker.

If the relative precision, σx/µx, of a collection of joints is high
enough, propagation of uncertainty can be approximated by
simple variance propagation. If the uncertain random vector
{µx,Σxx} is transformed by function y = f(x), we obtain an
uncertain vector {µy,Σyy} with mean and variance

µy = f(µx) and Σyy = JyxΣxxJ
T
yx (4)

where J = Jacobian evaluated at x = µx.

Here, we can interpret the distance between joints, as the inverse
of the covariance matrix. The tool to measure the distance be-
tween joints with uncertainty is the Mahalanobis distance. For
two points x1 and x2 with covariance matrices Σx1x1 and Σx2x2 ,
the Mahalanobis distance is

d(x1, x2) =
√

(x1 − x2)T (Σx1x1 + Σx2x2)−1(x1 − x2) (5)

4. EXPERIMENTS

This section introduces the performance of the human detection
and tracking results. We installed a camera in the Radiation Pro-
tection Island (RPI) at the time of the spring outage in Palo Verde
Nuclear Power Plant and collected 24-hour video data on Apr.
16th, 2017. We use this video to investigate the capabilities of
the human detection and tracking algorithm. First, we only track
workers ankles and compare it with the results on the joint space.
Then, we study the walking pattern of a human and examine how
using different joints is beneficial for tracking in both image and
joint space.

Figure 6. Top view of the projection of all the joints onto the
joint space.

Figure 7. Only Ankle: Tracking in the image space (left images)
is very unstable, while tracking on the anthropometric planes

(right images) does not change the identity of the worker.

Ankle

For this experiment, we use only the detected ankles of workers
and track them once in the image space, and simultaneously in
the joint space. A constant velocity Kalman Filter with 4 inputs[

x
ẋ

]
is used for tracking in both spaces. Fig. (7) demonstrates

how unstable tracking in the image space is. On the other hand,
since transforming the trajectory of ankles onto the joint space is
more linear, the same tracking method with the same parameters
significantly performs better. In the image space, we observe 4
and 3 identity changes in the top and bottom images, respectively.
While no change of identity occurs in the joint space.

Upper Body Joints

Tracking ankles due to high non-linearity in their trajectory pat-
tern across time, encounters with many change of identities.
More importantly, ankles are more prone to occlusion as all
people walk on the same floor but because they have different
heights, it is easier to distinguish their upper bodies joints such
as neck, head and shoulders (Fig. 8).
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Figure 8. Detections on anthropometric planes: All workers
heads are detected (left) while not all ankles are detected (right)

Figure 9. Walking Pattern: Foot and knee trajectory has a highly
non-linear pattern. Head and shoulder trajectories appear to be

more linear

Fig. 9 depicts the pattern of normal walking. As we can see,
ankles (also feet) and knees are highly non-linear. Consider the
situation when the left leg is moving. The next step requires the
left leg to be still and the right leg to move. With the same idea,
knees are also experiencing the same pause-go phases. Thus, our
tracking method must be able to capture this type of movements.
It is noteworthy that, although pause-go type of movements share
the same nature, they have different patterns.

On the other hand, upper body joints are always on the go or have
shorter pause intervals. As long as the person is moving, Head,
and neck are moving with the person. Shoulders will also be on
the go but with a negligible lag. Overall, we recommend to use
the upper body joints.

In this experiment, for the image space, we use the head points as
they have a more linear trajectory compared to other joints, and
for the joint space, we use the average location of neck, head, left
and right shoulders depending on which joints are available. If the
distance between joints is larger than 10 pixels, we ignore those
joints and only rely on other available joints as detection results
may not always be reliable. With this strategy, not only the we
handle the frequent change of identity, but also partial occlusion
(Fig. 10).

5. CONCLUSION

We have presented a framework for detecting and tracking work-
ers using a single fixed camera. Our approach combines a state-
of-the-art human pose estimation methods with novel joint tra-
jectory space. Transforming joints from the image space to the
joint space significantly improve tracking performance that even
a simple tracking algorithm such as Kalman Filter along with

Figure 10. Tracking head in image space vs. tracking all points
in joint space

a Hungarian algorithm is sufficient. Our strategy to use Maha-
lanobis distance as a tool to handle uncertainty helps handle situ-
ations when some of the joints are missing. The results obtained
from applying our framework to a 24-hour dataset collected in
a nuclear power plant, shows promising results where the num-
ber identity changes was reduced compare to the baseline. We
also, studied the walking pattern of a human and suggested to use
upper body joints due to their linear temporal pattern, if possible.
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