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ABSTRACT: 

 

There is a growing use of Earth observation (EO) data for support planning in humanitarian crisis response. Information about 

number and dynamics of displaced population in camps is essential to humanitarian organizations for decision-making and action 

planning. Dwelling extraction and categorisation is a challenging task, due to the problems in separating different dwellings under 

different conditions, with wide range of sizes, colour and complex spatial patterns. Nowadays, so-called deep learning techniques 

such as deep convolutional neural network (CNN) are used for understanding image content and object recognition. Although recent 

developments in the field of computer vision have introduced CNN networks as a practical tool also in the field of remote sensing, 

the training step of these techniques is rather time-consuming and samples for the training process are rarely transferable to other 

application fields. These techniques also have not been fully explored for mapping camps. Our study analyses the potential of a CNN 

network for dwelling extraction to be embedded as initial step in a comprehensive object-based image analysis (OBIA) workflow. 

The results were compared to a semi-automated, i.e. combined knowledge-/sample-based, OBIA classification. The Minawao 

refugee camp in Cameroon served as a case study due to its well-organised, clearly distinguishable dwelling structure. We use 

manually delineated objects as initial input for the training samples, while the CNN network is structured with two convolution 

layers and one max pooling. 

 

 

 

1. INTRODUCTION 

Up-to-date critical information products derived from very high 

resolution (VHR) Earth observation (EO) images have become 

one essential source of information in supporting humanitarian 

response, e.g. for the monitoring and management of refugee or 

internally displaced people (IDP) camps (Lang et al., 2015; 

Lang et al., 2017). The information derived from EO images 

includes amongst others the number and size of dwellings, 

dwelling type classification and derived population estimations 

(Spröhnle et al., 2014). Various achievements based on object-

based image analysis (OBIA) workflows are documented in the 

literature, e.g. improving transferability of rule-sets (Tiede et 

al., 2013), challenges in operational mode (Füreder et al., 2014) 

or the integration of additional techniques like template-

matching (Tiede et al., 2017). OBIA workflows rank high 

among the main strategies used in (semi-)automated camp 

analyses (Witmer, 2015; Lang et al., 2018). The accuracy and 

degree of automation of the dwelling extraction in refugee 

camps depends on various factors, such as image data quality, 

camp structure, weather conditions etc. (Tiede et al., 2013). 

Recently, deep machine learning techniques and above all 

convolutional neural networks (CNN) have achieved higher 

accuracies in object detection compared to classical object 

detection methods. Conventional object detection methods are 

mainly based on the moving window techniques or fixed pixel 

arrangements by which the image is scanned in different scales. 

These object detection methods are mostly applied to distinct 

objects such as vehicles and airplanes (Zhang and Zhang, 2017; 

Deng et al., 2017). Currently there the community strives to use 

CNN networks based on labelled images for object detection 

(Dahmane et al., 2016). CNN networks are constructed by 

supervised machine learning, in which a training data set of 

labels is used to push learnable, i.e. adaptive, filters (feature 

extractors) to minimize a loss function (Yang, 2017). Recently, 

CNN networks have been used for various image analysis tasks 

in the remote sensing domain. A detailed review is provided by 

Zhu et al. (2017); examples include scene classification for high 

spatial resolution and aerial images (Hu et al., 2015; Othman et 

al., 2016; Han et al., 2017; Qayyum et al., 2017); remote-

sensing image classification and object detection (Maggiori et 

al., 2017; Long et al., 2017; Radovic et al., 2017); so-called 

semantic segmentation (Long et al., 2015; Längkvist., 2016; 

Wang et al., 2017). 

In this study, we trained a CNN for so-called semantic 

segmentation of dwellings. Labelled image patches of manually 

extracted objects were used as samples, obtained from an 

operational service for humanitarian mapping at the University 

of Salzburg, Department of Geoinformatics (Z_GIS). We used a 

World View 3 image captured in 2015 (4 bands; R-G-B-NIR, 

pansharpened spatial resolution of 0.5m) and split the study 

area into two different regions for training and testing (see 

Figure 1). We focused on three different target classes, namely 

Tent I (tunnel-shaped, bright tents), Tent II (rectangular shaped, 

bright tents) and Larger Buildings (supply infrastructure), as 

well as a class Non-target Objects comprising dark (i.e. 

traditional) dwellings, bare soil, vegetation, etc. The structured 

CNN was trained by objects of the target and non-target 

samples taken from the training region and implemented on the 

test region. The number of samples used for training and testing 

is presented in Table 1. Finally, the accuracy of the results was 

assessed against the manually delineated objects of the test 

region and compared to a (semi)-automated OBIA approach. 
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Figure 1. The case study area Minawao refugee camp situated in northern Cameroon (left), training and testing zones, and results of 

the CNN network for the testing area (right upper image). 
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2. METHODS: WORKFLOW  

2.1 Deep convolutional neural network 

 

A deep CNN is typically structured by multiple convolutional 

layers. Moreover, based on the user’s intended goal, other 

layers may be used, e.g., normalization layer, pooling layers, 

and fully connected layers (Cozzolino et al., 2017). A 

convolutional layer as the core of the CNN consists of different 

learnable filters. Pooling layers used for size reduction by the 

maximum or average value or other measurements. As pooling 

layers are a crucial part of biological visual systems, they are 

common in the CNN applications of the computer vision (Yang, 

2017). 

The window size of our input samples was set to 16×16 pixels 

by cross validating a variety of window sizes, including 12×12, 

16×16, 18×18 and 32×32. As we fed the CNN network with the 

four-layer image, the sample patch had 16×16×4 units. We 

worked in Trimble’s eCognition software environment with the 

CNN implementation based on Google TensorFlow library. We 

generated the samples extracted from a layer containing all 

manually delineated objects of the training area. The number of 

our feature maps was 40, thus 16×16×4×40 different weights 

were trained during the first hidden layer. As a result, 40 feature 

maps within 12×12×1 units were obtained after convolution 

with a kernel size of 5. There is also a max pooling in the first 

hidden layer, which reduced the units to 6×6×1 in the same 

number of feature maps. The results forwarded to the second 

hidden layer as input data. Consequently, convolution with a 

kernel size of 3 led to 12 feature maps within 4×4×1 units. It 

should be noted that the kernel sizes and the number of feature 

maps were selected by us with attention of the camp situation, 

e.g. the quite small ratio of dwelling size vs. pixel size (see 

Figure 3).  

In each training step, gradients for each weight is assessed, i.e. 

estimated using backpropagation. During this process, a 

statistical gradient descent function is used to optimize the 

weights. We choose a very small value for learning rate of 

0.0001 because of the simplicity of our samples. Training steps 

and batch size were 5000 and 50 respectively. Batch size is the 

number of samples used as input data at each training step. 

 

2.2 (semi-) automated object-based dwelling extraction 

 

For comparison of the results we conducted a semi-automated, 

i.e. combined knowledge-/sample-based OBIA dwelling 

extraction for the same dwelling types was conducted. The 

approach combines OBIA elements with supervised 

classification techniques in a user-friendly interface for fast 

parameter selection (see Tiede et al., 2013). The following steps 

were performed. (1) Image segmentation of the area of interest 

and initial target class detection (bright dwellings) based on 

relative contrast difference of the initial segments compared to 

their surroundings. Brightness contrast in the blue band has 

been selected for the initial detection of bright dwellings types. 

(2) Then segments classified as initial bright dwellings were 

merged to image objects describing single dwellings (if 

dwellings are densely attached to each other, they are merged 

into larger objects containing more than one dwelling). (3) 

Third, a stratified supervised classification was performed on 

the target dwellings only, which allows the usage of only a few 

samples per dwelling class (here:  ~ 10 samples per class were 

selected). A support vector machine (SVM) classifier has been 

has been used considering also spatial features ( form and size) 

next to spectral information per object (mean and standard 

deviation of the 4 spectral bands); (4) Finally, after the 

differentiation of the initial dwelling types into the three 

dwelling classes, knowledge-based post processing is conducted 

automatically, to select only dwellings of at least 10 m² in size 

and remove outliers, which are not within the camp extent 

(based on dwellings density estimations). 

 

In this workflow, the number of free parameters to be user 

defined included (i) segmentation parameters, (ii) a relative 

threshold for initial dwellings type detection and (iii) the 

selection of (few) training samples for the SVM classifier. The 

last step is significantly reduced, due to the stratified approach 

of initial target class detection and differentiation of classes 

only within the initial range of target objects. The result of this 

approach is represented in figure 2. 

 

 
 

Figure 2.  Subset of the results obtained from the OBIA 

approach, including the automatically derived camp extent 

(based on dwelling density estimations). 
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Figure 3. The structure of our CNN for mapping of dwellings in a refugee camp

 

3. RESULTS AND DISCUSSION 

 

We used a threshold of 85% for extraction the objects from the 

resulted heat map of the CNN model (Figure 1). For the 

accuracy assessment, three different metrics were used: 

precision (P) was used to find how many detected objects were 

true. Recall (R) was used to find how many actual objects were 

detected. F1 measure was used to determine the balance 

between mentioned metrics (see Figure 4).   

  

Precision = True Positives ⁄ ((True Positives + False Positives)) 

 

Recall = True Positives ⁄ ((True Positives + False Negatives)) 

 

F1 measure = 2 × (precision × recall) ⁄ ((precision + recall)) 

 

The accuracy values (P, R, and F1, see Table 1 & 2) of both 

approaches show more than 85% for the extraction of all three 

types of dwellings except of the P metric of the class Tent I by 

(semi)-automated OBIA which reaches 76%. For this class, 

although the F1 measure shows the same result of accuracy, 

there is a big difference between P and R metrics in the results 

of our two different methodologies. In the case of using CNN 

network for the Tent I, P and R metrics were almost the same. 

For the OBIA approach, the metric of R almost 20% more than 

the P metric (less detection of Tent I objects, but with a high 

confidence, i.e. less false negatives).  

For the large buildings, the CNN network revealed a P measure 

of 100% which means this method could successfully detect all 

the objects of this type (both methods treated attached large 

dwellings as one large dwelling). However, the lesser value of R 

metric illustrates that the CNN network indicated more falsely 

classified objects as large buildings, whereas the OBIA method 

revealed a balanced result on a high accuracy level (98% / 

94%). 

Among three types of dwellings, the Tent I type (tunnel shape) 

was most difficult to be detected, while the other classes show 

very high accuracy values for both approaches. This might be 

due to the smaller amount of training samples (compared to the 

number of training samples for Tent II), or more variabilities in 

spatial context and more complex spatial structure of the 

dwellings (tunnel shape) in comparison to the large buildings or 

the rectangular dwelling type.  

 

 

 

 
 

Figure 4.  Subset of the results obtained from the model. The 

symbols (+), (-) and (.) are true positive (TP), false positive (FP) 

and false negative (FN) respectively. 
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Table 1. Accuracy results of CNN approach 

Object train test TP FP FN P (%) R (%) F1 (%) 

Tent I (tunnel shape) 675 297 219 41 37 84.2 85.5 85.2 

Tent II (rectangular shape) 1644 2639 2458 129 52 95.0 97.9 96.3 

Large buildings 535 121 106 0 15 100 87.6 93.3 

 

Table 2. Accuracy results of object-based approach 

Object test TP FP FN P (%) R (%) F1 (%) 

Tent I (tunnel shape) 297 221 67 9 76.7 96.0 85.2 

Tent II (rectangular shape) 2639 2541 28 70 98.9 97.3 97.8 

Large buildings 121 112 2 7 98.2 94.1 96.0 

 

 

4. CONCLUSIONS 

In this paper, we evaluated the potential of CNNs, as an 

alternative learning strategy for or an integral part in OBIA 

workflows. We focused on the issue of improving the detection 

and extraction of dwelling types in refugee camps based on 

VHR data. The results were compared with an established 

(semi)-automated OBIA approach.  

 

Both approaches showed quite high accuracy values for the 

extraction of the selected three different dwelling types. The 

two approaches differ by the number of training samples and the 

number of free parameters to be specified for transferability to 

other time stamps and/or areas. While the CNN approach needs 

a multiple of samples in the initial training phase, the 

transferability – once a proper CNN is trained – is expected to 

be high, at least to similar sites (Penatti et al. 2015; Yosinski et 

al. 2014). However, transferability of the CNNs to areas 

covered by different sensors or atmospheric conditions or more 

complex camp structures also highly depends on many un-

biased samples for training and supervised learning (LeCun, 

Bengio, and Hinton 2015). This is difficult to achieve in the 

case of refugee camps (sample scarce situation). Another 

problem we faced using the CNN approach, was the quite small 

object size under consideration compared to the image 

resolution. The best suited window size of the training samples 

was selected as 16×16 pixels, which covers for small objects 

(e.g., trees and small dwellings) more than one object in a single 

window. On the other hand, if smaller window sizes are 

selected, no sufficient object context is taken into consideration 

for the convolution and pooling operations. Maybe other 

approaches like scene detection rather than object detection for 

the smaller objects could be a solution. The semi-automated 

OBIA shows also a very good performance on the single test 

site. The approach is quite fast to implement, since only a few 

parameters need to be defined (see section 2.2), but adaptation 

is needed for every new site.  

 

Further research will focus on the scalability of the two 

approaches regarding: 

 

• Other time stamps or different sensors of the same refugee 

camp 

• Improving the CNN by integrating training samples from 

different refugee camps and testing the transferability to 

other camps  

• Comparison of the performance of both approaches if scaled 

to larger or different sites with respect to accuracy and 

speed, manual intervention etc.  

 

It is then envisaged to integrate the CNN probability layer as 

input for a subsequent object-based analysis, to increase the 

accuracy and decrease the number of free parameters of 

existing, knowledge-based rule-sets in this time-critical 

application domain. 
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