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ABSTRACT:

High-resolution aerial imagery can provide detailed and in some cases even real-time information about traffic related objects. Vehicle
localization and counting using aerial imagery play an important role in a broad range of applications. Recently, convolutional neural
networks (CNNs) with atrous convolution layers have shown better performance for semantic segmentation compared to conventional
convolutional aproaches. In this work, we propose a joint vehicle segmentation and counting method based on atrous convolutional
layers. This method uses a multi-task loss function to simultaneously reduce pixel-wise segmentation and vehicle counting errors. In
addition, the rectangular shapes of vehicle segmentations are refined using morphological operations. In order to evaluate the proposed
methodology, we apply it to the public “DLR 3K” benchmark dataset which contains aerial images with a ground sampling distance
of 13 cm. Results show that our proposed method reaches 81.58% mean intersection over union in vehicle segmentation and shows an
accuracy of 91.12% in vehicle counting, outperforming the baselines.

1. INTRODUCTION

Vehicle segmentation and counting in aerial imagery is of sig-
nificant importance, as aerial imagery can provide valuable in-
formation over a large area in a short period of time. The au-
tomatic analysis of such images to segment and count vehicles
can yield valuable information for multiple applications such as
traffic monitoring, parking lot detection and utilization, and ur-
ban management. In recent years, the advances in camera sen-
sor technology have improved the resolution of remote sensing
images, particularly airborne images. Therefore, thanks to the
higher resolution, it is feasible to distinguish vehicles from each
other. This is crucial in applications as the number of vehicles
provides valuable insights over the captured area. Nevertheless,
the small size of vehicles as well as different scales, shadow
and complex background introduce considerable challenges in
the success of current vehicle counting methods. Moving objects
in airborne images, especially vehicles, appear to be of small size
(e.g., 10× 20 px) depending on the ground sampling distance.

In the last few years, deep learning methods have shown impres-
sive performance in different terrestrial imagery tasks, such as
object detection (Redmon and Farhadi, 2017; Ren et al., 2015)
and segmentation (Chen et al., 2018; Long et al., 2015). Inspired
by this success, multiple remote sensing works have used con-
volutional neural networks (CNNs) (Máttyus et al., 2017; Tang
et al., 2017; Audebert et al., 2017). Despite significant improve-
ments made by CNNs, the majority of previous works apply mi-
nor modifications to the recent CNN architectures and use the
main part of the architectures directly. However, these methods
do not take into account the specific challenges encountered in
aerial imagery. To address such challenges, a specialized archi-
tecture is required in aerial imagery instead of the direct employ-
ment of standard CNNs. One of these challenges is the small size
of objects especially for densely populated areas (e.g., vehicles
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in parking lots). For segmenting such dense groups of vehicles,
the context plays an important role. Hu and Ramanan (2017)
showed how important the context element is to detect small ob-
jects by CNNs. To integrate context data, CNNs employ stacked
sub-sampling layers. Despite its usefulness in decreasing compu-
tation costs and in increasing the receptive field of the network,
the resolution as one of the key elements is practically ignored.
However, resolution is crucial to distinguish vehicles in a dense
place. Moreover, feature resolution is lost gradually by apply-
ing sub-sampling (pooling) layers through consecutive network
layers. Therefore, the resulting coarse feature maps do not carry
details of object boundaries specifically for small objects which
makes it hard for the network to recover them during the decoding
step of the feature maps. Even deploying skip connections (Long
et al., 2015) or hypercolumns (Hariharan et al., 2015) does not
resolve this issue completely. Thus a dedicated method which
expands the receptive field with no resolution loss is needed.

Recently, Yu and Koltun (2015) proposed an interesting variant of
the convolution operation called atrous convolution (also called
dilated convolution). In atrous convolutions, the atrous rate in-
creases the arrangement of kernel parameters (weights). The
larger the atrous rate is, the more sparse the kernel weights are
arranged (i.e. the parameters point to input information in larger
gaps). Hence, it is possible to increase the receptive field steadily
by just stacking atrous convolutions on top of each other. This
comes with the loss of resolution from the input data which is
essential to recover small size vehicles. Atrous convolution has
been used recently in different tasks in ground imagery showing
promising performance.

In this work, we investigate the effect of atrous convolutions in
improving current CNNs for semantic segmentation of vehicles
in aerial images. We show that one should choose atrous rates
in each layer separately and avoid steadily increasing atrous rate.
The naive monotonous increase of atrous rates does not achieve
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better performance in comparison to not using atrous convolu-
tions. The aggregation of context for small objects is damaged
by a strong increase of atrous rates. This was observed even
though increasing atrous rates steadily preserves the resolution
and yields large receptive fields to aggregate the context; how-
ever, it deteriorates the performance for small vehicles leading
to a failure to capture the essential context. This effect indicates
that even though atrous convolutions are more and more com-
mon in state-of-the-art computer-vision methods, they should be
used differently when it comes to segmenting small vehicles in
airborne images.

The proposed method incorporates a new idea of joint vehicle
segmentation and counting. To solve this issue, we perform seg-
mentation with atrous convolutions, however, we do not increase
atrous rates monotonously, but keep the rate steady and decrease
it only at the end. This approach shows better performance com-
pared with the naive monotonous atrous rate expansion. On the
one hand, increasing atrous convolutions keep the resolution and
context preserved, but on the other hand, the steady and decreas-
ing atrous convolutions recover dense features for small vehicles.
To further improve our proposed network for semantic segmen-
tation of vehicles, we design a secondary branch in the network
architecture, which is responsible for counting vehicles in the in-
put image. During the training phase, we deploy a multi-task
loss function including a conventional cross entropy loss for se-
mantic segmentation and the Euclidean loss to decrease the error
between the number of predicted vehicles and the actual number
of vehicles in the input image. We train the network using these
two loss functions in an end-to-end fashion. Results show bet-
ter performance in the separation of nearby vehicles leading to
an improvement in the semantic segmentation task. The output
of the architecture is a binary image indicating vehicle positions
with a different value as background as well as the number of
vehicles yielding valuable information on the application side.

We evaluate our method on the “DLR 3K” dataset (Liu and Mát-
tyus, 2015) which contains high-resolution aerial images with a
ground sampling distances (GSDs) of 13 cm taken over the city of
Munich, Germany. Results show that our proposed method per-
forms well on this dataset and it outperforms the baseline network
which does not include atrous convolutions.

2. RELATED WORK

The semantic segmentation methods have progressed consider-
ably since Long et al. (2015) proposed fully convolutional neural
networks (FCNNs). The task of vehicle semantic segmentation
is to assign each pixel a semantic label, which – when compared
with vehicle detection – can provide a dense pixel-wise prediction
of the vehicle location. In recent years, thanks to the advances
in deep learning, FCNNs have achieved impressive results in se-
mantic segmentation tasks. Hence, recently these methods have
been investigated in the remote sensing domain with or without
modifications. The majority of these works are based on the pro-
posed architecture in computer vision: Long et al. (2015) and
Badrinarayanan et al. (2015) use FCNN with skip-connections,
Chen et al. (2018) is based on encoder-decoder, and Chen et al.
(2014) relies on FCNN with conditional random fields (CRFs). In
order to segment and classify vehicles, Audebert et al. (2017) pro-
posed a two-stage algorithm. First, vehicles are segmented via a
binary FCNN, and then segmented vehicles are cropped and clas-
sified through a classification neural network. Kampffmeyer et al.

(2017) also proposed a network based on FCNNs, but unlike pre-
vious methods, multi-class objects such as buildings, trees, low-
vegetation and vehicles are classified directly. They also augment
the segmentation of small objects by incorporating a balanced
loss function. Liu et al. (2017) proposed a method on the basis
of FCNN combined with CRFs to have pixel-wise semantic seg-
mentation in high-resolution images in remote sensing. Sherrah
(2016) also utilizes atrous convolutions, however, they employ
max-pooling layers (stride 1) leading to decreased resolution of
output feature maps. In the work of Yuan (2016), pixels are clas-
sified considering their distance to object instance boundary lead-
ing to a considerable improvement on boundary regions.

3. METHODOLOGY

In this section, we provide a detailed description of our proposed
method in which we preserve output resolution and yet increase
the size of the receptive field to aggregate contextual information
in order to simultaneously segment and count vehicle instances in
the input image. Figure 1 illustrates the overview of our method
in which we design a neural network architecture composed of
two branches for pixel-wise semantic segmentation and object
counting. We use FCNNs as the first branch composed of mainly
atrous convolution layers for the segmentation task. As the sec-
ond branch, we use a combination of fully connected layers and
atrous convolution layers for the counting task. In this section,
we explain the architecture in detail.

FCNNs have shown high performance in the task of pixel-wise
semantic segmentation (Chen et al., 2018). Although we can in-
crease the receptive field by stacking striding and pooling layers
on top of each other which yields better accuracy with contextual
data, the feature maps are of lower spatial resolution e.g., reduced
by a factor of 32 in FCNNs. In the object recognition task, this
might not be an issue. However, in the dense pixel-wise seg-
mentation of small aerial objects in which spatial resolution has
a vital role, it deteriorates the performance. Often, transposed
convolution layers (Long et al., 2015) are utilized to recover the
lost spatial resolution, but the use of atrous convolutions (Yu and
Koltun, 2015) has shown better performance for this task.

The term “atrous convolution” (or “dilated convolution”, rooted
from the French expression “convolutions à trous”) was devel-
oped originally for the wavelet transform in the “algorithme à
trous”. It has been used in the context of deep convolutional neu-
ral networks (DCNNs) e.g., in Chen et al. (2018) and Yu and
Koltun (2015) showing better performance compared with DC-
NNs transposed convolutions with pooling and striding layers.
Atrous convolutions enlarge the kernel by integrating holes be-
tween pixels in kernels. The atrous “rate” is determined by the
hyper-parameter r. Usually the stride between kernel parame-
ters is r − 1, i.e., r = 1 yields a regular convolution calcula-
tion. Atrous convolutions are used to cheaply increase the re-
ceptive field of output units without increasing the kernel size,
which is especially effective when multiple atrous convolutions
are stacked consecutively. A kernel of size k with an atrous con-
volution rate r has an effective size of

k̂ = k + (k − 1)(r − 1) .

As mentioned in Section 1, context plays an important role be-
cause small objects in high resolution images can be easily over-
looked even by human experts. Moreover, even with contextual
information, spotting small objects is not trivial, in particular,
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Figure 1. Overflow of the proposed method for pixel-wise dense semantic segmentation of vehicles.

if the resolution of the image is low. The components of the
FCNN branch of our network in Figure 1 are designed to pre-
serve the resolution by using atrous convolution layers. We use
the VGG16 (Simonyan and Zisserman, 2014) architecture and
adapt it to the new task of small vehicle segmentation in aerial
imagery. Inspired by Yu and Koltun (2015) who had shown that
pooling layers and striding convolutions damage the accuracy of
dense pixel-wise prediction, we remove all pooling layers from
the VGG16 architecture. In addition, we set the stride parameter
to 1 in order to remove the side effects of striding convolution
layers. We denote each block of the original VGG16 architec-
ture in the new design as stages 1 to 5. We set the rate of atrous
convolution to 1 for stage 1, 2 for stage 2 and 3 for stage 3. The
reason for the increasing rate value is to capture a larger con-
text in the extracted features. For stages 4 to 5 from the original
VGG16, we keep the dilation rate unchanged to extract higher-
level features. We preserve the number of channels compared to
VGG16. Moreover, we perform batch-normalization in atrous
convolutions for faster convergence during the training phase.
The batch-normalization layer is also used to avoid over-fitting
to some extent, as a replacement to dropout layers. As an exten-
sion to VGG16, we add two more stages: stages 6 and 7. Similar
to the previous stages, in stage 6 and 7 we use atrous convolu-
tions. However, as the first layer in each of these stages we apply
a 1 × 1 convolutional layer to reduce the dimension. If we con-
sider stages 1 to 5 as an expansion of the number of channels to
extract a high amount of features, stages 6 and 7 can be seen as
shrinking the number of channels to consider only informative
features from those features. Another reason for shrinking the
number of channels is to reduce computational cost.

After the 1×1 convolutional layer in stage 6 and 7, we use atrous
convolution while keeping the number of channels unchanged. In
stage 6, we still use atrous convolution layers with the rate of 3,
however, in stage 7, we reduce the rate to 1. Although, increasing
the atrous rate is beneficial to integrate more context by having a
larger receptive field and also by preserving the resolution, the
spatial information between neighboring features is decreased.
This is detrimental for the dense pixel-wise segmentation of small

objects, such as vehicles. Therefore, to solve this issue, we re-
cover the inconsistency between features by reducing the atrous
rate, which in our experiments proves to be useful to segment
small objects. After stage 7, we apply a 1×1 convolutional layer
to reduce the number of channels to 2, equal to the number of
classes: vehicle and non-vehicle. The softmax function produces
a probability map for each class in the end. To obtain the output
map illustrated in Figure 1, for each pixel, we choose the class
with the highest probability. As a post-processing step, we apply
a dilation operation with the kernel size of 3× 3.

Table 1. Ablation study on the proposed method based on atrous
convolution layers. fc means fully connected layer. “last” is the

last fc layer with one neuron for counting.

Stages Counting fc-layers mIoU (%) non-vehicle (%) vehicle (%)

1− 5 — — 80.25 99.17 61.33
1− 6 — — 80.41 99.18 61.64
1− 7 — — 81.20 99.24 63.16
1− 7 X last 81.25 99.25 63.25
1− 7 X 1-last 81.40 99.26 63.54
1− 7 X 1-2-last 81.58 99.26 63.89

In addition to pixel-wise information, the number of object in-
stances also carries valuable insight, which can be used by the
network to adapt its parameters for a better performance in the
semantic segmentation task. Therefore, we apply two fully con-
nected layers to the last layer of stage 5, as illustrated in Figure 1.
This flattens the features, making it feasible to extract only one
number as output. For this, we apply a fully connected layer with
one neuron and then apply the ReLU activation function. We treat
the output of the ReLU function as the predicted number of ve-
hicles in the input image. Note that in this case, both tasks share
weights from stage 1 to 5 as the main feature extraction step. We
deploy a multi-task loss function penalizing errors both in dense
pixel-wise prediction as well as in vehicle count prediction. The
output of the dense pixel-wise prediction task is determined by
the class posterior probability of the input image using the soft-
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Table 2. Comparison of the proposed method with other approaches. Numbers represent percentages. In the first row, VGG19 was
trained from scratch instead of using the pretrained model.

Method backend network mIoU non-vehicle vehicle frequency weighted IoU pixel acc. mean acc. counting acc.

FCN-8s VGG19 (scratch) 74.15 98.78 49.53 98.00 98.80 86.91 83.76
FCN-8s VGG19 79.96 99.15 60.77 98.54 99.16 90.86 89.61
FCN-8s ResNet50 80.40 99.18 61.61 98.57 99.19 89.70 87.25
FCN-8s ResNet101 80.67 99.20 62.15 98.59 99.21 89.78 86.46
DenseASPP DenseNet121 78.29 99.03 57.55 98.36 99.04 90.02 86.15
PSPNet ResNet50 78.71 99.09 58.32 98.43 99.11 88.36 77.79
ours customized 81.58 99.26 63.89 98.64 99.31 90.01 91.12

Figure 2. Sample performance of our proposed method on the DLR 3K dataset. The left image is the original input image. Segmented
vehicles are shown in violet in the right image. We merged truck and car classes for single-class vehicle segmentation. Our algorithm

is capable of segmenting vehicles with high accuracy in the areas with sparse vehicle distribution.

max function. The softmax function creates a vector of real val-
ues between 0 and 1 to indicate the distribution of the probability
of a class j and an input vector X as

p(y = j|X;W ) =
eX

TWj∑K
k=1 e

XTWk

, (1)

where W stands for the network weights, y is the predicted class,
and K is the number of classes. For dense prediction of the fea-
ture map output shown in Figure 1, we use the cross-entropy loss
function expressed as

Lsegmentation = −
∑
x

p′(x) log p(x) , (2)

where x is the input pixel and p(x) the softmax function. We aim
to reduce the cross-entropy between the “true” one-hot encoded
data distribution denoted as p′(x) and the predicted probabilities
p(x). To minimize counting errors, we use the Euclidean distance
as loss function defined as

Lcount = ‖H(X,W )− C‖2 , (3)

where H is the network function mapping the input data X using
the network weights W to the predicted number of vehicles and
C stands for the ground truth vehicle count. H is the output of the
ReLU layer: the predicted vehicle number. We count an object as

a vehicle when 70% of its pixels are inside the annotated object.

4. EXPERIMENTS AND DISCUSSION

We carried out the experiments using the “DLR 3K” dataset,
captured over the city of Munich in Germany. This dataset
contains 20 images with the GSD of 13 cm and resolution of
5616× 3744 px split in a training and a test set, each set with
10 images. During the training phase, we use Stochastic Gradi-
ent Descent (SGD) as optimizer with a learning rate of 0.0001, a
momentum of 0.9 and a weight decay of 0.004 for 100 epochs.
We utilize Tensorflow (Abadi et al., 2016) as the implementa-
tion framework. As the images are large, to avoid memory is-
sues, we crop each image to a patch of size 1024 × 1024 with a
patch overlap of 100 px. For the final output, we stitch patches
together to form an output map with the same resolution as the
input image. Similar to Long et al. (2015), we use mean in-
tersection over union (mIoU) as the main criterion to evaluate
our proposed algorithm as well as pixel accuracy, mean accuracy,
and frequency weighted IoU. Table 1 shows the ablation exper-
iments on the proposed network for the semantic segmentation
task. First, we trained the network without stages 6 and 7 and
without the counting branch. The results show that even though
the network is not very deep, it can achieve a decent mIoU of
80.25%, outperforming FCN-8s (Long et al., 2015) with VGG19
feature-extraction (backend) network by a small margin of 0.29%
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mIoU. This shows the effectiveness of employing atrous convo-
lution layers in contrast to the approach of utilizing pooling and
striding layers. Although adding stage 6 improves the perfor-
mance by 0.16% mIoU, this boost is not significant and could be
due to the increased depth. However, adding stage 7 with atrout
rate 1 shows a significant improvement of 1.80% mIoU which
indicates that using lower atrous rates to recover the connectiv-
ity between feature map elements in the last part of the network
can lead to a better performance in dense pixel-wise prediction of
small objects. Moreover, adding the counting task to the network
improves performance by 0.25% mIoU which is larger than the
effect of stage 6. This indicates that the additional task of vehicle
counting plays a more important role than solely increasing the
depth of the network.

In Table 2, we compared our proposed network with other net-
work architectures. The quantitative comparisons show that
our proposed method outperforms all baselines. Interestingly,
the recently proposed PSPNet (Zhao et al., 2017) which uses
a ResNet50 backend performs worse than FCN-8s (Long et al.,
2015) with the same backend. This shows that, in order to seg-
ment small objects in aerial images, FCNNs should be modified
to be adapted to this new domain. Figure 2 shows sample ve-
hicle segmentation and counting performance of the proposed
method in which vehicles are indicated with violet. The high per-
formance suggests that atrous convolutional networks should be
further studied in this domain. Albeit recent FCNNs, e.g., PSP-
Net or DenseASPP (Yang et al., 2018) outperform older methods,
e.g., FCN-8s, their direct application for small object segmenta-
tion leads to worse performance.

5. CONCLUSION

In this work, we presented a joint vehicle segmentation and
counting method based on FCNNs with atrous convolutions. We
showed that atrous convolutions are an effective operation com-
pared to pooling and striding ones, but for segmenting vehicles as
small objects a combination of increasing and decreasing atrous
rates should be used, instead of monotonously increasing the
atrous rate. Moreover, we showed that integrating the vehicle
counting task, in addition to pixel-wise segmentation, leads to a
better performance. In the future, more investigations of different
combinations of atrous rates could result in an even better perfor-
mance.
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