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ABSTRACT: 
 
In this paper, a method is presented to improve the MLS platform’s trajectory for GNSS denied areas. The method comprises 
two major steps. The first step is based on a 2D image registration technique described in our previous publication. Internally, 
this registration technique first performs aerial to aerial image matching, this issues correspondences which enable to compute 
the 3D tie points by multiview triangulation. Similarly, it registers the rasterized Mobile Laser Scanning Point Cloud (MLSPC) 
patches with the multiple related aerial image patches. The later registration provides the correspondence between the aerial to 
aerial tie points and the MLSPC’s 3D points. In the second step, which is described in this paper, a procedure utilizes three 
kinds of observations to improve the MLS platform’s trajectory. The first type of observation is the set of 3D tie points 
computed automatically in the previous step (and are already available), the second type of observation is based on IMU 
readings and the third type of observation is soft-constraint over related pose parameters. In this situation, the 3D tie points are 
considered accurate and precise observations, since they provide both locally and globally strict constraints, whereas the IMU 
observations and soft-constraints only provide locally precise constraints. For 6DOF trajectory representation, first, the pose 
[R, t] parameters are converted to 6 B-spline functions over time. Then for the trajectory adjustment, the coefficients of B-
splines are updated from the established observations. We tested our method on an MLS data set acquired at a test area in 
Rotterdam, and verified the trajectory improvement by evaluation with independently and manually measured GCPs. After the 
adjustment, the trajectory has achieved the accuracy of RMSE X=9 cm, Y=14 cm and Z=14 cm. Analysing the error in the 
updated trajectory suggests that our procedure is effective at adjusting the 6DOF trajectory and to regenerate a reliable MLSPC 
product.  

1. INTRODUCTION 

Inaccurate GNSS measurements in an urban canyon can 
lead to error in the trajectory of Mobile Laser Scanning 
(MLS) system. Julge et al. 2017 reported that the GNSS 
discrepancies can reach up to several decimetres. An 
RMSE of 20 cm however, can be achieved by using fewer 
control points. Kukko 2013 demonstrated that the GNSS 
accuracy can worsen to more than 50 cm during an outage 
of GNSS signals. Consequently, the MLSPC positioning 
quality suffers from the inaccurate trajectory and the 3D 
data becomes unreliable. In an ideal condition, without any 
GNSS signal outage or multipath effect, the state-of-the-
art Mobile Mapping (MM) platforms can achieve 2-3 cm 
accuracy, estimated by Haala et al. 2008, Kaartinen et al. 
2012. However, this is not possible in urban canyons. In 
this situation, the task of trajectory correction is very 
crucial because it turns an inaccurate MLSPC into a 
reliable commercial product. So, commercial software, 
first tries to correct the point cloud by automatic 
registration of multiple passes, similar to the technique 
reported by Levinson et al. 2007, Ding et al. 2007, Zhao 
2011. In this vein, Hunter et al. 2006 and Bornaz et al. 
2003 proposed a consecutive strip adjustment to improve 
the misalignments in the MLS data sets. Similarly, Bosse 
et al. 2009 described a scan-matching method based on 
iterative closest points (ICP) to recover an accurate 
trajectory. However, still during long-term GNSS signal 
outages the final achieved accuracy remains in metres, as 
expressed by Chiang et al. 2008.  However, all of these 
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techniques can only be used for MLS data adjustment to 
increase the relative accuracy, and additionally requires 
data that has multiple scans/passes of the same scene. 
Moreover, these techniques will still require manual 
adjustment to achieve the desired accuracy. Similarly, to 
attain relative accuracy, in commercial MLS data 
acquisition workflow, data overlapping is intentionally 
performed for automatic registration while post-
processing. However, during mobile mapping, it is highly 
desirable to scan an area once and as quickly as possible.   

The second step in practice is to measure the GCPs in the 
target area and then carefully handpick their 
correspondences in the MLSPC. Although some latest 
software provide assistant to automatically detect such 
landmarks, the final decision and effort remains with a 
human operator. The last step adjusts and improves the 
erroneous trajectory based on the established 
correspondences and subsequently regenerates the reliable 
MLSPC. However, manual acquisition and handpicking of 
the GCPs is very labour intensive, costly and error-prone. 
Therefore, an automatic method is desired to replace the 
manual correction, especially to improve the MLS 
platform’s trajectory. This paper describes an automatic 
6DOF trajectory adjustment technique that eventually 
enables any commercial MLSPC processing software to 
regenerate the accurate and improve MLSPC positioning. 
Thereby, turning the entire correction workflow fully 
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automatic. Hence, the total cost and the effort to obtain a 
reliable MLSPC product decreases. 

In the remainder of this paper, Section 2 first describes the 
literature, which aims at MLSPC correction, then 
discusses the literature, which is related to the B-spline 
based trajectory estimation for the MM applications. 
Section 3 describes our method of the B-spline based 
trajectory adjustment using available observations. 
Section 4 provides the results of the experiment over the 
data for three different test cases. For simplicity, we will 
use the following terminology for the remainder of this 
paper; 
 
A2A tie points: 3D point calculated from matching 
multiple airborne images and multiview triangulation.  
A2P tie points: Points in the MLSPC, which correspond to 
the A2A tie points and, hence, establish the link between 
the point cloud and the airborne images. 
Check points: 3D points measured with GNSS and 
identified in the point cloud to check the accuracy of the 
reconstructed trajectory. 
 

2. RELATED LITERATURE 

Recently, Javanmardi et al. 2018 proposed a technique for 
MLS platform localization based on the ‘abstract maps’. 
However, this technique utilizes accurate maps generated 
from an accurate prior point cloud. Moreover, the abstract 
maps are an estimation of the structures in the prior point 
cloud, which can introduce errors. Furthermore, the 
localization accuracy will be always lower than the prior 
point cloud accuracy. In our case, we do not consider that 
a (prior) accurate MLSPC is already available. In a 
previous publication, Javanmardi et al. 2017 have shown 
the correction of the MLSPC by using multiple reference 
data sets, including aerial images. However, their approach 
constrained the registration problem to the only 2DOF, 
which only works in an ideal scenario when the error does 
not occur in remaining coordinates.  
 
For the MLS data correction by improving the position of 
MM platform, Gao et al. 2015  have improved  the  Mobile  
Laser Scanning  (MLS)  data accuracy by its raster image 
registration with UAV’s imagery using  Harris  corner 
keypoint   detection   and  edge-based template matching. 
They have reported the RMS -∆X=8.6 cm  -∆Y=6.3 cm -
∆Z=10.6 cm in the corrected point cloud. However, they 
reported the relative accuracy measure using control points 
and check points on the adjusted data, also they directly 
perform the adjustment to the point cloud and did not 
estimate the accurate trajectory.  Wolcott et al. 2014 
developed an image-based navigation for self-driving 
systems, the mobile mapping camera images are registered 
using prior 3D lidar by maximizing the normalized mutual 
information. This approach achieved an RMS error, 
longitudinal 19.1~45.4 cm, and lateral 14.3~20.5 cm. 
Earlier, Kümmerle et al. 2011 developed a SLAM 
procedure using the MCL approach by considering the 
MLS data as local observation and the aerial image as a 
global reference for every node in the graph. An overall 
accuracy of 20 cm was achieved in the five test MLS data 
sets. 
 
Many researchers have adopted the B-spline 
representation of 6DOF trajectory for mobile mapping 
systems. Among them, for a visual odometry application, 

Patron-Perez et al. 2015 unified the discrete camera poses 
with continuous unsynchronized  IMU observations to 
estimate the continuous camera trajectory. They used a 
rolling shutter camera model, which introduced individual 
time stamp for each pixel, which is similar to MLS 
observations, since each point cloud point is associated 
with different GNSS time. However, they only presented 
results for simulated data sets. 
 
Among one of the main benefits, it is convenient to update 
the B-spline based on the changes in the local control 
points, since each B-spline is nonzero over a certain 
interval and the updated control points only change 
coefficients of related B-splines. For micro aerial vehicles, 
Usenko et al. 2017 updated the local part of the B-spline 
trajectory, when an unmodelled obstacle arrived in the pre-
processed global trajectory. However, the main purpose of 
this study was to show that the developed system could 
accommodate the real world dynamics into the trajectory 
and not the achieved accuracy of the positioning. 
 
Vosselman 2014 designed an indoor laser scanner system 
to estimate the 6DOF B-spline based trajectory using 
SLAM. The developed technique showed that the 
constraint derived from the indoor wall structures (or 
planes) of simulated indoor environment can be used to 
estimate the 6DOF B-spline based trajectory. Likewise, in 
our case, the constraints come from the 3D A2P tie points, 
which are forward intersected from aerial image 
correspondences. 
 
In this paper, we rely on the aerial imagery with accurate 
exterior and interior orientation, which is easily available 
for the MLSPC at hand. Moreover, we believe that the 
highly accurate 2D image correspondences can yield 
highly reliable 3D A2A tie points, which can be used for 
the trajectory adjustment. Moreover, we use the real world 
MLS data for an outdoor environment. 
 

3. TRAJECTORY ADJUSTMENT 

As mentioned in section 1 that the Kalman trajectory is 
affected by erroneous GNSS positioning in urban canyons. 
Fortunately, the measurements from the other sensors are 
not affected. For example, the IMU sensor observations 
provide accurate estimations of the relative transmission 
of the motion. Moreover, the A2P tie points provide the 
constraint that satisfies both local and global positioning 
consistency. It is important to note that the 3D A2A tie 
points are not available consistently; instead their 
availability is dependent on the distribution of the road 
markings. Therefore, it is necessary to utilize the IMU 
observations during the A2A tie points’ unavailability. 
Furthermore, we apply the pose integrity check by 
introducing soft constraints on the heading and pitch of the 
MLS platform, which essentially reduces the problem to 
the estimation of a 4DOF trajectory. We use only above-
mentioned observations because they can be obtained 
without any manual intervention. 
  
Towards the parameterization of the observation 
equations, we start with the observation of the 3D point 
cloud point. The laser scanner observes the point 𝑋𝑋𝐶𝐶 in 
local or car coordinate system, which can be transformed 
to   𝑋𝑋𝑊𝑊  in world coordinate system by Eq. 1, 
 

𝑋𝑋𝑊𝑊 = 𝑅𝑅𝐶𝐶𝑊𝑊(𝑡𝑡) 𝑋𝑋𝐶𝐶 + 𝑇𝑇𝐶𝐶𝑊𝑊(𝑡𝑡) (𝟏𝟏) 
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These coordinate systems are related to each other by a 
rotation 𝑅𝑅𝐶𝐶𝑊𝑊(𝑡𝑡) and translation 𝑇𝑇𝐶𝐶𝑊𝑊(𝑡𝑡) that vary over 
time 𝑡𝑡. The translation describes the location of the car in 
the world coordinate system and the rotation the attitude 
of the car in the world coordinate system. The rotation 
matrix is described by three angles 𝜔𝜔(𝑡𝑡),𝜑𝜑(𝑡𝑡), 𝜅𝜅(𝑡𝑡), which 
are modelled by B-splines. For example, the roll angle 
𝜔𝜔(𝑡𝑡) can be modelled by B-spline like in Eq. 2. 
 

𝜔𝜔(𝑡𝑡) = �𝛼𝛼𝜔𝜔,𝑖𝑖  𝐵𝐵𝑖𝑖(𝑡𝑡)
𝑖𝑖

(𝟐𝟐) 

 
The translation vector is described by translations along 
the three axes, 𝑇𝑇𝑋𝑋,𝑇𝑇𝑌𝑌,  𝑇𝑇𝑍𝑍, which are also modelled by 
splines. Following we describe each observation 
individually and its adjustment to B-splines. 
 
3.1 A2P tie point observation 

In our previous research work, Hussnain et al. 2016 
describe the registration between the MLSPC and the 
aerial images. The same technique can be used for aerial 
to aerial image registration.In this case, the 3D A2A tie 
points (𝑋𝑋𝐴𝐴𝐴𝐴𝑊𝑊) are reckoned by the multiview triangulation 
using aerial to aerial correspondences. The same points 
A2P (𝑋𝑋𝑃𝑃𝑃𝑃𝑊𝑊 ) are identified in the MLS point cloud by aerial 
to rasterized MLSPC image registration. The coordinates 
of these observations are denoted 𝑋𝑋𝐴𝐴𝐴𝐴𝑊𝑊 and 𝑋𝑋𝑃𝑃𝑃𝑃𝑊𝑊  in the world 
coordinate system where the lower indices 𝐴𝐴𝐴𝐴 and 𝑃𝑃𝑃𝑃 
denote the source of the observation, i.e. aerial images and 
point cloud, respectively. 
 
The original GNSS and IMU data have been processed by 
a Kalman filter to obtain an estimate of the rotation and 
translation between the car and world coordinate system. 
They are denoted  𝑅𝑅𝐶𝐶,𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾

𝑊𝑊 (𝑡𝑡)  and 𝑇𝑇𝐶𝐶,𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾
𝑊𝑊 (𝑡𝑡) . The 

results of the Kalman filtering are used to obtain the 
approximate spline coefficients of the six pose parameters 
over time. 
 
The Kalman filter results have been used to calculate the 
original MLSPC. Because the GNSS data was unreliable, 
we want to re-estimate the rotation 𝑅𝑅𝐶𝐶𝑊𝑊(𝑡𝑡) and translation 
𝑇𝑇𝐶𝐶𝑊𝑊(𝑡𝑡) based on observed A2A tie points and the original 
IMU observations. 
We use equation Eq. 3, 
 

𝑋𝑋𝑃𝑃𝑃𝑃𝐶𝐶 = 𝑅𝑅𝐶𝐶,𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾
𝑊𝑊𝑇𝑇 (𝑡𝑡) �𝑋𝑋𝑃𝑃𝑃𝑃𝑊𝑊 − 𝑇𝑇𝐶𝐶,𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾

𝑊𝑊 (𝑡𝑡)� (𝟑𝟑) 
 
to retrieve the original point cloud coordinates in the car 
coordinate system. The relationship between the A2A tie 
points from the aerial images in the world coordinate 
system and the same A2P tie points from the point cloud 
in the car coordinate system, is described by Eq. 4a, 
 

𝑋𝑋𝐴𝐴𝐴𝐴𝑊𝑊 = 𝑅𝑅𝐶𝐶𝑊𝑊(𝑡𝑡) 𝑋𝑋𝑃𝑃𝑃𝑃𝐶𝐶 + 𝑇𝑇𝐶𝐶𝑊𝑊(𝑡𝑡) (𝟒𝟒𝟒𝟒) 
 
This equation is linearized. The upper index 0 denotes an 
approximate value. In the first iteration of an iterative B-
spline adjustment procedure, the output of the Kalman 
filter is used for the approximate rotation and translation. 
The time dependency (𝑡𝑡) is omitted below to shorten the 
expression. 
 

𝑋𝑋𝐴𝐴𝐴𝐴
𝑊𝑊 − 𝑅𝑅𝐶𝐶

𝑊𝑊0
 𝑋𝑋𝑃𝑃𝑃𝑃
𝐶𝐶 − 𝑇𝑇𝐶𝐶

𝑊𝑊0
=

⎝

⎜
⎜
⎜
⎛
�Δ𝛼𝛼𝑇𝑇𝑋𝑋,𝑖𝑖 𝐵𝐵𝑖𝑖
𝑖𝑖

�Δ𝛼𝛼𝑇𝑇𝑌𝑌,𝑖𝑖 𝐵𝐵𝑖𝑖
𝑖𝑖

�Δ𝛼𝛼𝑇𝑇𝑍𝑍,𝑖𝑖 𝐵𝐵𝑖𝑖
𝑖𝑖 ⎠

⎟
⎟
⎟
⎞

+  
𝜕𝜕𝑅𝑅𝐶𝐶

𝑊𝑊

𝜕𝜕𝜕𝜕
𝑋𝑋𝑃𝑃𝑃𝑃
𝐶𝐶 �Δ𝛼𝛼𝜔𝜔,𝑖𝑖 𝐵𝐵𝑖𝑖

𝑖𝑖

 

+   
𝜕𝜕𝑅𝑅𝐶𝐶

𝑊𝑊

𝜕𝜕𝜕𝜕
𝑋𝑋𝑃𝑃𝑃𝑃
𝐶𝐶 �Δ𝛼𝛼𝜑𝜑,𝑖𝑖 𝐵𝐵𝑖𝑖

𝑖𝑖

+
𝜕𝜕𝑅𝑅𝐶𝐶

𝑊𝑊

𝜕𝜕𝜕𝜕
𝑋𝑋𝑃𝑃𝑃𝑃
𝐶𝐶 �Δ𝛼𝛼𝜅𝜅,𝑖𝑖 𝐵𝐵𝑖𝑖

𝑖𝑖

(𝟒𝟒𝟒𝟒)

 

 
In Eq. 4b, on the left hand side is the observed misclosure 
between the 3D point obtained from the aerial images and 
the 3D point obtained in the point cloud expressed in the 
world coordinate system. On the right hand side are the 
increments to the spline coefficients multiplied with the 
elements of the Jacobian. 
 
3.2 IMU accelerations observation 

The accelerations in the sensor coordinate system are 
denoted 𝑋̈𝑋𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆 . After rotation from sensor to car (𝑅𝑅𝑆𝑆𝐶𝐶) and 
car to the world (𝑅𝑅𝐶𝐶𝑊𝑊) coordinate system, these 
accelerations should correspond to the second derivatives 
of the car’s location in the world coordinate system, i.e. 
𝑇̈𝑇𝐶𝐶𝑊𝑊. Hence,  

𝑇̈𝑇𝑆𝑆𝑊𝑊 = 𝑅𝑅𝐶𝐶𝑊𝑊𝑅𝑅𝑆𝑆𝐶𝐶  𝑋̈𝑋𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆 (𝟓𝟓𝟓𝟓) 
 
The rotation 𝑅𝑅𝑆𝑆𝐶𝐶  is calibrated and remains constant during 
the MLS operation. Therefore, it is not required to estimate 
the angles of this rotation. 
 
Since, the acceleration in X-axis is the second derivative 
of the car translation 𝑇𝑇𝑋𝑋(𝑡𝑡), we take the second derivate on 
the both side of the B-spline polynomial function, 
 

𝑑𝑑2

𝑑𝑑𝑑𝑑2
[𝑇𝑇𝑋𝑋(𝑡𝑡)] =

𝑑𝑑2

𝑑𝑑𝑑𝑑2 ��𝛼𝛼𝑇𝑇𝑋𝑋,𝑖𝑖𝐵𝐵𝑖𝑖(𝑡𝑡)
𝑖𝑖

� (𝟓𝟓𝟓𝟓) 

or 
𝑇̈𝑇𝑋𝑋(𝑡𝑡) = �𝛼𝛼𝑇𝑇𝑋𝑋,𝑖𝑖  𝐵̈𝐵𝑖𝑖(𝑡𝑡)

𝑖𝑖

(𝟓𝟓𝟓𝟓) 

 
Note that the B-spline coefficients 𝛼𝛼𝑇𝑇𝑋𝑋,𝑖𝑖 to be estimated 
remain the same. Only the B-splines functions themselves 
need to be differentiated. Moreover, the differentiation 
only applies to the B-splines of the translation and not to 
the rotation matrices in 𝑅𝑅𝐶𝐶𝑊𝑊𝑅𝑅𝑆𝑆𝐶𝐶. The linearized equation 
becomes: 
 

𝑇̈𝑇𝐶𝐶𝑊𝑊
0 − 𝑅𝑅𝐶𝐶𝑊𝑊𝑅𝑅𝑆𝑆𝐶𝐶 𝑋̈𝑋𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆 =

⎝

⎜
⎜
⎜
⎛
�Δ𝛼𝛼𝑇𝑇𝑋𝑋,𝑖𝑖  𝐵̈𝐵𝑖𝑖
𝑖𝑖

�Δ𝛼𝛼𝑇𝑇𝑌𝑌,𝑖𝑖  𝐵̈𝐵𝑖𝑖
𝑖𝑖

�Δ𝛼𝛼𝑇𝑇𝑍𝑍,𝑖𝑖  𝐵̈𝐵𝑖𝑖
𝑖𝑖 ⎠

⎟
⎟
⎟
⎞

−  
𝜕𝜕𝑅𝑅𝐶𝐶𝑊𝑊

𝜕𝜕𝜕𝜕
𝑅𝑅𝑆𝑆𝐶𝐶𝑋̈𝑋𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆 �Δ𝛼𝛼𝜔𝜔,𝑖𝑖  𝐵𝐵𝑖𝑖

𝑖𝑖

−  
𝜕𝜕𝑅𝑅𝐶𝐶𝑊𝑊

𝜕𝜕𝜕𝜕
𝑅𝑅𝑆𝑆𝐶𝐶𝑋̈𝑋𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆 �Δ𝛼𝛼𝜑𝜑,𝑖𝑖  𝐵𝐵𝑖𝑖

𝑖𝑖

−
𝜕𝜕𝑅𝑅𝐶𝐶𝑊𝑊

𝜕𝜕𝜅𝜅
𝑅𝑅𝑆𝑆𝐶𝐶𝑋̈𝑋𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆 �Δ𝛼𝛼𝜅𝜅,𝑖𝑖  𝐵𝐵𝑖𝑖

𝑖𝑖

(𝟔𝟔)
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3.3 IMU angular velocities observation 

The IMU also observed angular velocities in the sensor 
frame. These are denoted 𝜔̇𝜔𝐼𝐼𝐼𝐼𝐼𝐼

𝑆𝑆 , 𝜑̇𝜑𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆 , 𝜅̇𝜅𝐼𝐼𝐼𝐼𝐼𝐼𝑆𝑆 . The axes 
around which these angular velocities are observed are the 
axes of the sensor frame. What we need are the partial 
derivatives of the Euler angles used to rotate between the 
world and the sensor coordinate systems, i.e. 𝜔̇𝜔, 𝜑̇𝜑, 𝜅̇𝜅. To 
determine the relationship to the observed angular 
velocities, we first need to define exactly the order and 
direction of rotation. Thus, we define the rotation 𝑅𝑅𝐶𝐶𝑊𝑊 , 
which is the rotation from the car coordinate system to the 
world coordinate system as in Eq. 7a, 
 

𝑅𝑅𝐶𝐶𝑊𝑊 = 𝑅𝑅3(𝜅𝜅)𝑅𝑅2(𝜑𝜑)𝑅𝑅1(𝜔𝜔) (𝟕𝟕𝟕𝟕) 
 
Hence, the rotation from the world coordinate system to 
the car coordinate system is 
 

𝑅𝑅𝑊𝑊𝐶𝐶 = 𝑅𝑅1(−𝜔𝜔)𝑅𝑅2(−𝜑𝜑)𝑅𝑅3(−𝜅𝜅) (𝟕𝟕𝟕𝟕) 
 
In this direction, we start with the heading of the car (−𝜅𝜅), 
then the pitch (−𝜑𝜑), and finally the roll (−𝜔𝜔). Which can 
be also written as the transpose or inverse of the individual 
rotation matrices, 
 

𝑅𝑅𝑊𝑊𝐶𝐶 = 𝑅𝑅1(𝜔𝜔)𝑇𝑇𝑅𝑅2(𝜑𝜑)𝑇𝑇𝑅𝑅3(𝜅𝜅)𝑇𝑇 (𝟕𝟕𝟕𝟕) 
 
Once the world coordinate system is aligned with the car 
coordinate system, we apply the rotation 𝑅𝑅𝐶𝐶𝑆𝑆 from car to 
sensor coordinate system. The overall rotation from the 
world coordinate system to sensor coordinate system is; 
 

𝑅𝑅𝑆𝑆𝐶𝐶
𝑇𝑇𝑅𝑅𝑊𝑊𝐶𝐶 (𝟕𝟕𝟕𝟕) 

 
As 𝜔𝜔 is the first rotation applied when rotating from the 
car to the world coordinate system, it holds that the roll 
rotation of the car will only be sensed as a rotation velocity 
around the car’s X-axis. However, the measured angular 
velocity 𝜑̇𝜑𝐼𝐼𝐼𝐼𝐼𝐼𝐶𝐶  around the Y-axis does not correspond to 
the first derivative of 𝜑𝜑 because the Y-axis has been 
rotated by −𝜔𝜔 around the X-axis before 𝜑̇𝜑𝐼𝐼𝐼𝐼𝐼𝐼𝐶𝐶  is measured 
in the car coordinate system. Hence, the derivative of 𝜑𝜑 
should be rotated to the car coordinate system by 𝑅𝑅1(𝜔𝜔)𝑇𝑇. 
Similarly, the derivative of 𝜅𝜅 needs to be rotated by −𝜑𝜑 
around the Y-axis and −𝜔𝜔 around the X-axis to get an 
angular velocity vector in the car coordinate system. 
Hence, all rotated angular velocity vectors together 
determine the angular rotation velocities that are measured 
by the IMU in the car coordinate system. 
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Or 
 

�
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𝑆𝑆
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Let us denote this by 
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 𝑆𝑆𝑊𝑊𝐶𝐶 = �
1 0 −sin𝜑𝜑
0 cos𝜔𝜔 sin𝜔𝜔 cos𝜑𝜑
0 − sin𝜔𝜔 cos𝜔𝜔 cos𝜑𝜑
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We now use the first derivatives of the splines describing 
the angles, e.g.: 
 

𝜔̇𝜔(𝑡𝑡) = �𝛼𝛼𝜔𝜔,𝑖𝑖  𝐵̇𝐵𝑖𝑖(𝑡𝑡)
𝑖𝑖

(𝟖𝟖𝟖𝟖) 

 
Which leads to the linearized Eq. 8e, 
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With 
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𝜕𝜕𝜕𝜕
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0 0 −sin𝜔𝜔 sin𝜑𝜑
0 0 −cos𝜔𝜔 sin𝜑𝜑
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Note that the above equation contains no part for Δ𝛼𝛼𝜅𝜅,𝑖𝑖  𝐵𝐵𝑖𝑖 
because 𝜅𝜅 is not used in 𝑆𝑆𝑊𝑊𝐶𝐶 . We can also describe the 
observation in more general form as Eq. 9,  
 

ω̇𝐼𝐼𝐼𝐼𝐼𝐼
𝑆𝑆 (𝑡𝑡) =   𝑅𝑅𝐶𝐶𝑆𝑆(𝑡𝑡)  𝑆𝑆𝑊𝑊𝐶𝐶 (𝑡𝑡)  ω̇𝐶𝐶

𝑊𝑊(𝑡𝑡) (𝟗𝟗) 
 
Here ω̇𝐶𝐶

𝑊𝑊 denote angular velocities of car in world 
coordinate system, ω̇𝐼𝐼𝐼𝐼𝐼𝐼

𝑆𝑆  denote agular velocities in IMU 
sensor coordinate system and 𝑆𝑆𝑊𝑊𝐶𝐶  denote the 
transformation of the angular velocities from the world to 
car coordinate system. 
 
3.4 Soft-constraints on 𝜿𝜿 (yaw) and 𝝋𝝋 (pitch) angles 

Since the heading 𝜅𝜅 and pitch 𝜑𝜑 can also be inferred from 
the trajectory described by 𝑇𝑇𝐶𝐶𝑊𝑊(𝑡𝑡), we can add two 
constraints to ensure that the rotations are consistent with 
the trajectory. 
The heading can be inferred from the first derivatives of 
the X- and Y- coordinates of the car trajectory. The last 
rotation from the world coordinate system to the car 
coordinate system was defined –𝜅𝜅. Hence, 
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𝑇̇𝑇𝑋𝑋  
𝑇̇𝑇𝑌𝑌  
� − 𝜅𝜅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 (𝟏𝟏𝟏𝟏𝟏𝟏) 
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Where 𝜅𝜅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  is a constant offset in the 𝜅𝜅 (kappa) angle 
measurements by the IMU. This offset is required, as the 
axes of the car coordinate system may not be aligned to the 
axes of the IMU coordinate system. Similarly, this offset 
appears in the 𝜑𝜑 (pitch) angle measurement.  
For the heading of the car, this is linearized to Eq. 10b 
 

−𝜅𝜅0 − tan−1 �
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+ Δ𝜅𝜅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 (𝟏𝟏𝟏𝟏𝟏𝟏)

 

 
Since the parameters are estimated in an iterative process 
as described in section 3.6. The approximated value of the 
kappa offset is  𝜅𝜅𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜0 = 0 in the first iteration. 
 
The pitch can be inferred from Eq. 11a 
 

−𝜑𝜑 = tan−1

⎝

⎜
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− 𝜑𝜑𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 (𝟏𝟏𝟏𝟏𝟏𝟏) 

 
Where 𝜑𝜑𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  is a constant offset in the 𝜑𝜑 (pitch) angle 
measurements. This is linearized to Eq. 11b 
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                                  +Δ𝜑𝜑𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜                                                  (𝟏𝟏𝟏𝟏𝟏𝟏)

 

 
3.5 Fixed pose observation 

In a normal situation, the mobile mapping car starts from 
a position with reliable GNSS signals reception. Similarly, 
we also assume that a reliable start and end pose are 
known. It is not essential to our method, since we already 
have A2P tie points that are globally consistent. However, 
if no road marks exist at the exact start or end of the 
trajectory, then the IMU observations alone produce a 
small initial part of the trajectory, which may lead to the 
residuals at the start and end parts of the trajectory. 
Therefore, we fix the starting and end pose of the trajectory 
by adding the following two observations Eqs. 12b and 
13b. When the GNSS signal reception is reliable, we can 
use the reliable pose from the Kalman filtering. Thus, both 
the position being estimated and position from the Kalman 
filtering are equal only at the start or end of the trajectory. 
 

𝑇𝑇𝐶𝐶,𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾
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This linearizes to, 
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Similarly, we can consider that the pose angles are also 
equivalent. 
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Which linearizes to, 
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3.6 B-splines adjustment 

We represent pose parameters with 6 individual B-spline 
functions over time. We have performed experiments and 
calculated that the B-splines of 4th order are sufficient to 
represent the 6DOF trajectory. As B-splines are 
polynomial functions and are based on coefficients, 
updating the B-splines involves estimating the changes to 
the coefficients. For example estimating Δ𝛼𝛼𝜔𝜔,𝑖𝑖  for the roll 
angle. The linearized observations equations represent 
these changes to the coefficients, so, the remaining task is 
to estimate the delta coefficient. We add each observation 
to a normal matrix and solve the system to obtain the 
required increments. The increments are then added to the 
B-spline coefficients to perform the adjustments. 
 
Moreover, the normal matrix is populated with 
observations and solved in an iterative process. The 
adjustments to the coefficients are performed after every 
iteration. The iterative process converges when new 
observations yield residuals very close to the previous 
observations, which means that the trajectory cannot be 
improved further. It requires 10-20 iterations to converge 
to the final solution in the experiments. 
 

4. EXPERIMENTS AND RESULTS 

This section presents the adjustment results based on the 
observations described in section 3. For the input, we use 
MLS data from the Rotterdam city centre. The trajectory 
of this MLS data along with the start and end position is 
plotted in Figure 1. An overview of the basic 
characteristics of the trajectory has been given in Table 1. 
For analysis of the adjustments, check points are also 
acquired in the test area, which are plotted in Figure 1. All 
A2A and A2P tie points are also plotted in Figure 1. 
 
We have already obtained A2A tie points using the image 
registration technique described in Hussnain et al. 2016 
and multiview triangulation. Since it is not possible to plot 
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and properly visualize all A2A and A2P tie points together, 
only tie points from an arbitrarily selected sub-area are 
plotted in Figure 2. 

We perform residual analysis on three different estimates 
of the trajectories. Firstly, we evaluate the trajectory 
produced by Kalman filtering. The RMSE in all three axes 
is presented in Table 1. The RMSE, min and max residual 
results are in metres. However, the targeted accuracy 
should be in the decimetre range. It is clear that the quality 
of the Kalman filtered trajectory is not sufficient. 

Secondly, we apply all observations except the A2P tie 
point observations. In other words, this trajectory is 
produced from the IMU observations soft-constraints and 
start/end fixed pose observation. The result in Table 1 
shows the achieved accuracy for the whole trajectory. For 
a long trajectory, drift in the sensor measurements leads to 
an overall large error in the results. Therefore, the IMU 
measurements are reliable for the small distances, while 
accumulate drift errors for long-term positioning. The min 
and max error approached metre level accuracy in some 
places. Obviously, the residuals in this trajectory are too 
large. This suggests that the A2P tie points are necessary 
to improve the IMU-based trajectory further. Which lead 
us to our final test case. 

Lastly, we assess the quality of the trajectory with the 
proposed method by applying the IMU, A2P tie points, 
soft-constraints, and start/end fixed pose observations. We 
see a significant improvement in the accuracy when 
compared to both previous cases. Considering the residual 
errors, we conclude that the trajectory has achieved the 
desired accuracy near decimetre level. The trajectory 
before and after the adjustment is plotted in Figure 2. The 
min and max residuals in Z coordinate still have a 
significant error. This error is caused by (the error already 
existed in) the A2P tie points.  Since the aerial imagery is 
acquired at the height of around 4500 metres, this leads to 
a poor intersection geometry for multiview triangulation. 
Moreover, the whole area is only covered by only 15 aerial 
images that provide an inadequate image overlap. 

Figure 1: Kalman filtered trajectory (red curve), check 
points (as green asterisk) A2A tie points (blue dots) and 
A2P tie points (red dots). Note that there are mostly two 

check points at a single location. 

Figure 2: Example of 3D A2A tie points (blue dots) and 
A2P tie points (red dots) along with the Kalman filtering 
result (red curve) and trajectory after the adjustment with 

our method (blue curve).  

IMU sensor KVH® CG-5100 
IMU or Kalman #
observations / frequency 335565 / 100 Hz

Total acquisition time 55.9273 minutes 
Trajectory length 13.6393 km 
Total # check points 19 

Data coordinate system Amersfoort / RD New,  
EPSG:28992 

Table 1: Trajectory’s characteristics. 

Residual 
meas. with 
check points 

Kalman 
filtering 
results 

IMU obs. + 
soft const.+ 
Fixed 
begin/end 
pose 

IMU 
obs.+ 
A2P+ soft 
const.+ 
Fixed 
begin/end 
pose 

RMSE X (m) 0.17 15.57 0.09 
RMSE Y (m) 0.30 27.99 0.14 
RMSE Z (m) 0.47 12.16 0.14 
X min (m) -1.28 -35.01 -0.20 
Y min (m) -0.94 -18.93 -0.10 
Z min (m) -0.58 -10.77 -0.28 
X max (m) 0.96 32.49 0.10 
Y max (m) 1.13 46.42 0.22 
Z max (m) 0.59 30.11 0.31 
Table 2: Comparison of residuals from three different 

trajectories calculated with check points. 

5. CONCLUSIONS

This paper describes an automatic method of 6DOF 
trajectory adjustment for an MLS platform. We described 
multiple observations, which can be used collectively to 
adjust the 6DOF trajectory. Moreover, all observations can 
be obtained without any manual interventions.  

The adjusted trajectory has achieved the absolute accuracy 
of RMSE X=9 cm, Y=14 cm and Z=14 cm. In the case of 
the Y-axis, it is little above the decimetre accuracy, which 
is the targeted accuracy. Moreover, Z max and min 
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residuals are also higher than the expected accuracy. Based 
on our previous experience, we believe that the results can 
be improved further by improving the quality of the A2P 
tie points. 

Highly accurate check points are acquired at places with 
no GNSS signal problems, therefore the results involving 
Kalman filtering cannot fully represent the error in GNSS 
denied areas. Thus, the real error in the Kalman trajectory 
could well be larger than as provided in the results. The 2D 
registration technique is based on road markings; hence, if 
no road markings are present, only IMU observations can 
be used. A small experiment showed that trajectory for up 
to 100 m can well be reconstructed with IMU observations 
only. 

In the future, we will further improve the quality of the 
A2P tie points, which can lead to an improvement of the 
adjustment results. We will also involve oblique imagery 
to achieve better intersection geometry for multiview 
triangulation. We will also perform the evaluation with 
data sets acquired from the different instruments to verify 
the reliability of the developed method. 

ACKNOWLEDGEMENTS 

This research project (13589) is part of the Open 
Technology Programme of TTW (Toegepaste en 
Technische Wetenschappen) which is financed by the 
Netherlands Organisation for Scientific Research (NWO). 

REFERENCES 

Bornaz, L., A. Lingua and F. Rinaudo 2003. Multiple 
scanner registration in LIDAR close-range applications. 
International archives of photogrammetry remote sensing 
and spatial information sciences 34(5/W12): 72-77. 

Bosse, M. and R. Zlot 2009. Continuous 3D scan-matching 
with a spinning 2D laser. Robotics and Automation, 2009. 
ICRA'09. IEEE International Conference on, IEEE. 

Chiang, K.-W. and Y.-W. Huang 2008. An intelligent 
navigator for seamless INS/GPS integrated land vehicle 
navigation applications. Applied Soft Computing 8(1): 
722-733. 

Ding, W., J. Wang, C. Rizos and D. Kinlyside 2007. 
Improving adaptive Kalman estimation in GPS/INS 
integration. Journal of Navigation 60(03): 517-529. 

Gao, Y., X. Huang, F. Zhang, Z. Fu and C. Yang 2015. 
Automatic Geo-referencing Mobile Laser Scanning Data 
to UAV images. The International Archives of 
Photogrammetry, Remote Sensing and Spatial Information 
Sciences 40(1): 41. 

Haala, N., M. Peter, J. Kremer and G. Hunter 2008. Mobile 
LiDAR mapping for 3D point cloud collection in urban 
areas—A performance test. The international archives of 
the photogrammetry, remote sensing and spatial 
information sciences 37: 1119-1127. 

Hunter, G., C. Cox and J. Kremer 2006. Development of a 
commercial laser scanning mobile mapping system–

StreetMapper. Int. Arch. Photogramm. Remote Sens. Spat. 
Inf. Sci 36. 

Hussnain, Z., S. Oude Elberink and G. Vosselman 2016. 
Automatic feature detection, description and matching 
from mobile laser scanning data and aerial imagery. Int. 
Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XLI-
B1: 609-616. 

Javanmardi, E., Y. Gu, M. Javanmardi and S. Kamijo 
2018. Autonomous vehicle self-localization based on 
abstract map and multi-channel LiDAR in urban area. 
IATSS Research. 

Javanmardi, M., E. Javanmardi, Y. Gu and S. Kamijo 
2017. Towards High-Definition 3D Urban Mapping: Road 
Feature-Based Registration of Mobile Mapping Systems 
and Aerial Imagery. Remote Sensing 9(10): 975. 

Julge, K., T. Vajakas and A. Ellmann 2017. Performance 
analysis of a compact and low-cost mapping-grade mobile 
laser scanning system. Journal of Applied Remote Sensing 
11(4): 044003. 

Kaartinen, H., J. Hyyppä, A. Kukko, A. Jaakkola and H. 
Hyyppä 2012. Benchmarking the performance of mobile 
laser scanning systems using a permanent test field. 
Sensors 12(9): 12814-12835. 

Kukko, A. 2013. Mobile Laser Scanning–System 
development, performance and applications, Finnish 
Geodetic Institute. 

Kümmerle, R., B. Steder, C. Dornhege, A. Kleiner, G. 
Grisetti and W. Burgard 2011. Large scale graph-based 
SLAM using aerial images as prior information. 
Autonomous Robots 30(1): 25-39. 

Levinson, J., M. Montemerlo and S. Thrun 2007. Map-
Based Precision Vehicle Localization in Urban 
Environments. Robotics: Science and Systems, Citeseer. 

Patron-Perez, A., S. Lovegrove and G. Sibley 2015. A 
spline-based trajectory representation for sensor fusion 
and rolling shutter cameras. International Journal of 
Computer Vision 113(3): 208-219. 

Usenko, V., L. von Stumberg, A. Pangercic and D. 
Cremers 2017. Real-Time Trajectory Replanning for 
MAVs using Uniform B-splines and 3D Circular Buffer. 
arXiv preprint arXiv:1703.01416. 

Vosselman, G. 2014. Design of an indoor mapping system 
using three 2D laser scanners and 6 DOF SLAM. ISPRS 
Annals of the Photogrammetry, Remote Sensing and 
Spatial Information Sciences 2(3): 173. 

Wolcott, R. W. and R. M. Eustice 2014. Visual 
localization within lidar maps for automated urban driving. 
Intelligent Robots and Systems (IROS 2014), 2014 
IEEE/RSJ International Conference on, IEEE. 

Zhao, Y. 2011. GPS/IMU integrated system for land 
vehicle navigation based on MEMS, KTH Royal Institute 
of Technology. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-1, 2018 
ISPRS TC I Mid-term Symposium “Innovative Sensing – From Sensors to Methods and Applications”, 10–12 October 2018, Karlsruhe, Germany

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-1-203-2018 | © Authors 2018. CC BY 4.0 License.

 
209


	1. Introduction
	2. Related LITERATURE
	3. trajectory adjustment
	3.1 A2P tie point observation
	3.2 IMU accelerations observation
	3.3 IMU angular velocities observation
	3.4 Soft-constraints on 𝜿 (yaw) and 𝝋 (pitch) angles
	3.5 Fixed pose observation
	3.6 B-splines adjustment

	4. Experiments and results
	5. Conclusions



