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ABSTRACT:

As more cities are starting to experience the urban heat islands effect, knowledge about the energy emitted from building roofs is of
primary importance. Since this energy depends both on roof orientations and materials, we tackled both issues by analysing sensor
data from multispectral, thermal infrared, high-resolution RGB, and airborne laser datasets (each with different spatial resolutions) of
a council in Perth, Australia. To localise the roofs, we acquired building outlines that had to be updated using the normalised digital
surface model, the NDVI and the planarity. Then, we computed a semantic 3D model of the study area, with roof detail analysis being
a particular focus. The main objective of this study, however, was to classify three commonly used roofing materials: Cement tiles,
Colorbond and Zincalume by combining the multispectral and thermal infrared image bands while the high-resolution RGB dataset
was used to provide additional information about the roof texture. Three types of image segmentation approaches were evaluated to
assess any differences while performing the material classification; pixel-wise, superpixel-wise and building-wise image segmentation.
Due to the limited amount of labelled data, we extended the dataset by labelling data ourselves and merged Colorbond and Zincalume
into one separate class. The supervised classifier Random Forest was applied to all reasonable configurations of segmentation kinds,
numbers of classes, and finally, keeping track of the added value of principal component analysis.

1. INTRODUCTION

The land use coverage in cities affects the quality of living and
as cities grow, the amount of vegetation is often reduced to make
space for buildings. Due to the decreased amount of vegetation,
areas within cities that have an increased temperature compared
to their surrounding rural areas, so called urban heat islands (Oke,
1982), are on the rise in major cities. Urban heat islands can
appear due to the decline of vegetation in urban areas (Weng et
al., 2004; Chen et al., 2006) and as these areas are being heated up
during the day, the natural cooling system from the surrounding
vegetation is reduce or removed during the night. As the global
temperature is increasing, such areas rub danger to be even more
vulnerable in the future.

Knowledge about materials found on buildings is valuable infor-
mation for municipalities and authorities when dealing with ur-
ban planning. Such information is crucial for city models when a
high level of detail is needed, but also for estimates of the anthro-
pocentric inventory and as input to models of the built environ-
ment. Information about building materials is also of interest as
more cities are trying to reduce the building energy consumption.
Additionally, by knowing which roofing materials that are present
in areas located within urban heat island, municipalities and au-
thorities can create strategies to counter the effect. This kind of
information have a spatial aspect and are therefore often based on
remote sensing datasets. Combining data from multiple sensors
can provide with further information for urban studies (Dimmeler
et al., 2013; Kumar et al., 2015).

The City of Melville, a local council located in Perth, Australia,
∗Corresponding author

disposes of multi-sensor aerial data, such as multispectral im-
agery, a thermal infrared imagery and a Light Detection and Rang-
ing (LiDAR) point cloud, allowing to perform studies closely re-
lated to the urban heat island effect and urban vegetation. Stud-
ies they wanted to perform included determining the correlation
between heat and the land usage, predicting future temperature
changes using time series, analysing the shading and cooling prop-
erties of both native and exotic tree species, and localising com-
monly used roofing materials (Council of City of Meville, 2017).
This study is closely related to the aforementioned topic and will
be presented in this paper.

Virtual simulations enjoy increasing popularity since they repre-
sent a cheap way for predicting the effects of development and
change for a scene of interest. For the study presented in this
paper, simulation would mean user- and situation-friendly repre-
sentation of knowledge about geometry and material of building
roofs. This knowledge can be derived from the sensor data and
can help to estimate the locations which in the future may face
heating-related challenges due to non-favourable inclination an-
gles and materials of roofs, positions of trees, etc. Therefore,
conducting this study can help the council to avoid the undesir-
able scenario of urban heat islands and help mitigate their current
effects.

In short, this study aims to classify commonly used roofing ma-
terials in the council of the City of Melville using three types
of aerial acquired datasets and to create visually appealing, se-
mantic and three-dimensional model representation of the study
area. Additionally, this paper studies different segmentation ap-
proaches to evaluate the effect those bring to the classification.
The paper is structured as followed; we present our dataset in
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Section 2, that follows by the proposed method in Section 3 con-
sisting of pre-processing, 3D reconstruction, segmentation, tex-
ture analysis and finally classification. Lastly, the results are de-
scribed in Section 4, while the final remarks and suggestions for
future work are provided in Section 5.

2. DATASETS

To conduct the study, we received three datasets from the City
of Melville that had been acquired during a 5-day data campaign
in February 2016 and consisted of a multispectral and a thermal
infrared imagery in addition to a LiDAR point cloud. The City
of Melville also provided us with building outlines and labelled
data. Additionally, a high-resolution RGB imagery was acquired.
What follows is a detailed description of each utilised dataset.

Multispectral The multispectral imagery was acquired from an
unmanned aerial vehicle system using the sensor Micasense Red-
edge (MicaSense, 2017). This sensor has a global shutter and a
field of view of 47.2 ◦. Furthermore, it has five narrow bands;
blue, green, red, red-edge and near-infrared within the spectral
range of 400 - 900 nm. The achieved Ground Sample Distance
(GSD) during the campaign was 0.41 m.

Thermal infared The thermal infrared imagery was acquired
from an airborne system using the sensor FLIR A615 (FLIR, 2018)
thermal. The sensor has an uncooled microbolometer with a spec-
tral range of 7.5 -13.5µm. The thermal infrared imagery was ac-
quired with a GSD of 0.6 m during the night because of the desire
to reduce the impact from the thermal radiance caused by the sun.

LiDAR The LiDAR point cloud was acquired from an airborne
system using the scanner Riegl VZ - 1000 (Riegl, 2017). The point
cloud was acquired with approximately 2 - 4 points / m2 and with
an accuracy of 0.1 m.

High-resolution RGB A high-resolution RGB aerial imagery
dataset that was acquired May of 2016 with a GSD of 0.1 m was
provided by the company Spookfish (Spookfish, 2018).

Building outlines A shapefile containing the outlines for the
buildings in our study scene was acquired from the City of Melville,
dated from 2012.

Labeled training data We received labelled training data from
the City of Melville for 10 buildings of three commonly used
roofing materials in Western Australia; Cement tiles, Colorbond
and Zincalume. Colorbond and Zincalume are both metallic steel
roofs consisting of a mixture of mainly aluminum and zinc, where-
as Colorbond is prepainted steel and Zincalume is coated steel.
All three roofing materials come in different colours, that is, they
can all appear in different colour coatings.

3. PROPOSED METHOD

For the data stemming from different sources, as in our case, pre-
processing is usually performed to correct systematic errors and
reference all data into a common coordinate system. After a de-
scription of the most important pre-processing modules in sub-
section 3.1, we will refer in subsection 3.2 to the 3D reconstruc-
tion. In subsections 3.3 and 3.4, we will describe the proce-
dures of building segmentation and texture analysis, respectively.
These are the necessary ingredients to perform the material clas-
sification, which is described in subsection 3.5.

3.1 Data Pre-Processing

Our first step was the geometric and radiometric correction of
the multispectral image. In order to correct the systematic errors
caused by the non-nadir aspect of the orthophoto, the rectifying
2D homography best suiting the area of interest was retrieved in-
teractively. For radiometric correction of the orthophoto, we de-
termined the 0.01th and 0.99th quantiles of the intensities of red,
green and blue values and then rescaled this image between these
values. The resulting image contains almost the same information
but has a much higher contrast and is therefore more suitable for
texturation. To detect and analyse urban objects captured from
the air, 2.5D representation of the terrain is mostly sufficient. We
sampled the laser points to a Digital Surface Model (DSM) us-
ing the natural neighbour interpolation. Since the LiDAR point
cloud has the point density of 2 - 4 points / m2, the resolution of
the DSM as well as of all the output results was set to 0.5 m. Start-
ing at the DSM and using the method of Bulatov et al. (2014),
we computed the Digital Terrain Model (DTM), and visualised
it as a triangle mesh textured by the corrected multi-spectral im-
age. The difference between the DSM and DTM, defined as Nor-
malised Digital Surface Model (nDSM) (Weidner and Förstner,
1995) is now used for object detection and analysis. Two impor-
tant measures, planarity (West et al., 2004) and the Normalised
Difference Vegetation Index (NDVI) were additionally computed
from nDSM and the multispectral image, respectively. NDVI is
widely used in remote sensing, however, with respect to build-
ing detection, it occasionally fails. Therefore, planarity measure,
originally proposed in West et al. (2004) and implemented by
Gross and Thönnessen (2006) is additionally taken into account.

Even despite the geometric correction of the multi-spectral im-
ages, only systematic, translational errors were taken into account
and not the non-nadir character of the image. Here, the deviations
vary depending on the objects elevation. These deviations, mostly
below 3 pixels, are not less significant, but, if an accurate analy-
sis of elevated objects (buildings) is required, they may be quite
disturbing, leaving aside the texturation aspect. Fortunately, the
availability of the shapefile and the works accomplished by (Pen-
ney et al., 1998) offer a good strategy for building outlines cor-
rection. We search for a translation ∆u,∆v : −umax ≤ ∆u ≤
umax,−vmax ≤ ∆v ≤ vmax, where ·max denotes the maximum
offset. An energy function is made up by a convex combination
of two functions introduced by (Penney et al., 1998). The first
is mutual information, encouraging the colour within the build-
ing outline to be constant. The second is the gradient correlation,
encouraging high gradient values near outlines and also outside
the building mask, since cars, house entries, and trees are usually
situated next buildings.

The energy function is thus minimised using the gradient-free
Nelder-Mead method implemented by Lagarias et al. (1998). This
procedure allows computing the translational offsets ∆u,∆v for
every building, whereby it is worth to note that it the method
can be extended to determine unknown similarity or even affine
transformation (with 4 or 6 degrees of freedom). We can use the
rasterised outlines for assessing building-wise features based on
elevation (that is, nDSM and planarity) while for those based on
the multispectral image, the offsets are taken into account.

The shapefile containing the building outlines was from 2012
while the remaining datasets were dated from 2016. Thus, it
was important to check whether buildings or building parts have
been removed or newly added. To detect any completely removed
buildings, we computed the building-wise median value of the
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a b

Figure 1. Visualising the building outlines in our study area. a) the original building outlines visualised on the study area, b) the
updated buildings outlines, whereas blue is representing unchanged building outlines, red completely removed buildings (none in this

study area), green new building segments and orange removed building segment.

relative elevation. Buildings that were below the threshold were
analysed. Mostly, the alarm was confirmed, however, roof made
of dark (probably tarred) materials had extremely low point den-
sities because of poor reflectance properties (Hebel, 2012). Dur-
ing DSM-sampling, these building masks were thus contaminated
with ground points and exhibited low medians of relative eleva-
tions. Additionally, as prescribed by the regulations defined by
the City of Melville, an area threshold of 10 m2 was implemented
to track the newly removed or added building parts. Removed
segments were detected by thresholding the nDSM and by com-
paring the colour of the segment to its building’s mean colour.
New building segments were detected by thresholding the nDSM,
NDVI and the planarity measurement (using the implementation
of Gross and Thönnessen (2006)) followed by connected compo-
nent analysis. Once the building outlines were up-to-date, it was
possible to extract the pixels within the building outlines and pro-
ceed to roof detail analysis and material classification. Figure 1
shows the updated building outlines for our study area. Addition-
ally, to remove noisy and irregular shapes of the newly added or
removed segments, we performed two morphological operators;
erosion followed by dilation with a kernel of one pixel.

3.2 3D Scene Reconstruction

The crucial part of the scene reconstruction is the roof detail
analysis of buildings. This procedure comprises two main sub-
steps: dominant planes extraction and roof modelling. The first
step presupposes that the building roof is piecewise planar. We
used the J-Linkage algorithm (Toldo and Fusiello, 2008) to find
planes in point clouds for every single building. A fixed num-
ber of planes is acquired from random triples of points, however
preferring neighbours. The indicator vector, stating which point
lies in which plane, is collected. By Jaccard distance over in-
dicator vectors, points are clustered. We compared the results
of J-Linkage algorithm with an alternative, also a very popular
method, called Region Growing (Rabbani et al., 2006). The J-
Linkage method performs better for our dataset. After the param-
eters for both approaches were fixed in order to produce possibly
no undersegmentations, analysis of several test buildings showed
that Region Growing produced by far more oversegmentations
and, as the green roof of the building in Figure 2 shows, still some
undersegmentations. On the negative side, J-Linkage produces
sometimes ghost planes (dispersed inliers in different building
parts) for complex buildings, and therefore some post-processing
is necessary. This includes morphological operations, connected

component analysis and filtering components by area and eccen-
tricity. A more advanced approach, such as non-local optimisa-
tion proposed by Rothermel et al. (2014), was not performed be-
cause of the risk to lose important, but small connections of roof
structures. Also, points on the margin of the building and not
outliers of any dominant plane are mostly extremely important to
comply with building outlines. They are added to the dominant
planes using a 3D dilatation approach: the binary mask specify-
ing assigned pixels is dilated. For every non-assigned point in the
narrow band stemming from the dilatation, the closest (in 3D) as-
signed neighbour is computed and assigned a label. These steps
(dilatation to obtain the narrow band, nearest neighbour compu-
tation and label propagation) are repeated until no non-assigned
point remain.

What we achieved by the dominant planes extraction (visualised
in Figure 2) is already enough to assess the inclination angles
of roofs and with it, information about heat received when they
are illuminated. However, the question when they are illuminated
can only be assessed if occlusion analysis can be performed from
an arbitrary viewpoint. This is the main reason why we strive
for a polyhedral three-dimensional model representation. The
second reason is that a realistic, easily recognisable and visu-
ally appealing model is conducive for promoting the awareness
of non-expert residents for problems related to over-heating and
energy-saving measures. Overall, the second step of creating of
watertight building models comprises intersection of planes be-
tween each other and the building outlines. This is basically an
extension of the algorithm of Xiong et al. (2014), however, ex-
periments are currently being carried out to improve the handling
of the step-lines.

After the roof detail analysis, walls are represented as vertical
trapeziums by projecting the endpoints of border- or step-edges
of the roofs to the ground. Intersection points with the ground are
defined by the DTM values. Walls resulting from roof cut-edges
are not required, since they are not visible in the model. To make
the visual aspect of the output 3D model more appealing, build-
ing roofs were textured using the high-resolution images and the
corrected multi-spectral image, following the method of Bulatov
et al. (2014), without the geo-referencing step since everything
was provided. Since the high-resolution images were only ex-
tracted from a portion of the scene and because of problems with
rendering a scene with more than 1000 buildings and many trees,
roofs of the buildings outside of the area were coloured in one of
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Figure 2. Comparison of performance of Region Growing and J-Linkage algorithms (middle and right in the top and bottom rows,
respectively) for dominant plane extraction. On the left, the input data (fragment). In the middle, grouping of dominant plane

extraction before post-processing and polygonisation after post-processing. On the right, 3D polygons after post-processing are
specified by different colours and bounded by convex hulls.

two standard colours, and hence, building walls were treated. A
screenshot showing the textured model is shown in Figure 3.

Lastly, we carried out the tree detection. The module for tree de-
tection is based on the procedure of Bulatov et al. (2016). First,
almost-circular components corresponding to the building size
were detected in the binary image representing tree class. Next,
watershed transformation is applied to the smoothed and inverted
nDSM image. The watershed components are intersected with
the tree class. Then, they are filtered with respect to their area and
shape. Each of these components represents an individual tree.
However, there are some larger components left, which could not
be delineated and for which only an approximate number of trees
and position of crown can be determined. Starting with the high-
est point of such a component, we delete from the component all
pixels in a circular region of constant diameter around this point.
The procedure is repeated for the remaining pixels of the compo-
nent until it is empty. The height of a tree, its vertical position and
diameter are extracted from the nDSM, the DTM, and the area of
the component, respectively. A tree model is a standard object
already employed in (Bulatov et al., 2016).

3.3 Segmentation

We considered three segmentation approaches for determining
the most suitable for material classification: pixel-, superpixel-
and building-wise. Pixel-wise approach is the most common for
classification but may become intractable for larger scenes. Ad-
ditionally, neighbouring pixels of the same roof might not be
classified as the same material due to noise. On the other hand,
a building-wise approach assumes that the entire roof consists
of the same material. This is not always the case either, but a
building-wise approach is useful for texture analysis since it con-
siders the complete roof area. Additionally, the labelled data is al-

ready applied for a building-wise approach. Lastly, a superpixel-
wise approach can divide a roof into several subparts based on
the pattern differences. As a result, a roof can be divided into
different material classes.

The superpixels were generated using the simple linear iterative
clustering algorithm (Achanta et al., 2012) that groups a grayscaled
RGB image into regions of similar pixel values. We assumed that
one building contained a maximum of 10 superpixels, based on
expert knowledge for the study area. Furthermore, we assigned
every computed segment, that is, a building or a superpixel, a cal-
culated mean value for that particular segment derived from the
multispectral and the thermal infrared dataset.

3.4 Texture analysis

To add an additional band and additional information to perform
the material classification, we computed texture features of the
roofs using the high-resolution RGB dataset. Due to the desire
to use different segmentation approaches, we had to perform two
kinds of texture analyses approaches to suit the type of segmenta-
tion, i.e. the texture analysis of the pixel-wise segmentation had
to be different to the superpixel- and the building-wise segmen-
tations since the two aforementioned consisted of large segments
and not only one pixel. For the pixel-wise segmentation, we de-
termined the entropy, a statistical measure of randomness, and
received a unique value for each pixel (Haralick et al., 1973). For
the superpixel- and building-wise segmentations, the Canny edge
detection algorithm (Canny, 1986) was utilised to determine the
amount of pixels belonging to edges in each segment. For each
segment, we calculated the percentage of determined edges as a
signature of the roof texture.
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Figure 3. 3D model of the area of interest and surroundings.

a b

c d

Figure 4. Visualised classification results using the original labelled dataset a) and b), and the extended labelled dataset c) and d). a)
and c) display the classification results of pixel-wise segmentation, while b) and d) display the results of the building-wise

segmentation.

3.5 Material classification

For the material classification, we implemented the supervised
classifier Random Forest (RF) from the toolbox by Dollár (2016).

To evaluate the performance of our three segmentation approaches,
we generated an evaluation matrix consisting of the overall accu-
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racy OA, which indicates the overall performance, the κ-value,
which indicates how good the classes could can be separated from
each other, and for each material class to detect any issues; the re-
call R̄, the precision P̄ and the F1-score.

To determine correlation among our collected and computed bands,
we performed a dimensionality reduction using a standard Princi-
pal Component Analysis (PCA), also implemented in the toolbox
provided by Dollár (2016). By an orthogonal transformation, the
data (features) is decorrelated and sorted in descending order with
respect to its variability allowing to determine correlated bands.
The first principal component covers the highest variability of the
data while each following principal component covers the highest
possible variability under the constraint generated by all previous
principal components. PCA assumes that there is no significant
information loss by discarding all other principal components by
focusing on the first few principal components. For our study, we
used the principal components which cover 99.9% of the vari-
ability of the given training data.

Finally, the originally labelled dataset from the City of Melville
consisted of 10 buildings, whereas 7 were Cement tiles, 2 were
Colorbond and 1 was Zincalume. Thus we merged the two classes
Colorbond and Zincalume from the original dataset into one, de-
noted Metallic, and run additional experiments for two classes
using all three types of segmentation approaches. Since we need
training and testing data, it was not possible to perform building-
wise classification for three classes. For all other configurations
of number of classes and segmentation type, classification was
carried out with and without PCA. Since we were classifying
roofing materials using three different types of segmentations,
we needed to adapt the number of training samples for each seg-
mentation type. Logically, each segmentation approach utilised a
different amount of training samples.

Due to the limited amount of labelled training data, we extend
the dataset by labelling additional buildings on our own. We ran-
domly chose 50 pixels in our study area and labelled the cor-
responding buildings. The labelled dataset was extended to 56
buildings, instead of the original 10 buildings.

By having three segmentation types and using both the origi-
nal labelled dataset consisting of 10 buildings and the extended
one comprising 56 buildings, we could determine differences be-
tween the various combinations. To have all bands in the same
range, we normalised all data to have unity-based normalisation
and unity standard deviation.

4. RESULTS AND DISCUSSION

Since the core of this work was to classify the most common roof
materials, we will first briefly report the qualitative results on up-
dating the building masks and derivation of roof orientations. In
Figure 1, we can see that one residential building and at least three
building-like smaller structures have appeared in the small frag-
ment of the dataset. All these changes were confirmed by interac-
tive intervention. By tracking removed buildings, we encountered
holes in the nDSM that had occurred during the DSM sampling
from the LiDAR point cloud and had caused false negatives. As
for 3D modelling, Figures 3 and 5 suggest that the dominant ori-
entations of the roof planes have been correctly estimated and,
moreover, in most cases building models are indeed watertight
despite extremely challenging roof structures. One can conclude
from Figure 5 that there are many flat roofs in the dataset and

a b

Figure 5. Visualised statistics acquired about the inclination of
the roofs. a) shows the colour-coded orientations (yellow: flat
roof, pink: towards east, etc.) of dominant planes for a part of
the dataset and b) shows the cosines of angles to x and y axes,
coloured by the roof height (in the future, colour could refer to

the material) once the dominant planes extraction has been
performed.

that many roofs have approximately the same inclination angle,
however, at different orientations (subfigure (b)).

Turning our attention to the classification results, presented in Ta-
ble 1 and in Figure 4, a glance at the configuration with the orig-
inal labelled data, 10 buildings and three classes (combinations
a. 1-2 and b. 1-2) makes it clear that we obtained the best clas-
sification results at a pixel-wise level with an OA up to 96.7%.
For instance, one building consists of enough pixel to generate
a high accuracy. The various scores achieved using the afore-
mentioned approach are in general high and indicate a good clas-
sification. However, due to the small amount of actual labelled
data, the results should be taken in moderation. In contrast, the
superpixel-wise segmentation approach appears to receive poorer
results, in particular in the distinction between the three classes,
as the κ-value ranges between 50.3 - 61.9%.

Moving on to studying the original labelled dataset with only two
classes (combinations c. 1-2, d. 1-2, e. 1-2), the original dataset
appears once again to generate good classification results with an
OA ranging between 83.3 - 97.8%. However, the distinction be-
tween the two classes is again poor, as the κ-value for both the
superpixel- and building-wise approaches ranges between 53.2 -
63.1%. The original labelled data consisted of 10 buildings and it
is therefore inevitable that we did not have enough training data
for separating the two roofing materials, Cement tiles and Metal-
lic.

Finally, by studying the classification results using our extended
labelled dataset (combinations c. 3-4, d. 3-4 and e. 3-4), it ap-
pears that we receive poorer classification results compared to
only using the original 10 buildings. In comparison to the original
dataset, we retrieved a poorer distinction between the classes as
the κ-value indicates with, in general, lower values (ranging be-
tween 33.2 - 89.7%). This could be caused by incorrect labelling
and by a larger variation of materials. For instance, an increased
number of varied colours and different conditions (such as the
age and the quality of building maintenance) contributed to mis-
classifications. However, these results are more realistic, since a
natural variance does exist in terms of colouring and conditions.

Overall, the application of PCA does not seem to have improved
the classification results (combinations using the datasets 2 or 4).
Since we were only using 7 bands for the actual classification, the
correlation between the bands might not have been large enough
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3 classes 2 classes

a.pixel b.superpixel c.pixel d.superpixel e.building

OA [%]

1.original 96.7 80.0 97.8 92.7 83.3
2.originalPCA 96.6 83.1 97.6 92.7 -
3.extended - - 94.3 85.2 97.8
4.extendedPCA - - 94.0 87.5 86.7

κ [%]

1.original 91.4 50.3 94.3 53.2 57.1
2.originalPCA 91.3 61.9 93.7 63.1 -
3.extended - - 79.6 33.2 89.7
4.extendedPCA - - 78.9 39.6 42.5

R [%]

1.original 96.6/96.8/99.8 82.4/66.7/100 97.7/98.2 94.7/66.7 88.9/66.7
2.originalPCA 96.1/98.2/99.8 84.3/75.0/100 97.5/97.9 92.1/100 -
3.extended - - 94.0/95.7 86.6/68.0 97.5/100
4.extendedPCA - - 93.6/96.2 88.8/72.0 90.0/60.0

P [%]

1.original 99.3/89.1/90.1 91.3/57.1/40.0 99.4/93.4 97.3/50.0 100/50.0
2.originalPCA 99.6/88.3/87.3 100/81.8/18.2 99.3/92.8 100/50.0 -
3.extended - - 99.2/73.3 97.2/28.3 100/83.3
4.extendedPCA - - 99.3/72.0 97.6/33.3 94.7/42.9

F1 [%]

1.original 97.9/92.8/94.7 86.6/61.5/57.1 98.6/95.7 96.0/57.1 88.9/66.7
2.originalPCA 97.8/93.0/93.1 91.5/78.3/30.8 98.4/95.3 95.9/66.7 -
3.extended - - 96.6/83.0 91.6/40.0 98.7/90.9
4.extendedPCA - - 96.4/82.4 93.0/45.6 92.3/50.0

Table 1. Classification results achieved for the 8 different combinations (segmentation with dataset). Displaying the overall accuracy
OA and the κ-value in addition to the recall R̄, the precision P̄ and the F1-score for each class.

to reduce the number of used bands. Indeed, when we are eval-
uating the number of principal components that were used for
the PCA, the components that cover 99.9% of the variability, the
number varies between 4 and 6 components. That implies that the
bands do not correlate in most cases. While determining the im-
portance each band had during the classification, it appears that
the thermal infrared band and that proceeding from texture anal-
ysis are often the least important bands. Hence, the classification
could have been performed by the multispectral imagery only and
the results would not suffer tremendously.

Furthermore, since the labelled data was done on a building-wise
level, that is, the labelling assumed that one building could only
consist of one material, the pixel- and the superpixel-wise seg-
mentation could also consist of unlabelled materials. Several
buildings had either solar panels or solar water heaters on the
roof and since none of those two classes had been labelled be-
forehand, these elements were classified into one of the existing
labelled materials. This could explain the poorer classification
results for the superpixel-wise segmentation while studying the
different score retrieved from the evaluation matrix.

5. CONCLUSIONS AND OUTLOOK

In this work, we have classified commonly used roofing materials
in the City of Melville using three imagery datasets, a multispec-
tral, a thermal infrared and high-resolution RGB imagery. Addi-
tionally, we have used a LiDAR point cloud in combination with
building outlines to localise the roofs and created 3D models of
the buildings and the surrounding terrain. We utilised three la-
belled datasets; the original provided by the City of Melville that
consisted of the three roofing materials Cement tiles, Colorbond
and Zincalume, the original but consisting of the two roofing ma-
terials Cement tiles and Metallic, and finally an extended dataset
consisting the two aforementioned materials. We used three dif-
ferent segmentation approaches; pixel-, superpixel- and building-
wise segmentation. We classified 8 different combinations using
the commonly used classifier RF, in combination with and with-
out PCA.

By studying the evaluation matrices for the different combina-

tions, it appears that we retrieve the best OA results using the
pixel-wise segmentation approach. The κ-values indicate that
we retrieve the best material classification using the original la-
belled dataset, receiving similar κ-values for using either two or
three classes. The superpixel-wise approach generates the worst
results, indicated particular by the κ-values. Furthermore, the
building-wise approach appears to receive good results as well,
but with a bit poorer κ-values. PCA does not seem to have im-
proved the classification results implying that the bands do not
correlate.

As future work, we would like to study the correlation between
urban heat islands and the amount of vegetation and the roofing
materials in the City of Melville. As stated, knowledge about
commonly used materials in urban areas is valuable information
for local councils, such as the City of Melville. By considering
the classification results, it can help the council with upcoming
planning in the area. Therefore, we would need to extend our
labelled datasets to expand and increase our study areas.

Finally, we emphasise that the two accomplished steps, material
classification and derivation of roof orientation are merely prepa-
ration steps for the localisation of the urban heat island effect.
What should come at the end of a long-term research is a com-
bination of both ingredients into a thermo-dynamical simulation.
This would not only be a visually appealing representation of the
scene, but also a more accurate assessing of surface temperature
when it comes to tracing sunrays.
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