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ABSTRACT: 

 

The objective of this study was to evaluate the impact of reducing the radiometric information of hyperspectral images. The image 

data was collected originally with 32 bits and rescaled to 8 and 16 bit/pixel. The images were acquired with a Rikola Hyperspectral 

Camera attached to an Unmanned Aerial Vehicle (UAV). After the geometric and radiometric processing of the images, a mosaic 

was obtained with pixels representing reflectance factor coded in 32 bits. Using the minimum and maximum values of each spectral 

band, a linear equation was thus applied to reduce the radiometric resolution of the original mosaic, from 32 bits to 8 bits and from 

32 bits to 16 bits. Following, the Normalized Root Mean Square Error (NRMSE%) and the Mean Absolute Percentage Error 

(MAPE%) were used to evaluate the results, showing that for the 8 bits mosaic, the loss of information was higher. For this 

radiometric resolution rescaling, the MAPE% achieved values until 22.486% and the highest NRMSE% value was 0.455% while, 

for the 16 bits mosaics, the highest MAPE% and NRMSE% values were 0.069% and 0.002%, respectively. Finally, it can be inferred 

that the impact of radiometric transformation can be considered as negligible for the hyperspectral mosaic with 16 bits of radiometric 

resolution, which presented lower values of NRMSE % and MAE % and could not affect the mosaic analysis. 

 

 

                                                                 
*  Corresponding author 

1. INTRODUCTION 

The use of Unmanned Aerial Vehicle (UAV) remote sensing is 

expected to revolutionize various environmental applications 

due to their capability to capture datasets at desired spatial, 

spectral, radiometric and temporal resolutions (Anderson and 

Gaston, 2013; Sanchez-Azofeifa et al., 2017). UAV based 

spectrometry is one of the rapidly developing fields (Adão et al., 

2017; Aasen et al., 2018). 

 

The radiometric resolution of a sensor is an important 

characteristic to be explored since it reflects the quantization 

level that the sensor is capable to record and represent the 

reflected energy of targets, besides influencing the analysis of 

targets spectral features (Orych et al., 2014; Tucker, 1980).  

 

Although this subject is not commonly studied, it is of wide 

interest for the research community and practical applications, 

especially when hyperspectral images with high spatial 

resolution are used. This kind of data could be noisier than 

images with a lower radiometric resolution, affecting results 

such as the obtained through image classification, and their 

processing can be very time consuming, harming the product 

generation. In addition, usually there is a need for huge data 

storage and processing for this kind of data. Therefore, some 

level of radiometric resolution reduction should be interesting. 

 

For forestry applications it is interesting to evaluate what should  

be the most suitable number of bits necessary to store data 

reliably. Furthermore, this study can be of interest to improve 

the product generation of hyperspectral images acquired with 

the increased use of Unmanned Aerial Vehicles, which can 

provide rapid image data sets (Oliveira et al., 2018). 

 

In this sense, the objective of this study is to evaluate the impact 

of reducing the radiometric information of hyperspectral images 

comparing the data with 32 bits of a mosaic composed by 

hyperspectral images with those obtained by rescaling to 8 and 

16 bits. 

 

2. METHODOLOGY 

2.1 Image acquisition - Hyperspectral camera and UAV 

To acquire the hyperspectral images, the Rikola Hyperspectral 

Camera, model DT-0011, was used. This camera is 

commercialized by Senop Ltd. and is based on the tuneable 

Fabry-Pérot Interferometer (FPI) which makes the acquisition 

of different spectral bands possible. The approximated focal 

length of the sensor is 8.7 mm and the frame format sensors are 

sized of 1017 x 648 pixels with a pixel size of 5.5 µm. The 

different airgaps of the FPI can be settled in order to acquire 

spectral images ranging from 500 nm to 900 nm. In total, 25 

spectral bands were set according the spectral response of 

targets present in the neighbourhood of the imagined area 

(Miyoshi et al., 2018). Table 1 shows the spectral setting of the 

camera with the respective Full Width at Half Maximum 

(FWHM) in nanometres (nm). 
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Central wavelengths of each spectral band (nm): 506.22, 519.94, 

535.09, 550.39, 565.10, 580.16, 591.90, 609.00, 620.22, 628.73, 

650.96, 659.72, 669.75, 679.84, 690.28, 700.28, 710.06, 720.17, 

729.57, 740.42, 750.16, 769.89, 780.49, 790.30, 819.66 

FWHM (nm): 12.44, 17.38, 16.84, 16.53, 17.26, 15.95, 16.61, 

15.08, 16.26, 15.30, 14.44, 16.83, 19.80, 20.45, 18.87, 18.94, 19.70, 

19.31, 19.01, 17.98, 17.97, 18.72, 17.36, 17.39, 17.84 

Table 1. Spectral settings of the hyperspectral camera 

 

The camera was mounted in a quadcopter UAV, model UX4. 

This UAV was developed specially to be used with the Rikola 

Hyperspectral Camera and it system is composed by the by 

PixHawk autopilot, a GoPro Hero 4 Black camera and a GNSS 

receiver. As energy source for the UAV system and it sensors 

two 6-cell batteries of 22 volts each and one smaller batterie of 

3-cell and 11 volts are used. Figure 1 shows the UX4 UAV and 

the Rikola Hyperspectral Camera during a flight campaign. 

 

 

Figure 1. UX4 UAV and its payload 

 

The image data set were acquired in July, 1st of 2017, between 

10h14 and 10h24, local time (UTC-3). The flight height was 

160 m above the ground, providing images with Ground Sample 

Distance (GSD) of approximately 10 cm, excluding the canopy 

height. The flight speed was set to 4 m/s and the time interval 

between cubes acquisitions was 2 s, providing more than 70% 

of forward overlap. 

 

A fragment of the Ponte Branca reservoir was used as study 

area. This area belongs to the Black Lion Tamarin Ecological 

Station, managed by Chico Mendes Institute of Biodiversity. 

The area comprises a small road and forest with young and 

mature species. The approximated area is 3.95 ha comprising 

more than 20 tree species (Berveglieri el al., 2016). Figure 2 

shows the Ponte Branca area, in the western part of São Paulo 

State and highlighted in red in the right part of the figure. 

 

 

Figure 2. Location of the study area. Ponte Branca is 

highlighted in red in the right part of the figure.  

 

2.2 Imaging processing 

The images were originally acquired with a radiometric 

resolution of 12 bit/pixel, being rescaled to 32 bits in the first 

step of the imaging processing (Rikola, 2015). This first step 

applies the dark current and smile correction and the 

radiometric correction of each image. The Hyperspectral Imager 

software provided by the manufacture is used for this purpose 

and relies on a dark image acquired before the images 

acquisition   and calibration factors obtained in laboratory. As 

result, the Digital Number (DN) of each image pixel is 

transformed to radiance values in [mW/(m². sr . nm)]. 

 

In order to obtain the interior orientation parameters (IOP) of 

each sensor and the exterior orientation parameters (EOP) of 

each image and spectral band, the geometric processing is 

applied. This step is performed with AgiSoft Photoscan 

software, which is based on Structure from Motion algorithms 

to find common points among the images and produce point 

clouds and Digital Surface Models (DSMs) (Nevalainen et al., 

2017). 

 

As input for this step, four spectral bands of each image were 

used. The reason to use those bands and not only one is the 

slightly difference in the spatial position of each band, caused 

by the FPI principle to acquire the images for different 

wavelengths. The remaining bands are not used to reduce the 

computational load. In the following step the procedure 

developed by Honkavaara et al. (2017) was used to determine 

the EOP for the other spectral bands. In this sense, the bands 

centred in 535.09 nm, 609.00 nm, 679.84 nm and 769.89 nm 

were chosen. They were selected considering the spectral bands 

in each sensor and the time to acquire those 25 bands. For 5 ms 

of integration time and for 25 spectral bands, is necessary 0.8 s 

to acquire each hypercube. 

 

The images were used in the same process, that is, 

simultaneously, to refine the IOP using the self-calibrating 

adjustment and to acquire refined EOP values for the four 

spectral bands. Moreover, point clouds of the area and a DSM 

were produced to be used in the radiometric block adjustment 

and ortomosaic generation. 

  

The technique of radiometric block adjustment of the 

hyperspectral images was developed by Honkavaara et al. 

(2013), and it considers the illumination changes of each image, 

which can be caused by different geometries of image 

acquisition and by anisotropy of targets. It uses a Bidirectional 

Reflectance Distribution Function model developed by Walthall 

et al. (1985) and homologous points in the images to perform 

the correction. In addition, the software of Honkavaara et al. 

(2013) uses point clouds and a DSM generated in the previous 

processing in AgiSoft Photoscan. 

 

Finally, the empirical line method (Smith and Milton, 1999) is 

applied to transform the pixels values to reflectance factor 

values. Three radiometric reference targets with average 

reflectance factor of 4%, 11% and 37% were correlated with the 

pixel values of each spectral band in order to calculate the linear 

transformation. Thus, the final product was a geometric and 

radiometric corrected mosaic of the hyperspectral images with 

pixels representing reflectance factor values in 32 bits of 

radiometric resolution. 

 

2.3 Different radiometric resolutions 

The first step to verify the impact of reducing the radiometric 

resolution was the selection of a sample of the total area. This 

sample comprises an area of approximately 200 m by 100 m 

(2 ha) and was chosen to represent the full area and to reduce 
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the computational load. Following, the minimum and maximum 

values of each spectral band were determined using a routine 

developed in Python. 

 

The minimum and maximum values of each spectral band were 

used in a linear equation to reduce the radiometric resolution of 

the mosaic, i.e., to rescale the mosaic from 32 bits to 8 bits and 

from 32 bits to 16 bits. Considering the mosaic of 8 bits, the 

minimum value of the original mosaic was set to zero value and 

the maximum to 255 value. This is the well known MinMax 

normalization technique used for image contrast expansion. The 

same relationship was applied to the 16 bits mosaic using zero 

and the 65,535 values. Equation 1 summarizes the relationship 

used to rescale the mosaic. 

 

𝑚𝑎𝑥32𝑏𝑖𝑡𝑠 − 𝑥

𝑥 −  𝑚𝑖𝑛32𝑏𝑖𝑡𝑠
=
𝑚𝑎𝑥𝑛𝑒𝑤 − 𝑦

𝑦 −𝑚𝑖𝑛𝑛𝑒𝑤
 

 

(1) 

 

where  max32bits = maximum value of the pixel for the original 

mosaic (with 32 bits of radiometric resolution) 

 min32bits = minimum value of the pixel for the original 

mosaic (with 32 bits of radiometric resolution) 

x = value of each pixel of the original mosaic 

maxnew = maximum value of the pixel for the rescaled 

mosaic 

 minnews = minimum value of the pixel for the rescaled 

mosaic 

y = new value to be calculated to rescale the mosaic to 

a new radiometric resolution 

 

This equation was applied to each spectral band to transform the 

original mosaic in two new mosaics, decreasing the radiometric 

resolution from 32 bits to 8 bits of radiometric resolution and 

from 32 bits to 16 bits. 

 

Following the methodology, a new mosaic rescaling was 

performed, aiming to change the radiometric resolution from 8 

to 32 bits and from 16 to 32 bits. By manipulating Equation 1, 

the new values were computed. It can be noticed that this step 

was required in order to compare the difference between the 

original mosaic and those originated from the 8 and 16 bits 

radiometric resolution mosaics. 

 

The metrics applied to verify the differences were the 

Normalized Root Mean Square Error (NRMSE%) and the Mean 

Absolute Percentage Error (MAPE%) (Mayer and Butler, 1993; 

Willmott and Matsuura, 2005; Watanabe et al., 2016). Those 

metrics were calculated using 15 check points, where 3 of the 

points were placed in the radiometric reference targets and the 

other 12 were randomly distributed in the study area (Figure 3). 

In addition, the boxplot of each spectral band, for each 

rescaling, were generated in order to verify the distribution of 

the data and the number of outliers. 

 

 

Figure 3. Study area and check points used to evaluate the 

different radiometric resolutions 

 

3. RESULTS 

Tables 2 and 3 present the NRMSE% and the MAPE% for the 

rescaled mosaic from 32 bits to 8 bits. Analysing Table 3, it can 

be noticed that the NRMSE% varied from 0.130% to 0.455%, 

while the minimum MAPE% was 0.540% and the maximum 

value was 22.486%. These results showed different error 

magnitudes, which may also affect the MAPE% values. 

Looking the check points, it was noticed that the biggest error 

occurred in one point located in a shadowed area, which may 

also affect the results for the 8 bis rescaled mosaic. 

 

Band NRSME % Band NRSME % Band NRSME % 

1 0.134 10 0.176 18 0.304 

2 0.130 11 0.445 19 0.316 

3 0.136 12 0.362 20 0.343 

4 0.182 13 0.304 21 0.450 

5 0.330 14 0.271 22 0.324 

6 0.257 15 0.268 23 0.455 

7 0.275 16 0.277 24 0.354 

8 0.343 17 0.275 25 0.305 

9 0.363 
    

Table 2. NRMSE% obtained from the radiometric resolution 

reduction to 8 bits 

Band MAPE % Band MAPE % Band MAPE % 

1 1.155 10 4.269 18 1.546 

2 1.774 11 5.253 19 0.755 

3 1.321 12 5.183 20 0.720 

4 1.125 13 22.486 21 1.093 

5 2.838 14 2.856 22 0.579 

6 2.744 15 6.904 23 1.122 

7 5.642 16 8.238 24 0.671 

8 5.130 17 2.339 25 0.540 

9 18.494 
    

Table 3. MAPE% obtained from the radiometric resolution 

reduction to 8 bits 
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Considering the second radiometric resolution reduction, from 

32 bits to 16 bits, the NRSM% and MAPE% were also 

calculated using 15 points of the mosaic. The results are shown 

in Tables 4 and 5, where is possible to see that the average 

NRMSE% is lower than 0.002%, with maximum value of 

1.78E-03. This result shows a high degree of similarity between 

the original mosaic and the rescaled one, also proven by the 

MAPE% values, which varies from 0.002% to 0.069%. 

 

Band NRSME % Band NRSME % Band NRSME % 

1 7.89E-04 10 6.41E-04 18 1.22E-03 

2 6.31E-04 11 1.74E-03 19 1.51E-03 

3 5.85E-04 12 1.03E-03 20 1.59E-03 

4 6.59E-04 13 1.10E-03 21 1.78E-03 

5 1.25E-03 14 1.16E-03 22 1.32E-03 

6 1.36E-03 15 1.01E-03 23 1.33E-03 

7 1.58E-03 16 9.96E-04 24 1.59E-03 

8 1.31E-03 17 1.12E-03 25 1.34E-03 

9 1.33E-03 
    

Table 4. NRMSE% obtained from the radiometric resolution 

reduction to 16 bits 

Band MAPE % Band MAPE % Band MAPE % 

1 0.008 10 0.011 18 0.004 

2 0.007 11 0.025 19 0.005 

3 0.007 12 0.013 20 0.003 

4 0.006 13 0.069 21 0.003 

5 0.013 14 0.026 22 0.002 

6 0.020 15 0.029 23 0.003 

7 0.021 16 0.023 24 0.004 

8 0.015 17 0.006 25 0.003 

9 0.024 
   

0.004 

Table 5. MAPE% obtained from the radiometric resolution 

reduction to 16 bits 

The results obtained with the boxplots showed that the 

variability of the tree mosaics was similar; however, the one 

rescaled to 8 bits was the one with less outliers, being probably 

the one with less noise, followed by the 16 bits rescaled mosaic 

and by the original one. 

 

4. CONCLUSION 

Considering the results and the aim of this work, it can be 

inferred that the impact of radiometric transformation can be 

considered as negligible for the hyperspectral images with 16 

bits of radiometric resolution, which presented lower values of 

NRMSE % and MAPE%. The results obtained for the 8 bits 

mosaic showed less noise, however higher errors. Those values 

indicate that for this case, the reduction of the radiometric 

resolution could affect further analysis such as the image 

classification, since the spectral response of targets could be 

changed. Reduced radiometric resolution with the 8 bit images 

can also impact digital surface model generation based on 

image matching. 
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