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ABSTRACT: 

 

Preliminary matching of image features is based on the distance between their descriptors. Matches are further filtered using RANSAC, 

or a similar method that fits the matches to a model; usually the fundamental matrix and rejects matches not belonging to that model. 

There are a few issues with this scheme. First, mismatches are no longer considered after RANSAC rejection. Second, RANSAC might 

fail to detect an accurate model if the number of outliers is significant. Third, a fundamental matrix model could be degenerate even if 

the matches are all inliers.  To address these issues, a new method is proposed that relies on the prior knowledge of the images’ 

geometry, which can be obtained from the orientation sensors or a set of initial matches. Using a set of initial matches, a fundamental 

matrix and a global homography can be estimated. These two entities are then used with a detect-and-match strategy to gain more 

accurate matches. Features are detected in one image, then the locations of their correspondences in the other image are predicted using 

the epipolar constraints and the global homography. The feature correspondences are then corrected with template matching. Since 

global homography is only valid with a plane-to-plane mapping, discrepancy vectors are introduced to represent an alternative to local 

homographies. The method was tested on Unmanned Aerial Vehicle (UAV) images, where the images are usually taken successively, 

and differences in scale and orientation are not an issue. The method promises to find a well-distributed set of matches over the scene 

structure, especially with scenes of multiple depths. Furthermore; the number of outliers is reduced, encouraging to use a least square 

adjustment instead of RANSAC, to fit a non-degenerate model.  

 

1. INTRODUCTION 

Feature matching plays an essential role in photogrammetry, 

computer vision and remote sensing applications. The 

applications of feature detection and matching include, but not 

limited to, visual odometry, image mosaicking, 3D 

reconstruction, object tracking and many more.  

The typical feature matching task comprises features detection, 

features descriptions, and preliminary matching. Preliminary 

matching between features in an image pair is usually done on 

the basis of the Euclidean distance between features. Matches are 

then filtered using the Random Sample Consensus (RANSAC) or 

a variant of RANSAC. RANSAC tries to fit a model using a 

subset of the matched features, then add more matches to the 

subset if they are consistent with the model. Hence, mismatches 

are discarded provided that RANSAC catches the correct model.  

Three problems are facing the block of detection, description and 

matching. First, descriptor-based matching is a probabilistic 

procedure, and it usually results in mismatches. Second, these 

mismatches are usually discarded by RANSAC and cannot be 

reconsidered for matching after RANSAC. Finally, even in cases 

of perfect inliers, RANSAC might lead to a degenerate solution 

to the fundamental matrix. The correspondences are termed 

degenerate when they are all inlier but still do not admit to a 

unique solution (Torr et al., 1998). We can conclude that the 

combination of descriptor-based matching with RANSAC is not 

the perfect solution for the feature matching problem. Especially 

in cases in which there is one predominant planar surface with 

many textures. In such a case, a large number of matches over the 

predominant surface forces RANSAC to follow a specific model 

which might not be able to represent other matching points off 

that plane. This scenario is better represented by a local 

homography rather than a fundamental matrix model.  

It might be clear now that the main reason for the above problems 
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is the separation between the radiometric properties of the 

features (when matching descriptors) and the geometric 

modelling (when using RANSAC). Therefore, to solve those 

problems, a new method is proposed on which geometrically and 

radiometric -aware matching is performed. 

The rest of the paper is organised in the following structure: the 

next section covers a literature review of the related work 

followed by the paper contribution.The third section presents the 

proposed methodology in detail. The results and discussion are 

in the fifth section, and finally, the conclusion is given in the last 

section.  

 

2. RELATED WORK AND PAPER CONTRIBUTION 

Feature detection goes back to the early 80th. When Moravec 

published his work ”Rover visual obstacle avoidance,” 

introducing the corner detector named the interest operator 

(Moravec, 1981). In 1988, a modified version of the interest 

operator was introduced by Harris and Stephen, and it was called 

Harris corner detector (Harris and Stephens, 1988). Harris corner 

is robust to the rotation and small intensity changes but cannot 

handle the changes in scale.  

Schmid and Mohr used the local invariant features to find 

matches between an image and a database of images for image 

recognition (Schmid and Mohr, 1997). They introduced rotation 

local invariant descriptors with Harris detector. So, their 

algorithm handled the rotation changes between image pairs, but 

could not handle the difference in scale.  

Later in 2004,  David Lowe introduced the Scale Invariant 

Feature Transform (SIFT): a detector and a descriptor that are 

rotation and scale invariant (Lowe, 2004) that. SIFT provides 

distinctive features that are invariant under both scale and 

rotation. Other scale-invariant features include the work of 

Mikolajczyk and Schmid (Mikolajczyk and Schmid, 2001). The 
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authors used the determinant of the Hessian matrix to select the 

location of a keypoint and used the Laplacian of Gaussian (LoG) 

to determine its scale. However; SIFT approximates LoG by the 

Difference of Gaussian (DoG) to speed up the process with no 

extra cost. At the time when SIFT was introduced, it was better 

than the other methods in terms of speed, repeatability, and 

stability.  However; SIFT requires a 128-dimensional descriptor 

vector for each feature; which is memory and time consuming, 

especially when matching via Euclidean distance. Ke and 

Sukthankar (Yan Ke and Sukthankar, 2004) offered the PCA-

SIFT to deal with the large number of dimensions of SIFT.  The 

vector dimensions decreased from 128 to 36.  

A move towards more efficient features was made by Bay et al.  

(Bay et al. , 2008). The authors proposed a detector and descriptor 

coined SURF. They exploited the integral images and 

approximated DoG by a box filter to detect the keypoints. That 

reduced the time as the same Gaussian filter was used without 

scaling the image. Haar wavelet responses in horizontal and 

vertical directions are computed to provide a 64-dimensional 

descriptor vector, that is half the size of the SIFT descriptor. 

In 2010 a new keypoint descriptor: Binary Robust Independent 

Elementary Features (BRIEF) was introduced by Calonder et al. 

(Calonder et al. , 2010), to address the problem of the descriptor’s 

size. BRIEF used only 256 bits or even 128 bits to store the 

information about the keypoints. That was not only memory 

efficient, but also speeded up the matching procedure. However; 

these descriptors failed with rotated images. In 2011, 

Leutenegger et al. tackled the problem of variation of scale and 

rotation by introducing the Binary Robust Invariant Scalable 

Keypoints (BRISK) (Leutenegger et al. , 2011), a detector that 

has a degree of modularity allowing it to be combined with other 

descriptors.  

Another contribution was made by Rublee et al. (Rublee et al., 

2011) to handle the scale and roatation of images and preserve 

the time and memory efficiency of BRIEF. Oriented FAST and 

Rotated BRIEF (ORB) was introduced by the authors as an 

alternative to FAST and BRIEF. Their method was based on 

combining the time efficient detector FAST (Rosten et al., 2010) 

and BRIEF as a binary descriptor. But after modifying them to 

cope with rotation and scale changes.  

To filter the correct matches, Zhang et al. utilised the epipolar 

geometry as a constraint (Zhang et al., 1995). The authors’ 

approach was to estimate the fundamental matrix and reject the 

outliers at the same time. Torr et al. proposed a similar approach. 

They used RANSAC to clear the outliers and estimate the 

fundamental matrix simultaneously ( Torr and Murray, 1993). In 

the last two approaches, the model fitting and the outlier removal 

were performed after the preliminary matching. Moreover; a 

single model consensus was used as a filtering criterion.  

Isack et al. [5] performed matching based on both the geometry 

and appearance of the features. However; the filtering is typically 

done after the preliminary matching. The authors’ method starts 

with an initial set of matched SIFT features and uses it to refine 

the overall matching.  

The proposed method starts with a set of matches, which are 

weak in terms of their number, accuracy and distribution over the 

scene structure (depths). From this set, a more extensive set of 

accurate and well-distributed matches is obtained. From the 

initial matches, the fundamental matrix and a global homography 

are estimated. It should be mentioned here that the global 

homography is not a good representation of the features 

correspondence. However, it will be used just as an 

approximation, and modifications will be performed later. After 

the estimation of these two entities, a detect-and-match strategy 

is employed, in which for every newly detected feature in one 

image (the left image) a corresponding window or region of 

interest (ROI) is determined in the other image (the right image). 

This ROI is predicted using the fundamental matrix (epipolar 

constraints) and the local homographies induced by the global 

homography and some discrepancy vectors. As the fundamental 

matrix can be used as a point-to-line mapping, and the 

homography can be used as a one-to-one mapping, but cannot be 

reliable; they can be used together as a complementary solution 

to limit the search space of the feature points in the right image. 

It is obvious that the prediction of the corresponding feature’s 

location in the right image is just an approximation. However, 

this prediction procedure has a significant impact on limiting the 

ROI size.  

After limiting the ROI size, template matching is employed to 

detect an accurate correspondence (correction). The template size 

can be chosen as a few pixels around the left image’s feature 

point, and the source image is chosen as the ROI around the 

corresponding feature in the right image.  

The global homography to be estimated from the initial set of 

matches is roughly representing the matches in this set. In fact, 

there is a discrepancy between the point correspondence obtained 

from the homography and the point correspondence in the initial 

matches for the same feature in the left image. This discrepancy 

is computed as a vector in homogeneous coordinates and then 

used for all neighbouring feature points as an alternative to the 

local homography. So, instead of limiting the method to work 

with a rough global homography, local homographies are 

implicitly used via the discrepancy vectors.  

The method works recursively, such that more matches are 

added, and the geometric entities are recomputed. 

 

3. METHODOLOGY 

The proposed method has two phases; the first is the geometric 

prediction using epipolar constraints and local homography. The 

detailed description of this phase is shown in Figure 1. In this 

phase, we start with an initial set of matches, which we call the 

seed. These can be obtained either manually or using one of the 

common methods, such as SIFT, SURF, or ORB. In the tests 

performed in this paper, ORB was used to provide the set of 

initial matches, as ORB is known to provide less accurate and 

smaller number of matches compared to those of SIFT and 

SURF. Therefore, using ORB to generate the seed of matches 

implies that the proposed method can provide a more accurate set 

of matches even when weak matches were initially used. 

Additionally, the feature detection is done using the Features 

from Accelerated Segment Test (FAST) detector.  

 From the seed of matches, the homography and fundamental 

matrix are computed. The homography is then used with the 

initial matches to provide an alternative for a local homography 

that is called the discrepancy vectors. For each feature associated 

with a discrepancy vector, a kD-tree search runs to find 

neighbouring features that are assigned the same discrepancy 

vector. Using the general homography and the discrepancy 

vectors, feature correspondence can be estimated in the right 

image.  To further enhance the estimation of the features’ 

locations, the features are being projected on their corresponding 

epipolar lines.   

The second phase is the correction phase via template matching.  

Figure 2 shows a description of the combined geometric 

prediction and the correction by template matching. A region of 

interest around the predicted feature position is assumed to be a 

search image for the template. Then, using the template 

matching, a correction is added to the initial prediction. Each 

newly predicted and corrected feature correspondence is added 

to the seed, and then the geometric entities are recomputed. The 

two phases are recursively repeated until all the detected features 

are either matched or rejected. 
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Figure 1. Geometric approximation (prediction) of the 

corresponding feature in the right image. 

 

 

 
Figure 2. The recursive method: the geometric prediction of 

point correspondence and the correction by template matching  

 

3.1 Correspondence prediction using geometric constraints 

Epipolar geometry can be used to estimate approximate 

locations of the correspondences. The following notations are 

used: 𝓘ℓ and 𝓘𝓇 are the left and right images respectively, 𝓺 and 

𝓹 denote features in 𝓘ℓ and 𝓘𝓇 respectively. Considering an 

image with no distortion, which is a very ideal situation, the 

epipolar constraint can be written as: 

 

 𝓹𝑻𝓕𝓺 = 0 (1) 

 

where 𝓕 is the fundamental matrix.  

Equation (1) states that the for a feature point 𝓺 in the left image, 

there is a corresponding feature point 𝓹 in the right image that 

lies on the corresponding epipolar line 𝓕𝓺. That is, equation (1) 

defines a point-to-line mapping. A more general form of equation 

(1) is: 

 𝓹𝑻𝓕𝓺 = 𝜀 (2) 

 

where 𝜀 is a scaler denotes the errors (in pixels) caused by noise, 

lens distortion or other factors. Equation (2) states that the feature 

𝓹 lies approximately on the estimated epipolar line 𝓕𝓺. 

If the fundamental matrix is somehow known with reasonable 

accuracy, we could map any feature in one image to a line that is 

close enough to the corresponding feature in the other image.  

 

 

 
Figure 3. Epipolar constraints in the presence of errors. A feature 

point in the left image is mapped to the estimated epipolar line 

which lies close to the actual corresponding feature point in the 

right image. 

 

Now, if a technique like Normalized Cross Correlation (NCC) is 

employed, the accurate location of the feature 𝓹  can be found. 

But that requires sliding a window over a rectangular area around 

the epipolar line, and this could be an expensive procedure, 

especially when performed for several feature points.  

To limit this rectangular area to a small ROI, we use an 

alternative to the local homography associated with the pair 

(𝓺, 𝓹).  

 Suppose we have an initial set of matches, which we call the seed 

of matches. This seed can be used to estimate the fundamental 

matrix 𝓕  and a global homography 𝓗. The global homography 

does not help in finding correspondences, unless all the 

corresponding points are confined on a plane, since homography 

defines a plane-to-plane mapping. If we need to use this 

homography to map a feature point in the left image to its 

corresponding point in the right image, a discrepancy vector 𝓓 

must be added to compensate for the error caused by mapping 

using global homography instead of local homography. If we 

map with a local homography 𝓱 that defines a plane-to-plane 

mapping, we can write: 

 

 𝓹 = 𝓱 𝓺  (3) 

 

However; if we use the global homography 𝓗, an error term must 

be added, as the mapping with 𝓗 will shift the point 𝓹 from the 

true correspondence position. 

 

 𝓹 = 𝓗𝓺 + 𝓓 (4) 

 

The vector 𝓓 which we call the Discrepancy vector is a 

compensation for the local homography 𝓱. From equation (3) 

and equation (4), we have: 

 

 𝓱 𝓺 = 𝓗𝓺 + 𝓓 (5) 

 

Which means that mapping by the global homography differs by 

a shift, in 𝑥 and 𝑦, from the more accurate mapping by a local 

homography. It is intuitive to think that each local homography 

in the pair of images is corresponding to a vector 𝓓, if the global 

homography 𝓗 is known. That is, there is a one-to-one 

correspondence between the local homography 𝓱 and the 

discrepancy vector 𝓓. In fact, to get the point correspondence for 

any point 𝓺𝒊, it is only required to find the global homography 𝓗 

and a discrepancy vector 𝓓𝒊, where the vector 𝓓𝒊 is a unique 

vector for all the points on the local plane on which 𝓺𝒊 is 

confined. That is, all the points in the neighbourhood of 𝓺𝒊 and 

confined on the same plane as 𝓺𝒊 are associated with a single 

discrepancy vector 𝓓𝒊.  

Now, suppose a new feature 𝓺𝒋 is detected in the left image, if an 

associated discrepancy vector is known, then the position of the 

feature 𝓹𝒋 can be approximately estimated from equation (4). So, 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-1, 2018 
ISPRS TC I Mid-term Symposium “Innovative Sensing – From Sensors to Methods and Applications”, 10–12 October 2018, Karlsruhe, Germany

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-1-307-2018 | © Authors 2018. CC BY 4.0 License.

 
309



 

the problem is now reduced to finding a set of vectors 𝓓𝒊, 

representing the local homography implicitly, and the global 

homography 𝓗.   

The procedure to assign the discrepancy vectors 𝓓 to newly 

detected features 𝓺 is as follows: 

 

1. From the seed set of initial matches find the global 

homography 𝓗. 

2. Use the matched pairs in the seed to find a discrepancy 

vector 𝓓𝒊 for each pair (𝓺𝒊, 𝓹𝒊) from equation (4). 

3. For each feature point 𝓺𝒊 in the seed perform a kD-tree 

search to find a set of neighbouring features 𝓝𝒊. 

4. Assign the vector 𝓓𝒊 to all the feature points 𝓺𝒋 ∈ 𝓝𝒊. 

 

A note about the third point is mentioned here. Instead of finding 

𝓓𝒊 to newly detected points, it is less expensive to associate 𝓓𝒊 

with 𝓺𝒊 and find more feature points in the neighbourhood 𝓝𝒊.  

Now, since newly added point are associated with some vectors 

𝓓𝒊 and since the global homography is estimated, one can use 

equation (4) to obtain the correspondence 𝓹𝒋 for the feature point 

𝓺𝒋. We shall denote the feature estimated from local homography 

by 𝓹𝒋𝒉. It should be noted that the estimation of 𝓹𝒋 is expected 

to be inaccurate. However; the estimated feature position is 

normally within a small distance from the accurate feature’s 

position. Therefore, we can define a ROI as a small window 

around the estimated feature 𝓺𝒋.  

To further enhance the accuracy of the estimated feature’s 

position, the estimated feature is projected on the epipolar line 

𝓵𝒓 = 𝓕𝓺.  

Let the epipolar line be expressed in the homogeneous 

coordinates as 𝓵𝒓 = [𝒶𝑟 , 𝑏𝑟 , 𝒸𝑟]𝑇, then equation (2) becomes: 

 

 𝒶𝑟𝓅𝑥 + 𝑏𝑟  𝓅𝑦 + 𝒸𝑟 = ℰ  (6) 

   

Where the feature point 𝓹 is represented in homogeneous 

coordinates as: 𝓹 = [𝓅𝑥, 𝓅𝑦 , 1] . 

Suppose now we have estimated the feature 𝓹𝒋𝒉 using the local 

homography, which is represented as: 𝓹𝒋𝒉 = [𝓅𝑥
𝑗𝒉

, 𝓅𝑦
𝑗𝒉

, 1] , then 

instead of relying on the estimation of the pair (𝓅𝑥
𝑗𝒉

, 𝓅𝑦
𝑗𝒉

),  we 

can use the epipolar constraint to project the point on the epipolar 

line. Using equation (6), we can project the estimated feature 

point on the epipolar line: 

 

 

𝓅𝑦
𝒋𝓕

=
ℰ − 𝒶𝑟𝓅𝑦

𝑗𝒉
− 𝒸𝑟

𝑏𝑟

 

 

(7) 

 

where the term 𝓅𝑦
𝒋𝓕

 denotes the 𝑦’s coordinate of the feature 

point 𝓹𝒋 after the epipolar projection. The projected feature is 

𝓹𝒋𝓕 = [𝓅𝑦
𝑗ℎ

, 𝓅𝑦
𝑗ℱ

, 1]. 

Figure 4 shows how local homography is used to find an 

estimated feature position 𝓹𝒋𝒉 corresponding to the feature point 

𝓺𝒋. The estimated feature’s position is different from the accurate 

one which is denoted 𝓅𝑗, the projected feature point is 𝓹𝒋𝓕. 

The accurate feature 𝓅𝑗 can be found by employing a template 

matching over a ROI around the estimated feature 𝓹𝒋𝓕. 

 

3.2 Template matching using NCC 

Template matching was defined in (Goshtasby, 1985) as the 

process of determining the position of a sub-image called the 

template 𝑡(𝑥, 𝑦) inside a larger image called the search image 

𝑠(𝑥, 𝑦). Given the predicted position of the feature point  𝓹𝒋𝒉, the 

 

 
Figure 4: Using the local homography and epipolar projection to 

estimate the corresponding feature’s location. 

 

search image is limited to the ROI around that point. The 

template slides over the search image, as in the example in Figure 

5. Then a matching score is calculated. This score is maximum at 

the point of concurrence. The common score used in template 

matching are either the summation of absolute difference (SAD), 

the summation of squared difference (SSD) or the normalized 

cross-correlation (NCC). NCC is being used here as it is 

illumination invariant. NCC is defined as (Briechle and 

Hanebeck, 2001): 

 

𝛾𝑢,𝑣 =
∑ (𝑠(𝑥, 𝑦) − �̅�𝑢,𝑣)(𝑡(𝑥 − 𝑢, 𝑦 − 𝑣) − 𝑡̅) 

𝓍,𝓎

√∑ (𝑠(𝓍, 𝑦) − 𝑠𝑢,𝑣)
2

 
𝑥,𝑦 ∑ (𝑡(𝑥 − 𝑢, 𝑦 − 𝑣) − 𝑡̅)2

𝑥,𝑦

 (8) 

 

 
Figure 5. (a) the template window around the feature 𝓺𝒋 slides 

over the search images (a larger image around the estimated 

feature 𝓹𝒋𝓕). (b) The NCC score is maximum at the concurrence 

point. (c) a planar view of the NCC score. 

�̅�𝑢,𝑣 and 𝑡̅ denote the mean of 𝑠 and  𝑡 within the area of the 

template respectively. 

There are some motivations for choosing template matching over 

descriptors. First, usually, NCC does not include mismatches, 

since the NCC is maximum at the exact point of concurrence if 

the score is less than a certain threshold (0.92 for example) the 

feature point can be excluded. Therefore, NCC is a more 

deterministic than the descriptors which tend to be more 

probabilistic. Second, the processing time of template matching 

is reduced since the search image is limited to the ROI around the 

predicted feature position. Matching time could be further 

reduced if image pyramids are exploited.  

Fast NCC was proposed by J. P. Lewis (Lewis, 1995) to make 

template matching even faster. It was proposed to use recursive 

summation tables of the image function to find an approximation 

of the numerator and denominator of 𝛾𝑢,𝑣.  

J.P. Lewis showed that the fast NCC could reduce the time of 

matching dramatically. Moreover, if fast NCC is considered over 

a small ROI, just like in the proposed method, it is expected to 

give satisfactory results in a short time. 
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3.2.1 Window size optimisation 

 

The size of the template can be chosen as a few numbers of pixels 

around the detected feature 𝓺𝒋, for example, a template of 9 × 9 

or 15 × 15 could be suitable depending on the actual image size 

and resolution. However; the most important is the size of the 

search image, or the sub-image defined by the window around 

the predicted feature position 𝓹𝒋𝓕. 

The size of the search image should be chosen such that we trade 

off the matching time efficiency with the matching accuracy. If 

the search sub-image’s size is too small, the true corresponding 

feature might be located outside it.  On the other hand, if the sub-

image’s size is too large, template matching will take much more 

time to work on the whole image. Therefore, an efficient 

approach is proposed here. First, note that the vector 𝓓𝒊 indicates 

the deviation of the feature 𝓹𝒋  from the estimated value 𝓹𝒋𝒉. It 

also reflects the uncertainty region in which the estimated feature 

position is in the vicinity of the exact feature point 𝓹𝒋.Therefore, 

the size of the sub-image can be chosen to be (𝒟𝑥 × 𝒟𝑦).  

To further optimise the NCC time, instead of sliding the template 

over the whole source image, only small windows over the 

regions containing features are being used as search images. 

Figure 6 Shows that a search image may contain a large area of 

no features. Consequently, it is more efficient not to include the 

whole source image when performing NCC. 

 

 
Figure 6. Instead of sliding the template over the whole ROI, it 

is more efficient to create smaller sub-windows around the 

possible detected features in the ROI. 

4. RESULTS AND DISCUSSION 

4.1 Dataset 

Two datasets each were provided by the International Society of 

Photogrammetry and Remote Sensing (ISPRS) through the 

ISPRS and EuroSDR benchmark on multi-platform 

photogrammetry (Nex et al., 2015). The first and second pairs of 

images are for the Zollern Colliery (Industrial Museum) in 

Dortmund, Germany. These two pairs of images were taken by a 

UAV in a close-range manner. The third pair of images is taken 

over part of the city taken in a long-range manner.  

 

4.2 Evaluation Criteria 

The feature matching tests were performed on the two datasets, 

and the proposed methodology was compared with three state of 

the art methods, SIFT, SURF and ORB. All these methods were 

combined with RANSAC, while the model in the proposed 

method is estimated using Least Squares (LS). LS cannot be used 

efficiently with the other methods since a large number of outliers 

and the lack of geometric awareness associated with the feature 

points could lead to a highly inaccurate fundamental matrix 

model. 

Table 1. Dataset from ISPRS and EuroSDR benchmark 

Image pair 

properties 
Left Image Right Image 

Close-range 

Successive images 

Multiple-depths 

Size: 3000 × 2000 
  

Close-range 

Non-Successive 

images 

Multiple-depths 

Size: 3000 × 2000   

 

 

Airborne 

Long-range 

size: 2500 × 2500 

  

 

To judge on the matching quality, two evaluation criteria are 

used. The first is the matching precision (MP), which was 

adopted by Chen et al. (Chen et al., 2017) and is defined as the 

percentage of the correct matches (NCM) to the number of 

matches (M). The second measure is the percentage of the correct 

matches to the number of detected features (PCMF): 𝑃𝐶𝑀𝐹 =
(𝑁𝐶𝑀/𝐹) × 100%, where 𝐹 is the number of detected features. 

For convenience, the number of detected features was set to be 

relatively the same for all the methods to neutralize the number 

of features when evaluating the matching process. To find the 

correct matches, a fundamental matrix is estimated from the data 

points and outliers are rejected if they exceed certain error 

threshold, based on equation (2).  

 

4.3 Close-Range tests 

The first pair of images contains two images that are taken one 

after another. Therefore, this pair of images is characterised by a 

large overlap. However; this pair includes a large predominant 

surface. That is, a surface covering most of the overlapping area 

and containing many textures.    

Despite the large overlap between the images, the computed 

fundamental matrix, based on RANSAC like methods, is most 

probably degenerate. The reason is that RANSAC tends to fit the 

model that best describes the distributed feature points. Since 

most of the points are on confined on the main building façade, 

RANSAC will reject other points in the background. This 

behaviour is obvious in Figure 7-b, 7-c, and 7-d, in which SIFT, 

SURF and ORB were combined with RANSAC.  

On the other hand, the proposed method guarantees distribution 

of feature correspondence through different depth, as feature 

points can be seen not only on the building façade but also on the 

background. The visual results were also supported by the 

numerical results listed in Table 2. 

It can be seen the proposed method outperforms the state of the 

art methods in terms of the number of correct matches, the 

matching precision, and the percentage of correct matches to the 

detected features. In fact, the matching precision of the proposed 

method is one of the motivations to use LS instead of RANSAC, 
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as the number of outliers is relatively small and can be rejected 

by LS. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7. Feature correspondence for the first image pair. Results 

obtained using (a) the proposed method, (b) SIFT+RANSAC, (c) 

SURF+RANSAC, and (d) ORB+RANSAC. 

 

Table 2. Matching measures for the first image pair when using 

SIFT, SURF, ORB and our proposed method. 

Matching Measures 
Matching Methods 

SIFT SURF ORB OURS 

F 6559 6220 6500 6479 

M 2906 3456 3039 4496 

NCM 2340 2811 2162 4158 

PCMF 35.68% 45.19% 33.26% 64.18% 

MP 80.5% 81.34% 70.11% 92.48% 

 

The second test is performed on the second image pair. This 

image pair is characterised by a relatively larger baseline, as the 

two images are not taken successively, but there are two images 

between them. The images contain a building façade with other 

buildings and trees in the background. Each object in the scene is 

characterised by a local homography.  

Similar results to the first image pair are obtained with the second 

pair, as depicted visually in Figure 7. SURF and ORB, combined 

with RANSAC, failed to produce a well-distributed 

correspondence over the scene structure. The main cause of this 

issue is the weak distribution of the preliminary matched features, 

which is based on descriptor distance comparison. On the other 

hand, both SIFT and the proposed method could find a well-

distributed set of matches. However; the proposed method has 

the highest matching precision and the highest correct matches to 

detected features ratio, as shown in Table 3. 

 

Table 3. Matching measures for the second image pair when 

using SIFT, SURF, ORB and our proposed method. 

Matching Measures 
Matching Methods 

SIFT SURF ORB OURS 

F 7280 7239 7300 7255 

M 1921 2765 1472 3229 

NCM 867 1303 666 3067 

PCMF 11.91% 18.00% 9.12% 42.27% 

MP 45.13% 47.12% 45.24% 94.98% 

 

It should be mentioned here that well-distributed matches are the 

matches that exist over several depths or local homographies in 

the scene structure, and not confined on a single planar surface. 

The impact of the distribution of matches is on the 3D 

reconstruction is highlighted in subsection (4.5). 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 8. Feature correspondence for the second image pair. 

Results obtained using (a) the proposed method, (b) 

SIFT+RANSAC, (c) SURF+RANSAC, and (d) 

ORB+RANSAC. 

4.4 Airborne (Long-Range) test 

The third image pair were taken by a UAV in Nadir view. The 

image pair contains several objects like building, trees and the 

ground. That is, several depths and variety of scene structure exist 

in the image. Therefore, matches features must cover all the 

depths in the scene to obtain the correct fundamental matrix and 

the correct rectification parameters. It can be seen that the 

matched features are distributed over the scene structure in 
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Figure 9-a and 9-b. Whereas, most of the matched features in 

Figure 9-c and 9-d are located on the ground. As expected these 

matches normally result in a flawed rectification.  

The matching precision and ratio of correct matches to the 

detected features for this image pair are listed in Table 4. These 

numerical indicators emphasise the performance of the proposed 

method over the other methods.  

 

Table 4. Matching measures for the third image pair when using 

SIFT, SURF, ORB and our proposed method. 

Matching Measures 
Matching Methods 

SIFT SURF ORB Ours 

F 14201 14335 14500 14247 

M 2792 4636 2466 5598 

NCM 2592 2311 2415 5414 

PCMF 18.25% 16.12% 16.66% 38.00% 

MP 92.83% 49.85% 97.93% 96.71% 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 9. Feature correspondence for the third image pair 

(airborne- Nadir view). Results obtained using (a) the proposed 

method, (b) SIFT+RANSAC, (c) SURF+RANSAC, and (d) 

ORB+RANSAC. 

4.5 Applications to 3D reconstruction 

As discussed earlier, the distribution of matched features over 

different depths (or local homographies) in the scene structure is 

a factor that has a significant impact on the quality of the 3D 

reconstruction. Typically, 3D reconstruction is done using dense 

image matching. The procedure of dense image matching starts 

with image rectification. Two images are first rectified using the 

fundamental matrix, and then matching over scanlines are 

performed. Therefore, errors in dense matching are either due to 

a flawed rectification or due to radiometric characteristics of the 

image pair. Consequently; to limit the error in dense matching to 

the radiometric properties only, a well rectification of the image 

pair is a must. Rectification parameters are a function of the 

fundamental matrix, which should be ideal (non-degenerate) for 

a perfect rectification. As was discussed in earlier subsections, 

accurate fundamental matrix estimation is dependent on the 

distribution of the matches over the scene structure.  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 10. Disparity maps obtained with SGM after image 

rectification. (a) First image pair, rectification using the proposed 

method. (b) First image pair, rectification using the 

SURF+RANSAC. (c) Third image pair, rectification using the 

proposed method. (d) Third image pair, rectification using the 

SURF+RANSAC. 

The impact of the distribution of matches over the scene structure 

is evident from Figure 10, which includes the disparity maps of 

the first and third image pairs that were computed using the semi-

global dense matching (SGM) technique (Hirschmüller, 2008).  

The disparity maps in Figure 10-a and 10-b are produced for the 

first image pair. Matches were obtained using the proposed 

method and SURF+RANSAC for the disparity maps in Figure 

10-a and 10-b respectively. Similarly, for the third image pair, 

disparity maps were created after using the proposed method 

(Figure 10-c) and the SURF+RANSAC (Figure 10-d). 

The disparity maps in Figure 10 highlight the performance of the 

proposed method, especially when dealing with images of 

multiple depths, or dominant planar surfaces. While the disparity 

map in Figure 10-a resembles the actual scene structure, except 

for some noise due to the difference in illumination, the disparity 

in Figure 10-b has much more noise due to the flawed 

rectification.  

A similar situation occurs in the disparity maps in Figure 10-c 

and 10-d. In Figure 10-c, the disparity maps match the actual 

scene. While in Figure 10-d, the disparity map is a false one, in 

which the depths are reversed. For example, parts of the ground 
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in the actual scene are of higher disparity values in the disparity 

map than these of the buildings and trees, which is non-realistic. 

This behaviour is expected, as most of the matched features were 

only covering the ground, as depicted in Figure 9-b.  

 

5. CONCLUSION 

In this paper, a new method was proposed to find accurate, well-

distributed feature correspondences based on an initial set of 

matches (the seed). The seed is used to estimate an initial 

fundamental matrix and an initial homography. Discrepancy 

vectors were introduced as an alternative to the local 

homographies. These geometric entities are then used to predict 

the positions of feature correspondences. To find the actual 

feature correspondence, a correction is performed using template 

matching with the normalised cross-correlation. The proposed 

method was tested on images taken by UAV in close range and 

airborne manner. The performance of the proposed method 

outperforms the state of the art methods in terms of the number 

of matches, the matching precision and the distribution of the 

matches over the scene structure. The distribution of matches 

over the scene structure is of significant impact on the model 

degeneracy and the 3D reconstruction. Therefore, the proposed 

method is a move towards the elimination of model degeneracy 

and flawless scene reconstruction. The method is mainly used 

with UAV images that are taken successively. This assumption 

limits the method to images of similar scale and orientation. 

Otherwise, scale and orientation estimation must be included in 

the method.  
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