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ABSTRACT: 
 

Exploration, documentation and mapping of underwater environment is one of the biggest open challenges for science and engineering. 

Humankind is not naturally designed to operate in water and, despite the enormous technological advancement that offers nowadays 

unprecedented opportunities, diving and working underwater is still very dangerous, especially in confined spaces such as underwater 

caves. Great research efforts are currently devoted to underwater autonomous navigation, but available solutions still mainly rely on 

complex and expensive systems, due to the difficulty of adapting localization and mapping sensors and algorithms suited for terrestrial 

or aerial applications. However, small and affordable underwater remotely operated vehicles (ROVs) are available, which offer good 

opportunities for underwater exploration and mapping. This paper focuses on the development of a small, low-cost ROV designed for 

3D mapping of underwater environments, like caves. The system is based on a commercially available vehicle, the BluRov2, and relies 

on the use of up to 12 action cameras (GoPro) mounted on it. A trifocal camera system for underwater real-time visual odometry can 

also be included. The work describes the photogrammetric procedure developed for the synchronization and calibration of the GoPro 

cameras and provides a thorough analysis on the achievable results. 
 

 

1. INTRODUCTION 

The ability of acquiring and recording precise, dense and geo-

referenced 3D information is a constant request for a variety of 

applications, ranging from civil engineering and construction to 

cultural heritage, from environment to industry. When the area to 

be mapped is vast, mobile mapping systems (MMSs) are the 

optimal solution, allowing to derive 3D metric information of the 

environment while moving in it. Traditionally, MMSs are 

mounted on vehicles, i.e. cars, vans, but also planes and boats 

(Petrie, 2010). These systems are usually expensive and complex 

(Ellum and El-Sheimy, 2002), and are not suitable for mapping 

indoor and underground spaces. To overcome these limitations, 

portable MMMs have been developed both in the research and 

commercial domains and are becoming more and more popular 

for applications in scenarios characterised by harsh conditions 

(Lehtola et al., 2017; Nocerino et al., 2017; Tucci et al., 2018). 

While the last systems are designed to be carried around by an 

operator, ‘terrestrial’ robotic platforms (Nüchter et al., 2013; 

Ziparo et al., 2013) and autonomous aerial micro vehicles 

(Cieslewski et al., 2017) are under study with the aim of 

surveying complex scenes autonomously and, consequently, 

assuring the safety of human operators. 

While it is undoubtful that there still is room for improvements 

towards more and more efficient 3D mapping and modelling 

approaches for ‘terrestrial’ scenarios, challenges are even more 

crucial when it comes to the underwater environment. It is 

estimated that about 95% of the ocean is unexplored (NOAA, 

2018) and underwater caves represent probably the most 

fascinating and dangerous type of underwater exploration. Deep 

water applications commonly entail the use of expensive, huge 

and complex remotely operated (ROV) or autonomous 

underwater (AUV) vehicles. Recently, smaller and low-cost 
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systems have started to appear (e.g., BlueRov2, OpenROV, Sibiu 

Nano, etc.), revolutionizing the world of underwater 

investigation and opening unprecedented opportunities for 

researches in underwater caves, an environment which can be 

highly dangerous also for well-trained divers. 
 

Model BluerRov2 

Thrusters 6 x Blue Robotics T200 

Lighting system 

4 x 1500 lumens each with 

dimming control 

Aquavolt Mini 5000 (2 x 5000 

lumen)  

INS and additional 

sensors 

3-DOF Gyroscope  

3-DOF Accelerometer  

3-DOF Magnetometer  

Internal barometer  

Current and Voltage Sensing  

C
a

m
er

a
 

Integrated 

ELP-USBFHD06H-L36 

Sensor: Sony IMX322LQJ-C 

Focal Length: 3.6 mm 

Underwater DOF (horizontal): 110° 

Light Sensitivit:0.01lux 

Resolution: 1080 pixels 

Trifocal system 

Sony IMX219PQ 

Focal Length 3.04 mm 

Sensor resolution 3280 × 2464 

pixels 

Additional 
Up to 12 x GoPro cameras (Hero5 

Black and Hero6 Black) 

Control system  
Fathom-X Tether Interface Board 

M Robotics PixHawk 

Table 1. Main characteristics of the modified version of the BlueRov2. 
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Figure 1. The BlueRov2 fully equipped for underwater cave exploration 

 

1.1 Paper’s aim and organization 

Moving from the last considerations, this contribution presents 

the development of a small, low-cost ROV for 3D mapping of 

underwater cave based on photogrammetry. The system is a 

modified version of the commercially available BluRov2 (Table 

1), equipped with a trifocal camera system (Nawaf et al., 2018) 

and with the possibility of mounting up to 12 GoPro action 

cameras (Figure 1). 

The paper focuses on the methodology developed for the 

synchronization and calibration of the GoPro multi-camera 

system. In the current version, eight GoPro cameras, two Hero 5 

Black and six Hero 6 Black, are mounted on the BluRov2. 

The manuscript is organised as follows. First, an overview of 

related works is provided and, then, an in-depth analysis on the 

achieved results is presented. The paper concludes summarising 

the main outcomes, while further steps are will be required to 

combine the data from the GoPro cameras with the trifocal 

camera system and the inertial navigation unit embedded on-

board the BluRov2. 

 

2. RELATED WORKS 

Action cameras have become very popular for photogrammetric 

applications thanks to their flexibility, lightweight, robustness 

and low cost. 

Ballarin et al. (2015) used a GoPro Hero3 Black Edition on a 

small aerial drone to survey an archaeological site. The accuracy 

of orthophotos produced with the GoPro images was tested 

against check points measured with RTK-GNSS approach. 

Hastedt et al. (2016) investigated the reliability and accuracy of 

GoPro Hero4 for unmanned aerial vehicle (UAV) based 

photogrammetry, using different software packages, calibration 

setup, acquisition mode (i.e., single images vs video) and 

resolution.  

A five-head GoPro system for indoor mapping purposes was 

proposed by Teo (2015). The five cameras were separately 

calibrated, their lever-arms and boresight angles estimated and 

video streams synchronised using an external timer. Keohl et al. 

(2016) presented a four GoPro Hero 4 multi-camera system for 

outdoor mobile mapping applications. A remote controller was 

used for the system synchronization, providing a not very 

accurate synchronization. 

Schmidt & Rzhanov (2012) employed a stereo-camera systems 

based on two GoPro Hero2 for seafloor bathymetry 

measurements. The cameras set in video mode were 

synchronised using a synchronization cable. A similar sterero-

camera system mounted on micro-ROV and combined with a 

sonar scanner was proposed by Nelson et al. (2014) for surface 

reconstructions of an underwater archaeological site. 

 

3. DEVELOPED APPROACH 

The approach developed for the multi-camera system calibration, 

i.e. the computation of relative orientation (RORE) parameters 

between the cameras, is intended to be flexible. It follows the 

guiding principle of developing a procedure applicable in 

different environments, without the need of a dedicated facility.  

The main steps are summarised in Figure 2 and detailed in the 

following sections. 

 

 
 

Figure 2. Flow-chart of the implemented procedure for the computation 

of RORE between the GoPro cameras. 

 

The developed ROV system is designed to work in harsh 

underwater environments, characterised by narrow spaces and 

low light conditions. Consequently, the mean idea is that the 

system is calibrated 'in-air' before the underwater mission and the 

computed RORE parameters are employed in the processing of 

the underwater dataset in two ways. The simplest consists in 

exploiting the RORE to infer a scale constrain between the 

camera centres. The second aims to speed up the processing, 

computing the approximate exterior orientation parameters of 
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slave cameras from the exterior orientation of the camera selected 

as reference. 

For this specific application, where a high number of action 

cameras are used and the system is designed to operate 

underwater, a hardware-based synchronization approach is not 

feasible. Consequently, all the cameras are set in video mode and 

a post-processing software synchronization method is used, 

based on a well-recognisable common event visible in the single 

video streams. 

 

4. PRELIMINARY STEPS 

4.1 Scale definition and reference measurements  

The multi-camera system calibration approach relies on the use 

of reference measurements for the definition of RORE 

parameters between the several cameras that compose the 

system. 

Coded targets, arranged on planar sheets of known dimensions, 

are attached to a rigid structure; while the current experiment was 

performed in a basement (Figure 3), the procedure is easily 

exploitable in different closed spaces, like for example a small 

room or the back of a van.  

In this study, a professional grade digital single lens reflex 

(DSLR) camera (Nikon D810) equipped with a 24 mm lens is 

used to measure the coordinates of 135 coded targets, with a final 

estimated accuracy of 0.5 mm. The self-calibrating image 

network, comprising 190 images, is shown in Figure 3, together 

with the calibration environment. 

 

4.2 GoPro cameras set-up, video processing and frame 

extraction 

To reproduce dark lighting conditions expected in real 

environments, the BlueRov2 lights are kept turned off and the 

GoPro cameras settings were configure to avoid motion blur in 

the video frames (minimum exposure time equal to 1/120 seconds 

and 400 as minimum ISO). Following the outcomes of the 

experiments presented by Hastedt et al. (2016), the videos were 

recorded with the in-house GoPro camera fisheye distortion 

correction enabled (FOV linear), thus producing frames that can 

be assimilated to a central projective model. This choice is 

enforced by the evidence that underwater when flat ports are 

used, as for the GoPro cameras, the field of view (FOV) is limited 

by total internal reflection (Menna et al., 2016). The video 

resolution is set at 2.7K (2704 pixel x1520 pixel) @ 30 frame per 

seconds (fps), corresponding to a nominal frame rate of 29.97 fps. 

The frames are extracted in the lossless png format from the 

original video stream using the FFmpeg free software (FFmpeg 

Development Team, 2010). The png frames are then converted in 

jpg at the highest possible quality, and the following exif tags are 

added using ExfiTool (Harvey, 2003): Make, Model, 

FocalPlaneXResolution, FocalPlaneYResolution, FocalLength, 

FocalLengthIn35mmFormat. Based on these parameters, 

photogrammetric software applications can automatically 

recognise images coming from different cameras and estimate the 

initial value for the principal distance. 

 

 

 

a)  

b)  
c)  

Figure 3. Top (a) and later views (b, c) of the test area with the reference camera network 
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Figure 4. Typical self-calibrating network for the each GoPro 

 

 1-GoPro6 2-GoPro6 3-GoPro6 4-GoPro6 5-GoPro5 6-GoPro5 7-GoPro6 8-GoPro6 

Num. of images 262 313 258 258 309 306 268 196 

Principal distance (mm) 2.2588 2.2633 2.2575 2.2591 2.2689 2.2527 2.2510 2.2594 

c (mm) 0.0001 0.0002 0.0001 0.0002 0.0002 0.0003 0.0001 0.0003 

Principal point ppx (mm) -0.0118 0.0005 -0.0057 -0.0434 0.0278 0.0099 -0.0421 -0.0065 

ppx (mm) 0.0001 0.0001 0.0001 0.0002 0.0001 0.0002 0.0001 0.0002 

Principal point ppy (mm) -0.0199 -0.0036 -0.0033 -0.0051 -0.0219 0.0101 -0.0131 -0.0144 

ppy (mm) 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0001 0.0002 

k1 (mm-2) 
-5.75964e-

004 

-8.46643e-

004 

-5.91621e-

004 

-6.47151e-

004 

4.85256e-

003 

5.45661e-

003 

-3.47231e-

004 

-6.62475e-

004 

k1 (mm-2) 
4.97067e-

006 

7.18832e-

006 

3.59348e-

006 

1.04873e-

005 

1.42448e-

005 

2.40999e-

005 

4.89998e-

006 

1.20024e-

005 

k2 (mm-4) - - - 
2.77275e-

005 

-3.48628e-

004 

-3.43976e-

004 

2.16916e-

005 
- 

k2 (mm-4) - - - 
1.26451e-

007 

2.35563e-

006 

3.95520e-

006 

5.51442e-

008 
- 

k3 (mm-6) - - - 
-2.96399e-

006 

-2.27144e-

006 

-2.33100e-

006 

-2.35193e-

006 
- 

k3 (mm-6) - - - 
1.33831e-

008 

3.59998e-

008 

6.96289e-

008 

5.96669e-

009 
- 

P1 (mm-1) 
5.53300e-

004 

-1.78911e-

004 

1.97794e-

004 

2.19682e-

003 

-1.43115e-

003 

-6.12209e-

004 

2.09260e-

003 

2.46723e-

004 

P1 (mm-1) 
5.17309e-

006 

7.89015e-

006 

3.90188e-

006 

1.01124e-

005 

6.06698e-

006 

1.16728e-

005 

4.41867e-

006 

1.33453e-

005 

P2 (mm-1) 
8.49805e-

004 

1.29264e-

004 

6.21069e-

006 

1.19171e-

004 

1.06867e-

003 

-5.32159e-

004 

6.74302e-

004 

6.24930e-

004 

P2 (mm-1) 
5.18229e-

006 

6.01061e-

006 

2.71970e-

006 

7.65371e-

006 

8.26441e-

006 

9.29176e-

006 

3.61592e-

006 

1.01303e-

005 

Affinity B1 
-1.39548e-

003 

-1.20837e-

003 

-1.29569e-

003 

-1.26928e-

003 

-1.78142e-

002 

-1.75087e-

002 

-1.49638e-

003 

-1.32110e-

003 

B1 
5.21193e-

006 

8.96003e-

006 

4.48993e-

006 

1.24481e-

005 

8.26441e-

006 

1.70022e-

005 

5.84069e-

006 

1.52401e-

005 

Shear B2 
2.14500e-

004 

-3.84716e-

006 

-1.48764e-

004 

-1.00828e-

004 

-1.07170e-

004 

-1.50860e-

004 

-4.87838e-

005 

2.89534e-

004 

B2 
6.92324e-

006 

9.70481e-

006 

5.06160e-

006 

1.31367e-

005 

1.08494e-

005 

1.69015e-

005 

6.05329e-

006 

1.47391e-

005 

RMS re-projection error 

(pixel) 
2.6 2.7 2.6 2.6 3.1 2.8 2.5 2.6 

RMSE [on # check points] 

(mm) 
0.9 [41] 0.6 [41] 0.7 [41] 0.8 [41] 1.2 [41] 0.7 [35] 0.9 [35] 0.6 [41] 

Table 2. Results of self-calibrating bundle adjustment for the eight GoPro cameras. Interior orientation and additional parameters (correction 

coefficients) are reported along with internal assessment in image (root mean square - RMS of re-projection error) and object space (root mean square 

error - RMSE on check points). 
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4.3 Single camera calibration  

The eight GoPro cameras are calibrated separately; a typical 

image network configuration is shown in Figure 4. The 

volumetric calibration testfield is composed of a vertical wall 

intersecting the floor and ceil. 

From each video stream, the key frames are extracted, assuring a 

good image quality and including rolled imaging around the 

optical axis. Agisoft PhotoScan is used for the image processing. 

Table 2 summarises the results of the calibration processing, 

where only the significant additional parameters are retained, and 

Figure 5 shows the distortion maps for the different cameras. 

Interestingly, the affinity term B1 is one order magnitude higher 

for the two GoPro 5 than the GoPro 6. The distortion maps 

feature very peculiar trends, with the two GoPro 5 showing a 

more pronounced vertical pattern. 

 

 

1-GoPro6 2-GoPro6 

  
3-GoPro6 4-GoPro6 

  
5-GoPro5 6-GoPro5 

  

7-GoPro6 8-GoPro6 

  
Figure 5. Distortion maps (difference in mm between ideal and actual distorted pixel position) for the eight GoPro cameras 
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5. EIGHT GOPRO CAMERA SYSTEM CALIBRATION 

Once the single cameras are calibrated, they are mounted on the 

BlueRov2, which is positioned on a cart to avoid touching the 

cameras. After the system synchronization (section 5.1), video 

streams are acquired while the cart is moved in the calibration 

environment (Figure 6 a and b). 

 

5.1 Synchronization 

For the synchronization of the eight video streams, the system is 

put in complete darkness and a flash light is switched on and off 

(four times in this experiment). The frames are extracted at the 

original frame rate and, for each frame, the median intensity 

values is computed. The video streams are automatically 

synchronized by locating the peak (minimum and maximum) 

values in the times series of the median intensity difference 

(Figure 6c).  

 

a)  
b)  

c)  

Figure 6. Camera network of the eight GoPro cameras system calibration (a, b). The white rectangle in b indicates the subset selected for the calibration 

approach 3 in section 5.2. (c) Automatic synchronization method based on the peak values of the median intensity values: four separate events are 

evident for the eight different cameras, represented by the different colours 

 

 Self-calibration with 

approximate value from 4.3 

[>2300 images] 

Fixed pre-calibration 

from 4.3 

[>2300 images] 

Fixed pre-calibration from 

4.3– subset 

[304 images] 

 FreeNet Constrained FreeNet Constrained FreeNet Constrained 

RMSE [on # check points] (mm) 1.6 [87] 1.0 [87] 1.6 [87] 1.1 [87] 7.1 [19] 1.2 [19] 

Max baseline std [on camera pair] (mm) 6.1 [2-6] 5.2 [6-7] 2.7 [1-5] 2.6 [5-6] 4.6 [6-7] 4.2 [1-8] 

Max baseline MAD [on camera pair] (mm) 2.4 [6-7] 2.2 [6-7] 2.2 [1-5] 2.1 [5-7] 4.0 [6-7] 3.6 [1-8] 

Max omega std [on camera pair] (deg) 41.9 [2-6] 2.1 [4-7] 1.6 [5-7] 1.6 [5-7] 1.9 [5-7] 1.9 [5-7] 

Max omega MAD [on camera pair] (deg) 9.8 [2-6] 0.9 [5-7] 1.2 [5-7] 1.2 [5-7] 1.5 [5-7] 1.5 [5-7] 

Max phi std [on camera pair] (deg) 0.3 [1-7] 0.3 [1-7] 0.2 [1-7] 0.2 [1-7] 0.4 [4-8] 0.4 [4-8] 

Max phi MAD [on camera pair] (deg) 0.05 [1-2] 0.04 [1-2] 0.02 [1-2] 0.02 [1-2] 0.08 [1-2] 0.08 [1-2] 

Max kappa std [on camera pair] (deg) 3.2 [5-7] 2.2 [4-7] 1.6 [5-7] 1.6 [5-7] 1.9 [5-7] 1.8 [5-7] 

Max kappa MAD [on camera pair] (deg) 0.6 [1-2] 0.4 [1-2] 0.3 [1-2] 0.2 [1-2] 0.3 [1-2] 0.3 [1-2] 

Table 3. Results of multi-camera system calibration 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-1, 2018 
ISPRS TC I Mid-term Symposium “Innovative Sensing – From Sensors to Methods and Applications”, 10–12 October 2018, Karlsruhe, Germany

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-1-329-2018 | © Authors 2018. CC BY 4.0 License.

 
334



 

 

The synchronization procedure with the flashlight is repeated at 

the end of the acquisition to verify that the synchronization is 

preserved. With the adopted approach, the maximum 

synchronization error can be equal to one frame, i.e. 1/29.97 

(≈0.033) seconds that is the inverse of the actual frame rate. 

 

5.2 Relative orientation 

RORE parameters are computed for all possible camera pairs, at 

the each instant of time or epoch (t). According to equation 1, for 

an eight-camera system, 28 is the total number of RORE for each 

epoch t. 

 

∀ 𝑡 ∈ 𝑇:  # 𝑜𝑓 𝑅𝑂𝑅𝐸𝑡 = (
(# 𝑜𝑓 𝑐𝑎𝑚𝑒𝑟𝑎𝑠 )!

(# 𝑜𝑓 𝑐𝑎𝑚𝑒𝑟𝑎𝑠 − 2) !
) 2⁄

𝑡

 (1) 

 

where T is the total test duration. 

The camera showing with the smallest set of RORE std (or MAD) 

will be selected as reference. 

For RORE computation, the definition and notation presented in 

Menna et al. (2013) are here adopted. 

In the following equations, the letters G, R, S, indicate 

respectively the global (or world), reference camera and slave 

camera coordinate systems. The superscripts specify the frame 

where the quantity is defined, e.g. PG is the position vector of a 

generic point P known in the global frame. The notation 𝐾𝑖
𝑗
 

expresses the transformation from the coordinate system {i} to 

the coordinate system {j}. According to this rule, MG
S  is the 

rotation matrix from the global to the slave camera frame and OS
G 

represents the origin of slave camera frame expressed in the 

global reference frame. Following this notation, the coordinates 

of the point PG known in the global frame can be expressed in the 

slave camera reference frame as function of the exterior 

orientation parameters of the slave camera: 

 

𝑃𝑆 = [
𝑋
𝑌
𝑍

]

𝑆

= 𝑀𝐺
𝑆 ∙ [

𝑋 − 𝑋𝑜𝑆

𝑌 − 𝑌𝑜𝑆

𝑍 − 𝑍𝑜𝑆

]

𝐺

= 𝑀𝐺
𝑆 ∙ (𝑃𝐺 − 𝑂𝑆

𝐺) (2) 

𝑀𝐺
𝑅

= [
c 𝜑 c 𝑘 c 𝜔 s 𝑘 + s 𝜔 s 𝜑 c 𝑘 s 𝜔 s 𝑘 − c 𝜔 s 𝜑 c 𝑘

− c 𝜑 s 𝑘 c 𝜔 c 𝑘 − s 𝜔 s 𝜑 s 𝑘 s 𝜔 c 𝑘 + c 𝜔 s 𝜑 s 𝑘
s 𝜑 − s 𝜔 cos 𝜑 c 𝜔 c 𝜑

] 1 
(3) 

𝑂𝑆
𝐺 = [

𝑋𝑜𝑆

𝑌𝑜𝑆

𝑍𝑜𝑆

]

𝐺

 (4) 

 

where (3) and (4) are respectively the rotation matrix, containing 

the Euler angles, and the position vector of the slave camera 

perspective center in the global frame. Performing the RORE 

between the two cameras is equivalent to re-orienting the global 

reference system to be coincident with the reference camera 

frame. This transformation is expressed as: 

 

𝑃𝑆 = [
𝑋
𝑌
𝑍

]

𝑆

= 𝑀𝑅
𝑆 ∙ [

𝑋 − 𝑋𝑜𝑆

𝑌 − 𝑌𝑜𝑆

𝑍 − 𝑍𝑜𝑆

]

𝑅

= 𝑀𝑅
𝑆 ∙ (𝑃𝑅 − 𝑂𝑆

𝑅) (5) 

𝑀𝑅
𝑆 = 𝑀𝐺

𝑆 ∙ (𝑀𝐺
𝑅)T (6) 

𝑂𝑆
𝑅 = 𝑀𝐺

𝑅 ∙ (𝑂𝑆
𝐺 − 𝑂𝑅

𝐺) (7) 

 

                                                                 
1 c(∙) = cos(∙) , s(∙) = sin(∙) 

where (6) and (7) are respectively the rotation matrix (i.e., 

orientation or boresight angles) and coordinates of the slave 

camera in the reference camera coordinate frame. In other words, 

equation (7) represents the components of the baseline (or lever-

arm) between the two cameras in the coordinate system centered 

on the reference camera. From the above transformation, the 

exterior orientation parameters of the chosen reference camera 

become null, and the exterior orientation of the slave camera with 

respect to the reference camera, i.e. the RORE, is obtained.  

 

At each epoch t, the RORE of the eight GoPro cameras mounted 

on the BlueRov2 are estimated from the exterior orientation 

parameters. The mean and median values are then computed from 

the whole time series of duration T. 

Staring from the last identified synchronization event (section 

5.1), one frame per second is extracted from each camera video 

streams. All the extracted frames are processed together in 

Agisoft Photoscan, enforcing a camera-variant bundle 

adjustment, where a different set of calibration parameters is 

defined for each GoPro. 

Three different approaches are tested:  

1. the pre-computed camera calibration parameters 

(section 4.3) are used as initial values for a self-

calibrating bundle adjustment, i.e. interior and exterior 

orientation parameters are estimated for the complete 

camera network shown in Figure 6 a and b; 

2. the pre-computed camera calibration parameters 

(section 4.3) are kept fixed in the processing, i.e. only 

the exterior orientation parameters are estimated from 

the complete camera network shown in Figure 6 a and 

b; 

3. as 2, i.e. only the exterior orientation parameters are 

estimated, but from a small subset of images (white 

rectangle in Figure 6 b), with the aim of simulating the 

camera calibration procedure in a small environment. 

The coordinates of the coded targets previously measured with 

the reference photogrammetric system (section 4.1) are used to 

perform:  

a. a free network adjustment, where the coded targets are 

used to define the scale 

b. a constrained adjustment 

for the three approaches described above. 

The results of different processes are reported in terms of root 

mean square error (RMSE) on check points, maximum value of 

the standard deviation (std) and median absolute deviation 

(MAD) of the baseline (lever arm) and Euler (boresight) angles 

from the RORE between each camera pair (Table 3). 

The RMSE on the check points improves for the constrained 

solution, especially in the case of the small image subset. The use 

of a robust statistic such as the MAD is highly significant for the 

omega angle when the self-calibration adjustment is performed. 

Figure 7 shows the mean and median baseline values with the 

associated std and MAD (error scale = 100). The robust statistic 

estimators show that the effect of residual outliers can be further 

mitigate, especially for approaches 1 and 3.  

The absolute difference between the three different approaches, 

computed for the constrained adjustment solutions, is also 

reported, taking as reference the fixed calibration full dataset 

(Figure 8). It shows that the fixed-calibration full and subset 

approached provide more consist results, with difference below 

2 mm. 
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Figure 9. Mean and median baseline (lever arm) values (in mm) with the associated std and MAD (error scale = 100). The results are reported for the 
constrained solution. 

 

 

 

Figure 8. Absolute difference (in mm) between the three different approaches, taking as reference the fixed calibration full dataset. The results are 
reported for the constrained solution.  
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6. CONCLUSIONS AND OUTLOOK 

The paper presented an in-depth analysis of the calibration of a 

multi-camera system, composed of eight action cameras (GoPro) 

mounted on a low-cost ROV. The system is designed as MMS 

for the photogrammetric survey of underwater caves. 

The multi-camera system calibration approach entails a three-

step procedure, consisting in the (i) measurement of a reference 

calibration environment, (ii) estimation of interior orientation 

parameters for each single camera, (iii) computation of the RORE 

(lever arm and boresight angles) between the multiple cameras.  

The calibration results of the different GoPro cameras show that 

the interior orientation parameters are significantly different, 

while similar patterns in cameras of the same model can be 

identified. 

The pre-calibration of the single camera provides results with 

smaller std (and MAD) in the estimation of the RORE. Normal 

and robust statistical parameters show that the effect of residual 

outliers can be further mitigate. Decreasing the number of images 

and reducing the space for the calibration leads to a difference in 

the RORE baseline less than 2 mm.  

The next steps will involve the inclusion of the trifocal sensor and 

the inertial navigation unit in the system calibration, and tests in 

underwater environment.  
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