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ABSTRACT:  

Assessment and monitoring of crop water requirement (CWR) or crop evapotranspiration (ETc) over a large spatial scale is the 

critical component for irrigation and drought management. Due to growing competition and increasing shortage of water, careful 

utilization of water in irrigation is essential. The usage of water for irrigation/agriculture is a top priority for countries like Pakistan, 

where the GDP mostly based on agriculture, and its scarcity may affect the crop production. Remote sensing techniques can be used 

to estimate crop water requirement or crop evapotranspiration which can help in efficient irrigation. Simplified-surface energy 

balance index (SSEBI) model is used to estimate evapotranspiration (ET) of wheat during 2015-16 growing period in Tando Adam, 

Sindh. Landsat-8 satellite data for the corresponding years were used. With the help of National Agromet Centre report chart of 

Crop coefficient (Kc) the CWR, ETc of all phonological stages were estimated. Results indicated that maximum ET and maximum 

CWR were found in the third leaf to tillering stage with a value of 0.75 and 0.89 respectively. This study will help in managing and 

monitoring of ET spatial distribution over irrigated crops which results in better irrigation scheduling and water consumption.  
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1. INTRODUCTION  

Hydrological cycle and the irrigation are mainly controlled by 

evapotranspiration (ET). ET is the most prominent and valuable 

factor in irrigation. The accuracy of ET can control water 

management, irrigation scheduling, and many other factors. 

Two-thirds of global warming has occurred since the 1980's, 

which has created temperature fluctuations all over the globe as 

well as created water inaccessibility. These constant 

temperature changes may result in droughts which can cause 

drylands.  The usage of water is the top priority for countries 

like Pakistan where the GDP is mostly based on agriculture, 

and the lack of water may affect the crop production. 

Challenges as mentioned earlier call for more effective and 

technically sound approach for the estimation of crop 

evapotranspiration (ET). ET is generally pretentious by weather 

parameters, crop conditions, and management factors and thus 

often subject to unpredictability over space and time. 

Temperature variation affecting ET could be measured by 

various contrivances methods such as PenmanMonteith 

method, lysimeter, Bowen Ratio Energy Balance (BREB), eddy 

covariance, etc. However, they prove only point measurements 

and do not represent spatial heterogeneity in surface and 

atmospheric conditions. Penman-Monteith method has some 

difficulty in observations and calculations of aerodynamic 

parameters and surface resistances for all types of crops; 

lysimeter is expensive to install and maintain; BREB method is 

non-reliable during advective periods (Blad & Rosenberg, 

1974), while the eddy covariance technique which has energy 

balance closure issue due to small areal coverage, shows higher 

sensitivity for small eddies and needs variety of corrections to 

obtain final output of fluxes(Clement, Burba, Grelle, Anderson, 

& Moncrieff, 2009). These limitations provide a scope of using 

the new dimension of technology known as ‘Remote Sensing' 

(RS) because it provides a measure of the actual state of 

vegetation and spatial quality to infer ETc over space and time. 

Various RS techniques and models have been proposed over 

the last few periods for estimation of ETc over cropland and 

natural ecosystems (Allen, Bastiaanssen, Tasumi, & Morse, 

1998; Carlson, Gillies, & Schmugge, 1995; Chen, Wang, Jiang, 

Mao, & Yu, 2011; Kustas & Norman, 1999); (Su, 2002); 

(PATEL,  RAKHESH, & MOHAMMED, 2006);(Allen et al., 

1998; ANDERSON et al., 2008; Li et al., 2009; Tang et al., 

2011). Most of the remote sensing-energy balance (RS-EB) 

models are dependent on the field-based as well as weather-

based observations which are dynamic in time. A model which 

is known as ‘Simplified-Surface Energy Balance Index' (S-

SEBI) has two major advantages over other RS-EB models: (I) 

no additional meteorological data is needed for energy flux 

estimation if the surface extremes of vegetation cover and soil 

moisture are available, (II) this model concerns about the 

extreme temperature of the dry and wet conditions which varies 

with changing reflectance values, where other models try to 

calculate a static value of temperature for dry and wet 

conditions, both for whole image and for each land use class 

(Roerink, Su, & Menenti, 2000). S-SEBI computes ETc using 

the evaporative fraction (Λ) theory and based on 

parameterization of wet (Maximum ETc ) and dry (minimum 

ETc ) edge from triangle scatterplot of albedo (α) and (LST) 

(García, Villagarcía, Contreras, Domingo, & Puigdefábregas, 

2007; Gómez, Olioso, Sobrino, & Jacob, 2005; Mattar et al., 

2014; Roerink et al., 2000; Santos, Bezerra, Silva, & Rao, 

2010). 

 

2. SITE AND DATA DESCRIPTION  

2.1 Study area  

This study comprises over Tando Adam, Sindh area .Tando 

Adam is known for its industries and its agriculture; crops 

raised nearby include sugar-cane, wheat, cotton, bananas, and 

mangoes. 
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Figure 1. Study Area 

2.2 Satellite data  

The two imaginary Landsat 8 used are Operational Land Imager 

(OLI) and Thermal Infrared Sensor (TIRS) in the present study. 

landsat-8 data has 11 spectral bands, where six within the 

visible and near-infrared (NIR) region and two bands are 

located in the thermal infrared (TIR) region of the 

electromagnetic spectrum.  

 

3. METHODOLOGY  

Using Landsat-8 OLI and TIRS data, the primary purpose of the 

present study is to frame-work the S-SEBI algorithm and 

estimate ET. The present section describes steps followed in the 

pre-processing of remote sensing data, land use/land cover 

(LULC) classification of the area, parameterization of S-SEBI, 

estimation of ET.  

  

3.1 Pre-processing of Landsat-8 image  

Primary corrections such as radiometric and atmospheric 

corrections are applied and then processed by the Landsat-8 

data. A radiometric correction was done by transforming the 

Digital Number (DN) values to radiance or reflectance values 

using standard methodology given by USGS.  

  

3.2 Calculation of NDVI  

NDVI of all phenological stages were calculated for each 

month with NIR and Red Bands of Landsat 08 satellite.  

   

 
 

3.3 Parameterization of S-SEBI model  

S-SEBI is a RS-EB model to estimate surface energy fluxes 

from remote sensing measurements. For estimation of ET we 

calculate evaporative fraction from remote sensing using 

surface reflectance and LST from dry and wet pixels, the model 

was developed by (Roerink et al., 2000). This model has been 

already tested and validated globally with the in situ flux 

measurements (García et al., 2007; Gómez et al., 2005; Jin, 

Wan, & Su, 2005; Mattar et al., 2014; Santos et al., 2010; 

Sobrino, Gómez, JiménezMuñoz, Olioso, & Chehbouni, 2005). 

The surface energy balance in a generalized form can be written 

as (Allen et al., 1998):  

 

Rn = H + λE + G  

 

Where, Rn is the net radiation flux (Wm−2); H is the sensible 

heat flux (Wm−2), λE is the latent heat flux (Wm−2) and G is 

the soil surface heat flux (Wm−2). This model is applied in the 

present for regional estimation. Normalized Difference 

Vegetation Index (NDVI) and surface albedo were estimated 

from visible, NIR and SWIR bands Landsat-8 OLI. Surface 

albedo (α) was retrieved by applying narrowband to broadband 

conversion as per the method proposed by Smith (2010). The  

LST, another important parameter in the estimation of Λ using 

SSEBI was derived by applying single-channel LST retrieval 

method suggested by (Sobrino et al., 2005)on the 10th band 

(TIR band) of Landsat-8 data. The known prior method of 

surface emissivity (Ɛ0) estimation was used to generate ε0 maps 

using NDVI as primary inputs. The Rn which is the vector sum 

of the difference in the incoming shortwave radiation (RS ↓) 

and the reflected shortwave radiation (RS ↑), the downward 

atmospheric longwave (RL↓) and the surface-emitted longwave 

radiation (RL↑) can be expressed as:  

      

Rn = (1 − α) ⋅ RS↓ + RL↓ − RL↑ − (1 − ε0) ⋅ RL↓  

  

All these components in this equation were estimated to find 

out the observed meteorological data from the study area via 

Landsat-8. The energy to heat up the soil is represented by the 

sole letter G. The ratio based empirical relation of G proposed 

by (Bastiaanssen, 2000)can be expressed as:  

  

 
 

Location and time of image acquisition are represented by the 

letter T. The estimation of the H is the most complex 

component, in this equation. In S-SEBI, the H and λE are not 

calculated separately, the combined value of these two fluxes in 

the form of Λ is calculated as:                               

It is observed by (Roerink et al., 2000)that if the 

surface reflectance is plotted against the surface temperature, at 

low reflectance, the with increasing reflectance surface 

temperature is less or more constant specifically for saturated 

water surfaces like land irrigation and open water.  

Two extreme surface reflectance-to-surface temperature 

relationships can be established, is used for computing 

Evaporating Fraction (Λ) by two extreme pixels (wet and dry 

pixel). In the case of a wet pixel, H can be assumed as zero so 

λEmax can be estimated by subtracting G from Rn (i.e. λEmax = 

Rn − G). While at the dry pixel H will be the highest (Hmax), 

which can be estimated by subtracting the G from Rn (i.e. Hmax 

= Rn − G). In such case the Λ can be expressed as:   
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Dry pixels and wet pixels are defined by the letters TH and 

TLE. Dry edge (radiation controlled), wet edge (evaporation 

controlled).  

 
 

 
Figure 2. Surface reflectance-to-surface temperature 

relationship 

aH, bH, aλE and bλE are empirical coefficients estimated from the 

scatter plot between LST and α over study area for each satellite 

image. Substituting Equations (6) and (7) in Equation  

(5) the Λ can be estimated as:  

 

 
 

Once Λ is determined λE is calculated as;  

 

 By this formula.  

Then we calculated λE in mm/hour by this formula:  

 

Where λ =2260000 J/kg  

3.4 Calculation of Crop Water Requirement (CWR)   

After determining ET crop water requirement (CWR) can be 

predicted using the appropriate crop-coefficient (Kc).With the 

help of National Agromet Centre kc chart. The formula for 

calculating the CWR for ET crop is:  

  

Or 

 

 

Figure 3. Kc Chart 

4. RESULTS  

The study results consist on NDVI, ET and CWR based 

phenological stages of wheat crop which used determine the 

area for wheat crop, water stress conditions at different time 

periods and finally the estimates of CWR.   

  

4.1 Normalized Difference Vegetation Index (NDVI)  

From the observation of NDVI, we get the different vegetation 

index from sowing to full maturity. Figure 4 and 5 presents the 

sowing to emergence NDVI of wheat is just growing with the 

value of 0.3 which is the minimum value. In the emergence of 

the third leaf, the value of NDVI is 0.34. In the third leaf to 

tillering, the value of NDVI is 0.45. In tillering to shooting the 

value, NDVI is 0.48. In shooting to heading the value of NDVI 

is 0.59 which is maximum. In flowering to milk maturity 0.56. 

In milk maturity, to wax maturity the value is 0.31. In wax 

maturity, to full maturity, the value of NDVI is 0.31. The 

graphical representation shows the values of NDVI index wheat 

crop seasons maturity, the higher the value means the higher 

the crop of wheat in that month.  

  

 
Figure 4. NDVI Graph  

 

Figure 5. NDVI Phenological Stages  

4.2 Evapotranspiration  

Different vegetation indices showed the different season of 

wheat which help out in the determination of ET. Figure 6 and 

7 shows the mapped and graphical ET values, the higher the 
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value, the higher the evapotranspiration on the month of that 

crop. In sowing to emergence, the ET of that period is low with 

a value of 0.19. In the emergence of the third leaf, the value of 

ET is 0.42. In the third leaf to tillering, ET is maximum with a 

value of 0.75. In tillering to shooting the value ET is 0.45. In 

shooting to heading the value of ET is 0.38 In flowering to milk 

maturity, the value is 0.55. In milk maturity, to wax maturity 

the value is 0.39. In wax maturity, to full maturity, the value is 

0.32.  

 

 
Figure 6. ET Phonological Stages 

 

Figure 7. ET at different phenological stages 

 

4.3 Crop water requirement (CWR)  

In sowing to emergence, the CWR of wheat is 0.15. In 

emergence of the third leaf, the value of CWR is 0.34. In the 

third leaf to tillering, the value is 0.89 which is maximum of 

CWR. In tillering to shooting the value is 0.35.  In shooting to 

heading the value is 0.39. In flowering to milk maturity, the 

value is 0.41. In milk maturity, to wax maturity the value is 

0.21. In wax maturity, to full maturity, the value is 0.14.  

It is clear to find out the selective months for water requirement 

throughout the wheat phenology. The higher the value, the 

higher the CWR.  

 

 
. Figure 8. CWR Phenological Stages 

 

 
Fiqure 9. CWR OR Kc Graph 

 

5. CONCLUSION  

In this study, we explored the NDVI values, ET values of wheat 

crops at different phenological stages. With the help of kc 

values published by National Agromet Centre, we also 

calculated CWR of all phenological stages of wheat. The 

maximum NDVI values were found in flowering to milk 

maturity stage.the maximum ET was found in the third leaf to 

tillering stage the maximum value of CWR was found in the 

third leaf to tillering stage. This study will help to manage and 

monitor the spatial distribution of ET over irrigated crops 

which results in better irrigation scheduling and water 

consumption.  
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