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ABSTRACT: 

 

Synthetic Aperture Radar (SAR) provides consistent information on target land features; especially in tropical conditions that restrain 
penetration of optical imaging sensors. Because radar response signal is influenced by geometric and di-electrical properties of surface 
features’, the different land cover may appear similar in radar images. For discriminating perennial cocoa agroforestry land cover, we 
compare a multi-spectral optical image from RapidEye, acquired in the dry season, and multi-seasonal C-band SAR of Sentinel 1: A 
final set of 10 (out of 50) images that represent six dry and four wet seasons from 2015 to 2017. We ran eight RF models for different 
input band combinations; multi-spectral reflectance, vegetation indices, co-(VV) and cross-(VH) polarised SAR intensity and Grey 
Level Co-occurrence Matrix (GLCM) texture measures. Following a pixel-based image analysis, we evaluated accuracy metrics and 
uncertainty Shannon entropy. The model comprising co- and cross-polarised texture bands had the highest accuracy of 88.07% (95% 
CI: 85.52 - 90.31) and kappa of 85.37; and the low class uncertainty for perennial agroforests and transition forests. The optical image 
had low classification uncertainty for the entire image; but, it performed better in discriminating non-vegetated areas. The measured 
uncertainty provides reliable validation for comparing class discrimination from different image resolution. The GLCM texture 
measures that are crucial in delineating vegetation cover differed for the season and polarization of SAR image. Given the high 
accuracies of mapping, our approach has value for landscape monitoring; and, an improved valuation of agroforestry contribution to 
REDD+ strategies in the Congo basin sub-region.  
 
 

1. INTRODUCTION 

 

1.1 Background 

 

Earth observation systems provide opportunities for resource-

efficient and reliable monitoring of land cover changes, 

especially in inaccessible terrains and vast landscapes. Yet, in 

equatorial Africa and similar rainforest regions elsewhere, the 

use of optical satellite imagery is often limited to cloud-free 

images collected in a dry season. Since plant phenology is a 

function of season, such mono-temporal (dry seasonal) land 

cover maps often produce poor quality vegetation maps.  

Amongst perennial agroforestry land use types, cocoa 

agroforestry systems (CAFs) have a marked importance in 

tropical sub-Saharan Africa, and in Cameroon in particular. Such 

shaded (multi-canopy strata) cocoa production is known to 

sequester carbon at rates comparable to transition forests 

(Norgrove and Hauser, 2013). As cocoa agroforests are fairly 

similar to transition forest in canopy structure (Sonwa et al., 

2016), they may be simply mistaken for each other in land cover 

mapping based on reflectance values and vegetation indices. 

Thus, a sustainable management of such perennial cocoa 

agroforests, amongst others, in the context of REDD+ (Reducing 

Emissions from Deforestation and Forest Degradation and the 

role of conservation, sustainable management of forests and 

enhancement of forest carbon stocks in developing nations) 

strategies in the Congo Basin, may not be achieved without 
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reliable procedures to estimate the land use expanse at local, 

country, and regional scales. 

 

Synthetic Aperture Radar (SAR) images provide cloud and 
season independent information about land surface features. SAR 
thus is able to provide high temporal resolution images in tropical 
forest regions with frequent cloud cover. For example, Sentinel1 
SAR, as the first operational satellite constellation of European 
Space Agency’s (ESA) Copernicus programme, provides 
continuous C- Band SAR images at a 6 to 12-day time lapse 
(Copernicus, 2017).  
 
SAR data have a wide range of applications from mapping forest 
and cropland cover to estimation of vegetation parameters such 
as height and biomass (Solberg et al., 2014): Assuming that 
similar analysis procedures are used, the mapping of vegetation 
cover from C- Band SAR images is less accurate than the L-Band 
SAR (Schmullius et al., 2015). The SAR backscatter signal is 
often dependent on several properties of the scattering surface 
such as the dielectric constant (water content) and geometric 
properties (shape and size). The former is expected to vary with 
vegetation type and season, while the latter varies with vegetation 
structure and canopy phenology. Undisturbed tropical moist 
forest ecosystems often comprise a relatively high density of tree 
types and an intact canopy. In comparison, CAFs have a less 
dense but well-stratified canopy that is often dominated by semi-
deciduous trees. The C-Band SAR penetrates the vegetation 
canopy only to a limited extent. And as well as settlement and 
grassland land cover classes, forests have a high temporal 
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stability of SAR backscatter signals. According to Cartus et al., 
(2008), these land cover classes have the best contrast from 
agricultural land, when using the cross-polarised images (HV or 
VH). Thus, considering the seasonal changes in canopy elements, 
temporal metrics from SAR images may be able to discriminate 
perennial agroforestry land cover. However, Schmullius et al., 
(2015) reported that texture measures are needed to discriminate 
settlement areas from forests.  
 
1.2 Research rationale 

For image classification objectives, texture measures from Grey 
Level Co-occurrence Matrix (GLCM) provide reliable 
information on the spatial relationship of images pixels (Hall-
Bayer, 2017). But, according to Hall-Beyer, (2017), the use of 
GLCM texture measures depends on the target feature and their 
characteristic spatial structure in the landscape. Since they have 
a direct influence on the reliability of SAR image classification 
results, the specular pattern and texture information extraction 
from SAR images are crucial metrics for image classification 
tasks. 
In this study, we evaluated high-resolution reflectance from a 

mono-season multi-spectral optical image of RapidEye versus 

multi-seasonal SAR image textures information, for the 

discrimination and mapping perennial cocoa agroforestry land 

cover. Based on GLCM, we used four texture measures to capture 

the pixels spatial relationship in SAR image. Speckle information 

was retained and permitted a cross-correlation of images textures 

changes across several and different seasons. For discriminating 

land cover types, we used eight Random Forest (RF) models that 

differed mainly in composition and number of images as input 

bands. Using the resultant RF probability vectors, we evaluated 

uncertainties in the most reliable models to fit the data.  

 

1.3 Study site  

This study was conducted in the landscape of Bakoa (32N 
734280m E 510975m N and 747435m N 501480m E, 123.28 
km2), which is located in the Bokito District of the Mbam and 
Inoubou Department, in the Centre Region of Cameroon (Figure 
1). This area is classified as a savannah-forest transition zone. 
The topography features a rolling terrain and the altitude ranges 
between 500 – 900m a.s.l. The vegetation is a mosaic of bush-
savannah, subsistence farming, and perennial cocoa agroforests. 
These perennial agroforests are established mainly within or 
along patches of transition and gallery forests. The study area is 
situated in the humid forest bimodal agro-ecological zone, which 
is characterized by two dry and wet seasons. The total annual 
rainfall ranges between 1300 – 1500mm with a long rainy season 
from August to November. The main dry season lasts about 5 
months from November – April. The mean annual temperature is 
25°C.  
 
1.4 Data pre-processing 

We accessed available Sentinel-1A images (C-band Level-1 IW 

GRDH) for the study area from the Sentinel Scientific Data Hub, 

which is hosted by the European Space Agency (ESA). We 

selected temporal series of 50 images taken between March 2015 

and April 2017, covering both the dry and wet seasons within this 

period.  Using the image processing tools of Sentinel Application 

Platform (SNAP, 2017) version5.0, we produced image subsets 

for the study site and pre-processed sequentially (thermal noise 

removal, filtering with orbit file, radiometric calibration, 

geometric rectification, and terrain correction) from radar 

backscatter intensity values to sigma naught backscatter 

coefficients. We used both the co-polarised VV (Vertical 

transmit, Vertical received) and cross-polarised VH (Vertical 

transmit, Horizontal receive) bands of all images. We then 

projected the pre-processed images of 10m resolution in WGS 

1984 UTM Zone 32 N. During the field campaigns conducted in 

2015, 2016 and 2017, we collected ground information on land 

use and cover.  

 

 
 

Figure 1. a) Study area located in Cameroon, b) Study landscape 
within the Bam and Inoubou administrative department, c) 
RapidEye false colour image (RGB: Blue, Green, and Red 
spectral bands) revealing  mosaic of forest and savannah 

vegetation. 
 

 

2. MATERIAL AND METHODS 

 

2.1 Image processing flow 

The image processing and analysis workflow consisted of: (1) 

Data acquisition and pre-processing as detailed in section 1.4 

above. (2) Image processing: computation of GLCM texture 

images, extraction of textures for representative pixel (masks) of 

ground points (using SNAP tool). We used the Random Forest 

(RF) important variables criterion to remove noisy images, and 

initially selected a subsample of 10 (of the 50) important images 

in six wet and four dry seasons between 2015 and 2017 (Table 

1). We co-registered the temporal series of images into separate 

stacks of VV, VH, and VV and VH image bands (Table 3). (3) 

Image classification by RF algorithm, using eight image stacks 

as classifier input (Table 3), and finally (4) Estimation of 

uncertainties in classified maps, in addition to accuracy metrics, 

as a basis for selecting the best classifier models. 
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2.2 Feature extraction: VIs and GLCM textures measures 

The monitoring of vegetation status and extent, from satellite 
remote sensing data, is often based on normalisation ratios of 
spectral bands, in the Visible and Near Infrared (NIR) spectrum 
(Silleos et al., 2006). These ratios are based mainly on the 
contrasting reaction of vegetation to the Red and NIR 
wavelengths, as an index for vegetation status and biomass 
abundance. 
 

Acquisition 

Date 
Image Bands 

Pre-processed 

data 

05Jan2015 

RapidEye Multi-
spectral optical 
bands: Blue, Green, 
Red, Red edge, NIR 

Top of 
Atmosphere 
(TOA) reflectance 
and Vegetation 
Indices (VIs) 

06Jun2015 

Sentinel1A Synthetic 
Aperture Radar 
(SAR) Ground Range 
Detected (GRDH) 
Level 1 Data: co-
polarized (VV) and 
cross-polarised (VH) 
bands. 

Backscatter 
intensity in Sigma 
naught (σ0) and 
Second order Grey 
Level Co-
occurrence Matrix 
(GLCM) Texture 
measures 

17Aug2015 

22Sep2015 
21Nov2015 
20Mar2016 

07May2016 
06Jul2016 
04Sep2016 
14Jan2017 

15Mar2017 

Table1: Remote sensing data acquisition; mono-date RapidEye 

(5m) and multi-date Sentinel1 SAR (10m) data. 

 

The application of indices as NDVI for vegetation monitoring 
have faced several challenges (Mutanga and Skidmore, 2004), 
notably issue of saturation for biomass above certain thresholds, 
and which is common in moist tropical vegetation. And, although 
saturation may not be an issue over agricultural landscapes, 
reflectance from soil background often perturb discrimination of 
sparse vegetation or cropland from bare soil (Viña et al., 2011). 
Thus, vegetation monitoring from either specific or combination 
of VIs, depend on the target feature and the vegetation structure 
in the landscape. In this study, we used VIs whose values indicate 
the status and abundance of vegetation and biomass, and that 
minimise the effect of soil background on vegetation reflectance 
values (Wiesmair et al., 2016): NDVI, gNDVI, EVI2, SAVI, 
MSAVI. However, to provide additional information on 
vegetation characteristic and vitality, in transition between red 
absorption by chlorophyll and NIR reflection by plant cells, 
recent optical sensors have included additional spectral band - the 
red edge band of RapidEye and Sentinel2 (Delegido et al., 2011).  
 
Since radar backscatter signals from a ground resolution cell is 
pseudorandom, the interaction of microwaves with terrain 
objects may not be predicted with certainty. Moreover, SAR 
images have speckle effect; because, the response signal of a 
resolution cell is a coherent interference from multiple scattering 
elements within the cell. Thus, texture information is as 
important as the multi-polarization information. Based on texture 
information extraction, the analysis of SAR images has been used 
for discrimination of cropland (Ghazaryan et al., 2018) and forest 
biomass estimation (Solberg et al., 2014). Often, the GLCM 
statistical approach is used in analysing SAR textures. The 
GLCM is a sparse matrix that stores co-occurrence probabilities 
of inter-pixel grey levels in an image (Haralick, 1979). These 
probabilities provide a second-order measure for texture features 
in an image: They represent conditional joint probabilities of all 
pairwise combination of grey levels (G) in the spatial window of 

analysis, and depending on both the spatial orientation (θ) and 

displacement distance (δ).  Computation of GLCM is faster for 
images with fewer grey levels, because the matrix is dimensioned 
to G. The conditional probabilities are estimated as follows: 

Pr��� = ��	
���, ���   (1) 

  
Where, Cij = co-occurrence probability between grey level i and 
j; and is defined by  

�	
 = 	�	
 ∑ �	

�
	,
��⁄    (2) 

 
Where, Pij = number of occurrence of grey levels i and j within 
the given window, for a certain (θ, δ) pair; G = the quantized 
number of grey levels. The denominator sums up to the total 
number of grey level pairs (i, j) within the analysis window. 
 
Although different second-order statistics are commonly used to 
classify single images (Abdel-Hamid et al., 2018), some GLCM 
texture measures are auto-correlated (Haralick, 1979): A 
selection of a few texture measures may be reliable in achieving 
specific image analysis objective(s) (Hall-Beyer, 2017). We 
assess the accuracy of SAR images, covering several seasons, in 
discriminating perennial agroforestry land cover, using four less 
correlated GLCM texture measures: Contrast, Entropy, 
Correlation, and Variance. We estimated the textures measures 
from GLCM using a 5×5 moving window, an aggregate 
orientation of four directions, and one-pixel displacement (inter-
pixel distance).  
 
2.3 Image feature classifier: Random Forest  

In this study, we used a non-parametric machine learning 
algorithm, the Random Forest (RF) ensemble as an image 
classifier. This algorithm, developed by Breiman, (2001), builds 
multiple decision trees for the same dataset based on random 
bootstrapping of sample training data. The random forest 
classifier is less influenced by the common issue of over-fitting 
and is able to handle a large number of variables. Firstly, each 
tree is built from a random subset (n) of two thirds of the original 
samples (N) – the ‘in-bag’ data; and secondly, from a subset (m) 
randomly selected from the total (M) variables in the dataset – 
mtry, in each decision tree nodes are split using a best split 
variable – the one that yields the highest decrease in impurity 
(Hastie, 2009). The algorithm is a soft classifier on the basis of 
the probability voting of pixels belonging into the respective 
classes considered (Table 2). Compared to other non-parametric 
classification algorithms, it is less constrained by the need of 
extensive training and test data samples; this is due to an 
integrated out-of-bag (OOB) error estimation and accuracy test 
following a bootstrap sub-sampling on input data. Several 
sources provide additional details on the random forest algorithm 
(Hastie, 2009; Criminisi,  2011).  
 
We ran eight RF models for the different images stacks as 
classifier input (Table 3). For each model, we evaluated the OOB 
error curve and mtry to prune decision trees to an optimal 
number. For a spatially explicit and unbiased representation of 
each land cover class in the RF models, we divided the extracted 
pixel information for each class into a stratified random sample 
of 70% and 30% pixels respectively for training and testing the 
models. Image classification was conducted using the random 
forest package (Liaw and Wiener, 2002) of R programming 
software 3.4.3 (R Core Team, 2017).  
 
Several studies have used RF for classification of forest cover 
(Balzter et al., 2015) and cropland (Ghazaryan et al., 2018). 
Although Zhao et al., (2018)) reported data over-fitting and poor 
prediction with RF approach contrarily, when compared to other 
common methods, the RF algorithm provided relatively better 
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classification of croplands (Ghazaryan et al., 2018) and 
mangrove vegetation (Abdel-Hamid et al., 2018). But, existing 
image processing steps may not be generalised or applicable for 
all cropping systems. For example, Loosvelt et al., (2012) 
observed high classification uncertainties for mixed pixels, 
which are typical for the heterogeneous boundaries between 
adjacent and internally homogeneous cropping fields. Mixed 
cropping systems are common in moist tropical landscapes.  
However, literature reporting on the processing and use of SAR 
images for mapping of tropical heterogeneous cropping systems, 
such as perennial agroforestry, is scarce. 
 

Class Class Name Description 

Bu Built up 
Residents, commercial/markets, 
industrial, administrative settings 

Es 
Earth 
road/bare soil 

Land areas of exposed soil, bare 
rocks, 

Sv 
Shrub/grasslan
d Savannah 

Imperata sp savannah land: 
Shrubby and grassland areas which 
have not been converted to farm 

W Water 
River, ponds, seasonal and 
permanent swamps 

Af 
Perennial 
agroforests 

Land areas used for cocoa 
production with various degrees of 
canopy stratification: canopy/shade 
trees are mainly deciduous 

Fa 
Subsistence 
farming 

Savannah and forest land areas that 
have been converted essentially for 
permanent or seasonal subsistence 
crop production; including farm 
fallows 

Fs 
Transistion 
forest 

Disturbed and gallery forest 
patches, secret/cultural forest, 
hunting forest: have a more 
permanent and less stratified 
canopy structure 

Table 2: Description of the thematic land cover types used for 

classification of land cover (Figure 2). 

 

 
 

Figure 2. The range of vegetation land covers differ mainly in 
the density of woody biomass, which changes with season or 

phenological period (class acronyms are described in Table 2). 
 

2.4 Estimating classification uncertainty of models 

In remote sensing mapping, the validity and reliability of 

classified maps are often decided on basis of estimated overall 

accuracy and kappa coefficient (Ghazaryan et al., 2018). Values 

such as user’s and producer’s accuracy are prone to errors and 

uncertainties (Unwin, 1995). As a soft classifier, however, the RF 

algorithm provides the possibility for assessing data- and 

computation-related uncertainties (Loosvelt et al., 2012). In our 

analysis, we used user’s accuracy (omission error), producer’s 

accuracy (commission error), overall accuracy and Kappa 

statistics – which compares results of a chance classification 

versus our RF model accuracy. However, the pixel-based 

classification methods are prone to uncertainties coming from 

either the use of unreliable data or complex processing 

procedures (Unwin, 1995). Thus, RF algorithm, as a soft 

classification, provides a vector (Pu) of classification probability 

or votes for each image pixel - Pu = P1, P2, P3,……, Pn for a 

classification with n categories, and Pi denotes the probability of 

belonging to class i (Table 2).   

 

Data 

Categories 

Model 

Group 
Image bands 

RE: 
Dry season 
Multi-
spectral 
RapidEye 
Image 

RE1 
TOA Reflectance of B, G, R, 
Red Edge, and NIR: 5 Bands 

RE2 
TOA Reflectance and 
Vegetation Indices (VIs): 10 
Bands 

GL: 
Multi-date 
and season 
SAR 
GLCM 
Textures 

GL1 
Multi-date VV GLCM Textures: 
40 Bands 

GL2 
Multi-date VH GLCM Textures: 
40 Bands 

GL3 
Multi-date VV and VH GLCM 
Textures: 80 Bands 

GLI: 
Multi-date 
and season 
SAR 
intensity 
and GLCM 
Textures 

GLI1 
Multi-date SAR VV Simga0 
intensity and VV GLCM 
Textures: 50 bands 

GLI2 
Multi-date SAR VH Sigma0 
intensity and VH GLCM 
Textures: 50 bands 

GLI3 
Multi-date SAR VV plus VH 
Sigma0 intensity and, VV plus 
VH GLCM Textures: 100 bands 

Table 3: The respective image stacks, used to compare the 

Random Forest (RF) classification accuracy. 

 

In this study, in addition to model OOB error estimation, we 

evaluated classification uncertainties of RF models using the 

maximum classifier probability (U), and a weighted uncertainty 

measure entropy: the Shannon entropy (H) (Shannon, 1948; 

Vajapeyam, 2014). These uncertainties were calculated as: 

 

� = 1	 �	����    (3) 

 

� = �∑ �	 . log �	"
	��    (4) 

 

Where,  Pi = probability of belonging to class i and  

Pmax = maximum probability vote for a pixel’s class.  

N = the total number of classes considered for analysis. 

 

By considering the entire range of values in a pixel’s probability 

vector, H, compared to U that only makes use of Pmax, provides 

a more robust measure of uncertainty; it has a maximum value at 

highest entropy – equal probability votes for all classes (Table 2). 

Loosvelt et al., (2012) showed that H is reliable for evaluating 

uncertainties in mapping cropland from SAR images. However, 

our study area is characterised by heterogeneous cropping 
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systems and is located in a tropical landscape (Figure 2). Thus, 

we may expect a different trend of uncertainty estimates from 

classified maps. For the best RF models, based on kappa 

accuracy, we computed and analysed U and H uncertainties for 

the classified maps, and the land cover classes considered in the 

study area (Table 2). The uncertainty estimations and analysis 

were conducted in Spyder IDE (Integrated Development 

Environment) of Anaconda distribution for Python programming 

software (Anaconda Development Team, 2017) 

 

 

3. RESULTS 

 

All models evaluation had classification accuracies above 70%.  
Classification error and the sensitivity in discriminating land 
cover classes was different for each model. The evaluation of 
classification uncertainties is presented for the models with the 
highest classification reliability, which, in increasing order of 
importance, were RE1, GLI3, and GL3. 
 
3.1 Land cover classification accuracy (contribution of VH 

versus VV) 

Table 4 summarizes the classification results for all the eight RF 
models. All models had a reliable overall accuracy (OA) above 
70%. However, compared to using VV or VH bands separately, 
the use of both co- and cross-polarization bands (GL3) resulted 
in the highest classification accuracy. The GL3 model had a 
highest overall accuracy of 88.07 % and kappa of 85.37; and, 
compared to other models, the OOB error estimate was least with 
12.85%. Also, classification from the multi-spectral optical 
image (RE1 model) had a reliable overall accuracy of 81.08 %, 
but it had a lower kappa 76.92%. Compared to the GL3 model, 
the OOB error difference of +7% was observed for the RE1.  
 

Model 

Group 

Overall Accuracy-

OA % (95% CI) 

Kappa 

(%) 

OOB 

Error % 

RE1 81.04 (79.68, 82.35) 76.92 19.18 

RE2 80.15 (78.76, 81.48) 75.75 19.46 

GL1 82.74 (80.02, 85.23) 78.73 17.12 

GL2 81.65 (78.74, 84.32) 77.35 18.47 

GL3 88.07 (85.52, 90.31) 85.37 12.85 

GLI1 78.80 (75.85, 81.53) 73.87 19.66 

GLI2 82.97 (80.21, 85.48) 78.96 18.71 

GLI3 85.07 (82.42, 87.47) 81.70 13.69 

Table 4: Classification accuracies of different feature models 

based on the Random Forest (RF) classifier algorithm. 

 
Separately, both VV and VH GLCM derived texture measures 
were poor in the prediction of non-vegetated land covers, and 
more so when both bands were included in the same model. 
When included as input layers, the SAR backscatter intensity did 
not improve classification accuracy. Likewise, the inclusion of 
vegetation indices from the multi-spectral optical image, taken 
during a dry season, did not improve classification accuracy. 

 

The thematic land cover map from RE1 and GL3 models are 

shown in Figure 3. Visually, RE1 map shows a relatively intact 

and continuous expanse of transition forest patches (Figure 3a). 

Contrarily, the classified map from GL3 revealed that transition 

forest cover is highly fragmented by cocoa agroforests into 

smaller patches (Figure 3b).  Also, from classification reliability 

estimates in Figure 4, the RE1 model was more reliable in 

delineating non-vegetation land features. SAR-based texture 

images had a high reliability in delineating vegetation landscape 

features (Sv, Af, Fa, and Sf). Thus, although multi-spectral 

optical image had a better classification prediction of land cover 

classes in general, it was less reliable in discriminating perennial 

agroforest and transition forest land cover. 

 

 
 

Figure 3. Thematic land cover maps from a) dry season multi-

spectral optical image, and b) multi-seasonal SAR derived 

texture images (legend and north arrow apply to both images). 

 

 
 

Figure 4. The multi-season SAR derived GLCM textures 

images had a high reliability (100 - commission error) to 

delineate vegetated land cover. Non-vegetated land cover were 

better classified by multi-spectral optical image (RE1, RE2). 
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3.2 Uncertainty in discriminating vegetation land cover  

The classification results from dry season RapidEye multi-

spectral optical image (RE1) had a low overall uncertainty for 

entire image and land cover types. From the cumulative estimates 

of class probabilities in Figure 5, classification uncertainty from 

the RE1 converges at probability of around 0.6 for both U and H, 

whereas the uncertainty from GL3 map converges at higher 

probabilities – 0.7 and 0.9 respectively for U and H. About 90% 

of pixels classified by RE1 had H uncertainties below 0.4; 

compared to about 50% of pixels for GL3 (Figure 5). This 

difference is less obvious in the cumulative plot of U. Thus, 

uncertainty difference between RE1 and Gl3 was better revealed 

by Shannon entropy or H uncertainty.   

 

 
 

Figure 5. The Shannon entropy (H) clearly reveals uncertainty 

difference in thematic maps from RE1 and GL3 RR models: As 

example, the proportion of pixels with uncertainty below 0.4. 

 

The individual class uncertainties are compared in Figure 6.  

Although the classified map from the multi-spectral image (RE1 

model) had a lower uncertainty for the entire image, individual 

class uncertainty was, compared to other land cover types, high 

for perennial cocoa agroforests and transition forest cover (Figure 

6a). Contrarily, the multi-seasonal SAR image textures, from the 

GL3 model, had high classification uncertainty for the entire 

image; But, perennial agroforests and transition forests were 

discriminated with relatively lower individual class uncertainty 

(Figure 6b): The median individual class uncertainties were in a 

range between 0.2 and 0.4,  which is comparable to those 

obtained from single multi-spectral image (RE1). 

 

 

4. DISCUSSION AND CONCLUSION 

 

4.1 Discussion 

This research aimed at assessing the reliability of GLCM derived 

textures images, from multi-season Sentinel1A SAR images, to 

discriminate perennial cocoa agroforestry and subsistence farm 

practices from forest cover. We included other land cover classes 

in classification analysis to derive a thematic land cover map of 

the study landscape; and assessed the contribution of perennial 

agroforestry in fragmenting the remaining patches of transition 

forest. Compared to a “business as usual” classification from a 

mono-season, multi-spectral optical image (RE1), the texture-

based map (GL3) had a reliable overall accuracy, which is 

consistent with other mapping accuracies from C-band SAR ( 

Ghazaryan et al., 2018). Following the high overall accuracy and 

a corresponding low individual class uncertainty in this study 

landscape of heterogeneous vegetation cover, the multi-date 

texture information from SAR images provides a reliable 

classifier input for discriminating of perennial agroforestry land 

cover from transition forest.  

 

 
 

Figure 6: Comparison of individual class Shannon entropy (H) 

or uncertainty, for, a) single date multi-spectral optical image 

(RF model RE1) b) multi-season SAR image texture-based 

classification (RF model GL3) 

 
As observable from multi-seasonal SAR image derived land 
cover map (Figure 3b), the transition forest patches are vastly 
fragmented by perennial agroforests. These fragmentations are 
consistent with field observations. The transition forest patches 
are mostly owned by families and community groups for hunting, 
performing traditional rituals, and potential expansion of cocoa 
agroforests parcels. The canopy of cocoa agroforests and 
transition forests have a similar optical reflectance, rendering a 
distinction from a mono-season, multi-spectral image, acquired 
in dry season, difficult.   The similarity of canopy parameter for 
both classes, in the case of a dry season, is observable in their 
class uncertainty distribution (Figure 6a). A metric of seasonal 
changes in phenology, based on radar backscatter, discriminated 
the two land cover with low class uncertainties (Figure 6b), that 
were comparable to uncertainties obtain from the single-season 
multi-spectral image.  
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In the SAR image map of GL3, the important variables for 
classification were the VH Variance and Correlation of SAR 
images acquired in a dry season and, followed by VV Contrast of 
images in a wet season. The behaviour of VH and VV backscatter 
signal is different over vegetated areas. Over vegetation cover, 
there is much volume scattering of the radar signals. And volume 
scattering tends to cause a depolarisation of the return signals, 
which then corresponds to a high backscatter in cross-
polarization (VH or HV) bands. Thus, the VH bands have a high 
sensitivity to vegetation canopy. The inter-class variations in 
canopy parameter are represented in SAR images as visual or 
coherent edges (i.e. abrupt changes in DNs between neighbouring 
image pixels). And such visual edges, and as well non-edgy intra-
class variations between pixels, are effectively measured by the 
GLCM Variance. While the GLCM Correlation, termed as 
‘interior texture’ (Hall-Beyer, 2017), takes high values that 
characterize areas away from coherent edges with many subtle 
and irregular variations. And such variations are more prominent 
in the dry season. These explain the high importance of GLCM 
Variance and Correlation image textures for dry season VH 
image. The importance of VH image is in line with observations 
of Cartus et al., (2008), that the mean annual variations of cross-
polarised (HV) band best differentiated agricultural land from 
other land cover types. In the wet season, the intra-class 
differences in canopy parameters, and likewise inter-class 
volume scattering, are less obvious between the vegetation types. 
The major differences in vegetation canopies, their vertical 
structure, are captured in co-polarized (VV) bands. The GLCM 
Contrast is sensitive to areas with visual edges, which may 
explain the high importance of VV Contrast Texture in the wet 
season images. In the rainy season, therefore, volume scattering 
may be less crucial to delineate different vegetation cover. 
 
Considering the heterogeneous land cover in the landscapes, we 

reliably estimated land cover classification uncertainty from 

multi-date and -season SAR image texture measures. However, 

our findings contradict that of Loosvelt et al., (2012): U and H 

uncertainties were not comparable in this study landscape. 

Compared to U, the entropy or H revealed better the difference 

in the cumulative proportion of pixels between RE1 and GLE 

maps at, for example, uncertainty 0.4 (Figure 5). A linear slope 

of RE1 reflects low classification uncertainty from the multi-

spectral image map. The cumulative relative frequency of 

Shannon entropy (H) followed a sigmoid curve (Figure 5), and 

represents a complete range of probabilities for each image pixel: 

It reflects well the soft boundary between land cover classes, 

which explains the sigmoid curve of cumulative relative 

frequency. Compared to perennial agroforests, the low individual 

class uncertainty for transition forest (Figure 6b) is logical, 

considering a high temporal stability of radar backscatter over 

forest area (Schmullius et al., 2015). The high variability in tree 

density and structure between cocoa agroforests, may result in 

high intra-class variations in SAR backscatter intensity. This 

explains their high H uncertainty. Likewise, the diversity in farm 

subsistence crop types and stages may explain the low H for the 

class. The savannah lands have a consistent canopy structure in 

each season, except for areas converted to subsistence farming or 

previous farms that have been left fallow. Their regular canopy 

structure, during each season, may explain the low, class 

uncertainty. 

 

Classification validation based on accuracy metrics as overall, 

user, and producer accuracies are influenced by sample class 

distribution in training data (Heydari and Mountrakis, 2018). 

Thus, the differences in pixel resolution between images types 

(5m for RapidEye and 10m for SAR C-Band) resulted in different 

reference class sizes, which may explain the high overall 

accuracy for SAR image. A relatively reduced number of 

reference pixels may result in low estimates of misclassification 

probability (commission or omission errors). The sample size is 

not as influential in classification validation by uncertainty 

measures. The GLCM texture measures were tailored to 

discriminate vegetation types, and less sensitive to non-

vegetation cover. We estimated the GLCM textures using a 5 × 5 

window, considering the 10m pixel resolution for sentinel1 SAR. 

However, different window sizes may influence both texture 

values and the classification accuracy. The analysis of different 

window sizes was not the aim of this study and may be a subject 

for further investigated for this and other landscapes. 

 

4.2 Conclusion 

In this study, we show the reliability of open source Sentinel1 
SAR data in discriminating and mapping perennial agroforestry 
and farms within forest cover, in tropical conditions where 
optical satellite data are less available.  
a) The use of multi-date C-Band SAR is reliable in discriminating 

perennial agroforestry land cover from transition forests.  
b) The decisive GLCM texture measure for delineating perennial 

agroforest vary with season, and for the polarization band 
used. Selected image texture metrics from both VV and VH 
polarization image are essential to monitor the changes in 
canopy structure of perennial agroforests across seasons.  

c) Classification validation using uncertainty estimates by 
Shannon entropy (H) is effective in the validation of individual 
class accuracy, and for making a general inference from 
classified maps. 

 
This work has provided new insights in the use of SAR images 
and selection of scenes for reliable mapping of perennial 
agroforestry land cover. The procedure is an opportunity in 
landscape monitoring, such as estimating the contribution of 
agroforestry to national and regional REDD+ strategies. 
However, there is a need to assess classification uncertainties in 
different agroforestry dominant landscapes – for an operational 
regional application in the Congo Basin sub-region. 
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