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ABSTRACT:

Crops are dynamically changing and time-critical in the growing season and therefore multitemporal earth observation data are needed
for spatio-temporal monitoring of the crops. This study evaluates the impacts of classical roll-invariant polarimetric features such as
entropy (H), anisotropy (A), mean alpha angle (&) and total scattering power (SPAN) for the crop classification from multitemporal
polarimetric SAR data. For this purpose, five different data set were generated as following: (1) Ha, (2) HaSpan, (3) HaA, (4)
HaASpan and (5) coherency [T] matrix. A time-series of four POISAR data (Radarsat-2) were acquired as 13 June, 01 July, 31 July and
24 August in 2016 for the test site located in Konya, Turkey. The test site is covered with crops (maize, potato, summer wheat, sunflower,
and alfalfa). For the classification of the data set, three different models were used as following: Support Vector Machines (SVMs),
Random Forests (RFs) and Naive Bayes (NB). The experimental results highlight that HaeASpan (91.43% for SVM, 92.25% for RF
and 90.55% for NB) outperformed all other data sets in terms of classification performance, which explicitly proves the significant
contribution of SPAN for the discrimination of crops. Highest classification accuracy was obtained as 92.25% by RF and HaASpan
while lowest classification accuracy was obtained as 66.99% by NB and Ha. This experimental study suggests that roll-invariant
polarimetric features can be considered as the powerful polarimetric components for the crop classification. In addition, the findings

prove the added benefits of PoISAR data investigation by means of crop classification.

1. INTRODUCTION

The growth of worldwide population and correspondingly the in-
creasing demand of foods push the countries to develop low-cost
and practical solutions for the applications of precision agricul-
ture. For the sustainable agricultural practices in regional and
national scale, the obtaining information about the crop acreage
is of importance however owing to the very dynamic structure of
crops in the growing season, the mapping of crops and obtaining
information about the crop yield present a challenge. In compar-
ison to other land cover types, the agricultural targets have the
rapid and dynamic structural changes (i.e. phenological changes)
within short time periods in the growing season (McNairn and
Brisco, 2004, Bargiel, 2017). Synthetic Aperture Radar (SAR)
sensors use the signals at microwave wavelengths and thereby
have the weather/daylight in-dependent imaging capability. The
radar systems, based on its unique calibration procedure, are pow-
erful and advantageous for the information retrieval about land
surface characteristics and changing surface dynamics since they
benefit from the relationship between the target and back-scattered
radar signal in terms of polarization, physics and illuminating ge-
ometry (Schmullius et al., 2015).

In this sense, spaceborne SAR sensors can be effectively used
for time-critical agricultural applications and provide the crucial
information for crop classification especially for multitemporal
analysis. For the mono-temporal SAR data, two crops could have
similar backscatter information however when the crops grow
and move to the next stage in growing period, the backscatter of
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each crop type changes over the time and this leads to the better
discrimination of the crops (McNairn and Brisco, 2004, McNairn
and Shang, 2016). In several recent studies, the requirements and
advantages of multi-temporal SAR images for successful crop
classification and agricultural practices were stated (Jiao et al.,
2014, Mirzaee et al., 2014, Larrafiaga and Alvarez—Mozos, 2016,
Bargiel, 2017, Dimov et al., 2017, Kussul et al., 2018, WoZniak
et al., 2018). Jiao et al. (2014) investigated an object-oriented
classification of multi-temporal RADARSAT-2 images for map-
ping and monitoring the crops. Mirzaee et al. (2014) tested the
effects of phenological changes for the classification of agricul-
tural fields using multitemporal TerraSAR-X images. Larrafaga
and Alvarez-Mozos (2016) assessed the added value of quad-pol
data in a multitemporal crop classification by using polarimet-
ric features and object based random forest classification algo-
rithm. Bargiel (2017) developed a new classification approach
based on multitemporal data and crop phenology information by
using the time-series of Sentinel-1 images. Dimov et al. (2017)
compared the classification performance of time-series Sentinel-1
and Landsat-8 data for the crop classification.Kussul et al. (2018)
investigated the multitemporal SAR and optical data (Landsat-8,
Sentinel-1 and Sentinel-2) for crop specific mapping.WoZniak et
al. (2018) tested the dual-polarization polarimetric processing
of time-series Sentinel-1 data on land cover classification. All
these above studies stressed the requirements of multitemporal
SAR data set for an adequate crop classification and consequently
demonstrated the potential use of radar remote sensing for agri-
cultural applications, especially crop classification and temporal
monitoring.
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Polarimetric SAR (PolSAR) sensors record the complete charac-
teristics of scattering field (coherent channels and phase informa-
tion) and enable of extracting the bio-geophysical parameters for
the canopy structure of crops. In comparison to single or dual-
polarized SAR data, PolISAR data provide more unique and sig-
nificant details in terms of scattering mechanism for natural and
man-made targets (Steele-Dunne et al., 2017). The differences
among the scattering mechanisms of crop types enables the seper-
ation of crops since this mechanism is related to crop phenology
and crop type (Lopez-Sanchez et al., 2012, Hiitt and Waldhoff,
2018). For better understanding and easier interpretation of the
scattering mechanism of the targets, polarimetric features can be
generated from the complex PolSAR data by using polarimet-
ric decompositions. Polarimetric features were found to be quite
helpful for land cover and crop type classification(McNairn and
Brisco, 2004, Steele-Dunne et al., 2017). Hariharan et al.(2016)
used the roll-invariant polarimetric features to classify urban ar-
eas using random forest (Hariharan et al., 2016). Tao et al. (2017)
tested the potential use of roll-invariant and selected hidden po-
larimetric features in the rotation domain for land cover classifi-
cation (Tao et al., 2017). Guo et al.(2018) investigated the roll-
invariant polarimetric features (only entropy and mean alpha an-
gle) for the crop classification by using multitemporal quad and
dual-polarization SAR data (Guo et al., 2018). All these three
aforementioned studies showed the importance of roll-invariant
polarimetric features for classification purposes.

This study discusses the impacts of roll-invariant polarimetric
features such as entropy, anisotropy, mean alpha angle, and total
scattering power (SPAN) for the crop classification from multi-
temporal polarimetric SAR data. A time-series of four PoISAR
data (single look complex full polarimetric Radarsat-2 with fine
quad-polarization acquisition mode) were acquired for the study
area located in Konya, Turkey. The H-A-& (Cloude-Pottier) de-
composition decomposition were used to obtain the roll-invariant
polarimetric features (entropy, anisotropy and mean alpha angle).

The remainder of the paper is organized as follows. The data
description and the details of data processing and image classifi-
cation are given Section 2. In Section 3, the experimental results
are presented and discussed. In the end, Section 4 provides some
final conclusions and directions for future work.

2. METHODOLOGY
2.1 Polarimetric Features

Classical roll-invariant polarimetric features which are not depen-
dent of target orientations can extracted from the eigenvalue and
eigenvector based decomposition of the coherency matrix by us-
ing H-A-& decomposition method. From this decomposition, the
coherency matrix are formed as following:

A1 0 0
T=U|0 X O0|UXM>X>As )
0 0 X3

where \1,\2 and A3 are the eigenvalues and U represent the de-
composed eigenvectors. And the roll-invariant polarimetric fea-
tures extracted from the H-A-& decomposition are defined as fol-
lows (Cloude and Pottier, 1996, Lee and Pottier, 2009):
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SPAN is considered as the total backscattering power and pre-
ferred in PolSAR image analysis since the speckle noise is rela-
tively reduced compared to single channels of data (Wang et al.,
2017). The SPAN is formulated as follows:

3
SPAN = Z i (6)

i=1

An example of the roll-invariant polarimetric features for mono-
temporal data (for July 31, 2016) is shown in Figure 1
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Figure 1. Roll-invariant polarimetric features

2.2 Data and Preprocessing

A time-series of four Radarsat-2 acquisitions (single look com-
plex full polarimetric Radarsat-2 data with fine quad-polarization
acquisition mode) were acquired as June 13, July 01, July 31 and
August 24 of the year 2016 for the study area located in Konya
basin, Turkey. The image characteristics are presented in Table 1.

Specifications Description
Sensor Radarsat-2
Wavelength CBand/5.6 cm
Imaging mode Fine quad-pol
Orbit Descending
Incidence Angle 40°
Resolution (Rg x Az) 4.7x 5.1 (m)
Polarization Quad-pol

Table 1. Image characteristics (Morena et al., 2004)
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The pre-processing of the SAR data is important to extract rel-
evant information from the data for a successful crop classifica-
tion. The following processing steps were applied to the Pol-
SAR data to extract the entropy, mean alpha angle and anisotropy:
First, the data were imported into ESA (European Space Agency)

SNAP (The Sentinel Application Platform) toolbox and calibrated.

Following this step, the Sinclair scattering matrices were con-
verted to the coherency matrix for further polarimetric process-
ing. After this step, H-A-& decomposition method was applied
to the data to extract roll-invariant polarimetric features except
SPAN. During the polarimetric decomposition process, window
size was determined as 9 X 9. And then the geometric terrain
correction was applied to the imagery using the Range Doppler
orthorectification method. During the terrain correction,the Shut-
tle Radar Topography Mission (SRTM) data (1 arc second, ap-
proximately 30-m resolution) was automatically downloaded and
used. Then, the data were resampled to 10 meter pixel resolu-
tion using bilinear interpolation.As the last step of the data pre-
processing, the data were scaled to decibels [dB] and exported in
GeoTIFF format. For extracting the SPAN band, almost the same
pre-processing chain was applied except matrix generation and
polarimetric decomposition process. The data were calibrated
and then SPAN was generated through SNAP toolbox. The fol-
lowing step were the terrain correction, scaling the data into dB
and exporting the data in GeoTIFF format. Figure 2 shows the
pre-processing chain for each acquisition.

RADARSAT-2
imagery
Calibration EEE——
[ v
. } H/A/Alpha
A I > polarimetric SPAN

(coherency matrix) decomposition

| |

Terrain correction and scaling data in decibel

|

Export data as GeoTIFF

Figure 2. Workflow diagram for pre-processing chain

After extraction of the roll-invariant polarimetric features for each
acquisition time, the time-series stack data were created for the
roll-invariant polarimetric features. The number of bands/features
for our data set in monotemporal as well as time-series stack data
can be seen in Table 2. All pre-processing steps were imple-
mented using the open source SNAP toolbox v6.0.1.

Data set Number of bands
Monotemporal | Time-Series Stack

Ha 2 8

HaSpan 3 12

HaA 3 12

HaASpan 4 16

coherency [T] matrix 6 24

Table 2. Number of features

2.3 Study Area and Ground Truth Information

The study area (Figure 3) is located in Konya basin, Turkey and
only covered with agricultural lands. Semi-arid climate is dom-
inated in the region.The study area covers with the crop types
which are as following: alfalfa, maize, potato, summer wheat,
and sunflower for the vegetation season of 2016 summer season.
In-situ data were collected using a handheld GPS at the acquisi-
tion dates of each satellite imagery and were recorded to be used
in the crop classification and accuracy assessment. The number
of pixels for training and testing data are shown in Table 3.

Google Earth

Figure 3. Study area

Number of Pixels
Class — -

Training | Testing
Alfalfa 1918 3542
Maize 5581 14217
Potato 2275 10604
Wheat 3524 6338
Sunflower | 3729 8915

Table 3. Training and Testing Data

Furthermore, their spatial distribution of the training and testing
data can be shown in Figure 4.

2.4 Image Classification

With the major advances in the machine learning and computer
vision, there has been an increasing trend in machine learning
algorithms for the operational use in the fields of remote sensing
and pattern recognition, especially for the classification purposes.
Image classification can still be considered as one of the pow-
erful methods to extract information from the remotely-sensed
images however are of some uncertainties such as the redundant
(unnecessarily repeated) information among the spectral bands,
imbalance of training samples in classes and the adaptation prob-
lem of training samples with imagery and implemented model
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Figure 4. Spatial distribution of training and testing data

(Ghamisi et al., 2017). In this study, three different classifica-
tion model were used as following: Support Vector Machines
(SVMs), Random Forests (RFs) and Naive Bayes (NB). The clas-
sification models implemented in this study were briefly outlined
in the following paragraph.

Naive Bayes classifier is one of the probabilistic classifiers in ma-
chine learning and uses Bayes theorem to predict the class of un-
known data. This method calculates the posterior probability for
each class and assign the particular pixel to the class with the
highest posterior probability (Cdnovas-Garcia and Alonso-Sarria,
2015). Support Vector Machines are one of the kernel-based
learning methods in machine learning and have been successfully
and widely implemented in remote sensing and pattern recog-
nition for classification and regression problems. SVMs aim to
define the optimal hyperplane separating the two classes with
the maximum margin width. In case of linearly inseparable two
classes, it use the kernel trick (the non-linear version of SVMs) to
map the data into higher dimensional space (Melgani and Bruz-
zone, 2004, Kavzoglu and Colkesen, 2009). Random forests are
one of the ensemble (multiple) classifiers and use many decision
trees to predict the final class for each unknown pixel. The final
decision boundary is constructed by the majority voting of all the
individual trees (Pal, 2005, Gislason et al., 2006).

All classifications were performed using the open-source Scikit-
learn module in Python v3.6.4 (Pedregosa et al., 2011).

3. RESULTS AND DISCUSSION

In this section, classification accuracies of the five different data
sets for each model and the class based accuracies via F1-score
are presented. The classification accuracies of the models for
each data set are reported in Table 4.

Overall Accuracy (%)
Feature SVM | RE | NB
[T] matrix 77.35 | 76.13 | 71.57
H-& 75.01 | 72.83 | 66.99
H-a-SPAN 89.19 | 92.06 | 89.85
H-a-A 75.08 | 76.51 | 72.20
H-a-A-SPAN | 91.43 | 92.25 | 90.55

Table 4. Classification Accuracy (Overall accuracy)

The experimental results highlight that the classification of H-
&-SPAN (89.19% for SVM, 92.06% for RF and 89.85% for NB)
and H-a-A-SPAN (91.43% for SVM, 92.25% for RF and 90.55%
for NB) outperformed all other data sets in terms of classification
performance, which also explicitly prove the significant contri-
bution of SPAN parameter for the discrimination of crops. The
incorporation of SPAN parameter into H-& data set increased the

overall classification accuracy as 14.18%, 19.23% and 22.87%
for SVM, RF and NB, respectively. Highest classification ac-
curacy was obtained as 92.25% by RF and H-a-A-SPAN while
lowest classification accuracy was obtained as 66.99% by NB and
H-& as seen in Table 4. The classification maps of the H-& and
H-&-A-SPAN data sets are shown in Figure 5. The main reason
of choosing this two data sets is that highest and lowest classifi-
cation accuracies for per model were obtained from these SAR
data sets.

H-Alpha-NB H-Alpha-RF H-Alpha-SVM

Potato

200 400 600 800 200 400 600 200 400 600 800

H-Alpha-Ani-SPAN-NB

H-Alpha-Ani-SPAN. H-Alpha-Ani-SPAN-SVM

Wheat

200 400 600 800 200 400 600 800 0 200 400 600 800

Figure 5. Classification maps for the study area

F1-score is defined in equation (7) as following.

2a
F1= ——— 7
2a +b+c @
True
Positive Negative
Predicted | Positive True Positive (a) False Positive (b)
Negative | False Negative (¢c) | True Negative (d)

Table 5. Confusion Matrix

The class based accuracies were compared based on F1-score val-
ues which were reported for each classification model in Table 6.

Model | Class 1 2 3 4 5
Alfalfa 0.26 | 0.24 | 0.26 | 0.28 | 0.33
Maize 0.75 | 0.71 | 0.88 | 0.72 | 0.91
SVM | Potato 0.83 | 0.66 | 093 | 0.66 | 0.97
Sunflower | 0.80 | 0.98 | 0.99 | 0.97 | 1.00
Wheat 0.95 | 093 | 094 | 0.93 | 0.96
Alfalfa 0.20 | 0.22 | 042 | 0.26 | 0.43
Maize 0.74 | 0.69 | 091 | 0.74 | 0.92
RF Potato 0.80 | 0.55 | 097 | 0.64 | 0.97
Sunflower | 0.79 | 0.99 | 1.00 | 0.99 | 1.00
Wheat 095 | 094 | 097 | 0.95 | 0.97
Alfalfa 025 | 025|044 | 025 | 045
Maize 0.66 | 0.62 | 0.87 | 0.69 | 0.88
NB Potato 0.80 | 0.50 | 0.96 | 0.62 | 0.97
Sunflower | 0.75 | 0.99 | 1.00 | 0.99 | 1.00
Wheat 094 | 094 | 098 | 0.94 | 0.98

Table 6. Class accuracies via F-1 score

In Table 6, the numbers of (1, 2, 3, 4, 5) represent the [7'] matrix,
H-&, H-a-SPAN, H-a-A and H-a-A-SPAN, respectively.
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When F-score values for per class were examined, it is reported
that Alfalfa was the most-confusing class among crop types. The
maximum separation ratio for Alfalfa was obtained with NB and
H-a-A-SPAN however this value is still less than 0.50. For maize
class, the F-score values were obtained as 0.62 and 0.69 for H-&
and by NB and RFs. With the incorporation of SPAN into the H-
@, the class accuracy values of maize were obtained as 0.88 and
0.92 for NB and RFs, respectively. The similar increase trend was
also reported for potato class. The F-score values of the sunflower
class were obtained as 1.00 with all classification models for the
data set of and H-&-A-SPAN.This is the maximum F-score value
among other classes. For all data sets, the F-score values are
higher than 0.75 for sunflower class. For wheat class, the F-score
values were obtained higher than 0.90 for all data set and imple-
mented models. The highest value of F-score was obtained as
1.00 for the sunflower class while the lowest value was obtained
0.20 for the Alfalfa class.

4. CONCLUSIONS

In this study, the impacts of classical roll-invariant polarimetric
features for the crop classification from multi-temporal polari-
metric SAR data were investigated. To explore the impacts of po-
larimetric features, five different data sets were created and used
as input data for classification. The incorporation of SPAN pa-
rameter into H-& data set increased the overall classification ac-
curacy as 14.18%, 19.23% and 22.87% for SVM, RF and NB, re-
spectively. These increases explicitly demonstrate the significant
contribution of SPAN parameter for the discrimination of crops.
SVMs outperformed other methods for the classification of [T]
matrix because of the main capability of the SVMs in handling
high-dimensional data with a limited number of training samples.
RFs received highest classification accuracies for all data sets ex-
cept H-& and [T] matrix. The results emphasize that the polari-
metric features have to be extensively analysed and investigated
in terms of the relationship between the changes in the pheno-
logical pattern of the crops and the polarimetric scattering. This
experimental study suggests that roll-invariant polarimetric fea-
tures can be considered as the powerful polarimetric components
for the crop classification from multi-temporal polarimetric SAR.
In addition, the findings prove the added benefits of PoISAR data
investigation by means of crop classification. Our future research
will address the extensive analysis and interpretation of the po-
larimetric features obtained from target decompositions for crop
classification from multi-temporal SAR data.
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