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ABSTRACT: 
 
Recent studies have shown that in the spectral space there is often a better spectral separation between leaves and flowers and even 
between flowers of different species than between leaves of different species. In this study we assess the ability of satellite remotely 
sensed data to detect the flowering of Red Gum trees (Corymbia calophylla) in Western Australia, the state’s largest annual honey 
crop. Spectroradiometer measurements of flowers, leaves and groundcover from Red Gum forests were subjected to ANOVA 
analysis, which showed that flowers are spectrally different to their environment for 92% of the wavelengths between 350 nm and 
1800 nm. A more detailed assessment, using the JM Distance calculation, showed that the spectra can be reliably separated using 
10% of the wavelengths, with peak separation between 518 nm and 557 nm. To assess the ability of satellite-borne sensors to detect 
the presence of flowers, the spectroradiometer data were convolved with satellite instruments’ response curves to create synthetic 
remotely sensed datasets on which JM Distance analysis was performed. MODIS blue bands achieved a median JM Distance of 
greater than 1.9 and therefore should be able to detect the presence of flowers from the environment. Further assessment showed that 
the shortest wavelength bands for MODIS, VIIRS and Sentinel 3 all occur where the flower spectra have lower reflectance than their 
natural background. A sensitivity analysis of percentage flower cover for a pixel showed that the highest sensitivity was obtained by 
dividing the band closest to 520 nm by the shortest wavelength band for data from these three sources. The MODIS band 10/band 8 
metric was tested for its ability to detect flowers in real-world data using 15 years of qualitative honey harvest data from one apiary 
site as a proxy for flower density. This test was successful as, while there was some overlap between good, moderate and poor years, 
the poor years could be separated from the other years with nearly 80% accuracy. 
 
 

                                                                 
* Corresponding author 

1. INTRODUCTION 

Remote sensing classification relies on the spectral response of 
different objects of interest having key spectral regions of 
difference, and those differences being measurable within the 
detection limits of the system. While often used to map 
vegetation types, the accuracy of remote sensing can be limited 
in this application due to the overlap of spectra between 
different species (Price, 1994). Indeed, the variation in spectra 
between individual leaves on a single tree can be greater than 
the difference in spectra between species in some cases 
(Cochrane, 2000). 
 
Recent studies have shown that in the spectral space there is 
often a better spectral separation between leaves and flowers 
(Gross and Heumann, 2014) and even between flowers of 
different species than between leaves of different species 
(Shrestha et al., 2013). 
 
Even with the limited spectral dimensionality of a standard 3-
band Digital Single Lens Reflex (DSLR) camera, it can be 
possible to clearly differentiate between flowers and leaves of 
some species (Campbell and Fearns, 2018), however the 
appropriate spatial resolution required for effective spectral 
separation is not typically available except via the use of 
Unmanned Aerial Vehicle (UAV) platforms. As a consequence, 
low spectral resolution sensing is not considered suitable for 
large spatial scale or high temporal frequency mapping. 
 

In this paper, we explore the potential for the use of imagery 
with a higher spectral resolution but lower spatial resolution 
than 3-band DSLR data for the detection of flowering Corymbia 
calophylla (Red Gum) trees in Western Australia. Honeybees 
foraging on this species produce the state’s largest annual honey 
crop (Painter, 2010) and can produce honey with some of the 
highest antibacterial activity of any honey variety in Australia 
(Irish et al., 2011). As the species occurs across a large portion 
of the South-West Floristic Province (see Figure 1), the ability 
to remotely detect where Red Gum trees are flowering may help 
apiarists to better manage their seasonal apiary movements and 
thereby increase production of higher-value honey. 
 

 
Figure 1. Government surveyed locations of Corymbia 

calophylla (Herbarium, 2015) 
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Figure 2. Locations of three registered apiary and spectral 

measurement sites, indicated by “pin” locations (Google, 2016) 
 

2. DATA COLLECTION 

Spectral reflectance data were acquired at three sites in State 
Forest areas between Spring 2015 and Autumn 2016 using an 
ASD FieldSpecPro 3 spectroradiometer. The location of the 
three sites, that are registered apiary locations with the 
Department of Biodiversity, Conservation and Attractions 
(DBCA), are shown in Figure 2. 
 
A total of 325 reflectance spectra of leaves, groundcover and 
flowers were acquired on clear, sunny days in September 2015 
(spring) and February 2016 (summer – peak flowering period) 
between 10 am and 2 pm. White reference measurements 
(Spectralon) were collected at least every 10 minutes (as per 
ASD manual) and 10 records taken and averaged per 
measurement. A minimum of 5 measurements were collected 
per target, with the spectroradiometer optic fibre held by hand 
between 5 – 10 cm from vegetation targets and 1 m height 
above ground targets. Typically 2 or 3 different targets were 
measured on individual trees (e.g. multiple different leaf or 
flower clusters). Measurements of groundcover spectra were 
also taken, which included leaf litter, low vegetation (< 0.5 m 
tall), gravel and sealed roads. 
 
2,151 spectral bands were acquired at between 350 – 2,500 nm 
wavelengths. Spectral data at wavelengths greater than 1,800 
nm were deleted to remove atmospheric water absorption 
features. The spectral resolution was also reduced from the 1 
nm bandwidth exported by the ASD software to the actual 
spectral resolution of the sensors. That is, 3 nm from 350 nm to 

1,000 nm and 10 nm from 1,000 nm to 2,500 nm. Spectra were 
also corrected for steps in sensor brightness calibration (Dallon, 
2003). 
 
While some studies have normalised individual reflectance 
spectra to reduce the impact of differences in brightness from 
target orientation and illumination (Feilhauer et al., 2010), this 
was not done for this study as work on multi-band DSLR data 
has shown a better discrimination of flowers in raw reflectance 
data (Campbell and Fearns, 2018) due to the overall pixel 
intensity being able to separate pixels close to white rather than 
grey or near black pixels with the same normalised ratio of red, 
green and blue reflectance. Accordingly, additional care was 
taken to only record spectra of targets in full, direct sunlight. 
 

3. SPECTRAL SEPARATION OF CORYMBIA 
CALOPHYLLA FLOWERS 

Previous studies have used a range of methods to assess 
correlation between spectral data and vegetation species and/or 
assemblages. Often a staged approach is used to progressively 
discriminate hyperspectral bands using progressively more 
complex algorithms and this has often been successful. The 
primary reason for this approach is that by using the simpler but 
less quantitative algorithm first significantly reduces the 
dimensionality of the dataset, reducing the volume of data 
required for the more complex and time-consuming, but more 
quantitative, algorithms (Vaiphasa, Ongsomwang et al. 2005). 
 
A review of eight different studies that included band selection 
from spectroscopy data showed that the most commonly used 
approach is an analysis of variance (ANOVA) analysis to 
reduce dimensionality, followed by calculation of the Jeffries-
Matusita (JM) Distance for the bands with the highest mean 
separation from the ANOVA results. This approach has been 
used for applications such as plant species discrimination from 
leaf reflectance for broadleaf trees, papyrus, mangroves and 
grasses, as well as fungal effects on soybeans (see Table 1 for a 
summary of the methods used). As the expected spectral 
separation between flowers and leaves was expected to be 
greater than many of these applications, particularly spectral 
separation between leaves of different species (Gross and 
Heumann, 2014), a more complex approach to quantify subtle 
spectral differences was not warranted. 
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(Vaiphasa et al., 2005) 350 – 2151 480         
(Adam and Mutanga, 2009) 350 – 2500 459         
(Pu, 2009) 

350 – 2500 394        
ANN1 
LDA2 

(Kisevic et al., 2011) 350 – 1050 Unknown         
(Ullah et al., 2012) 2500 – 14000 455         
(Magiera et al., 2013) 325 – 1075 240         
(Bao et al., 2017) 350 – 1050 153         
(Al-Ahmadi et al., 2018) 480 – 2400 160         

Table 1 - Summary of successful spectral separation methods from literature review 
 

                                                                 
1 Artificial Neural Network 
2 Linear Discriminant Analysis 
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For this staged approach to assess spectral separation initially, 
the spectra were divided into three groups: Flowers (F), Leaves 
(L) and Ground (G). The range and mean of these groups are 
shown in Figure 3. 
 

 
Figure 3. Range and median of spectra for the three groups 

 
The first stage of separation analysis, an ANOVA assessment 
for dimensionality reduction, was performed on the three groups 
of spectra using a custom Python script, testing the null 
hypothesis that there was no statistically significant difference 
between the means of each pair of groups (results in Figure 3). 
Based on a -value of less than 0.05 to disprove this hypothesis, 
reflectances were significantly statistically different for: 
- 94% of the Flower vs Ground wavelengths 
- 98% of the Flower vs Leaf wavelengths 
- 92% of the Flower vs Ground AND Leaf wavelengths 
 

 
Figure 4. ANOVA assessment results. Numbers less than 0.05 
represent a statistically significant separation. Areas shaded in 
grey show where the -value is less than 0.05 between flowers 

and both ground and leaves. Blue line is the F-value. 
 
To further reduce spectral dimensionality and assess the ability 
of different groups of bands to reliably differentiate between 
flower and other objects, the Jeffries-Matusita (JM) Distance 
was calculated for a series of bands (Schmidt and Skidmore, 
2003). This started with all bands with a -value greater than 
0.05 and then using groups of progressively higher mean 
separation (ANOVA F-value – the blue line in Figure 4). After 
being calculated for all bands with the JM Distance calculation 
on all data with -value < 0.05, the JM Distance was then 
calculated on the highest 50% of the F-values, highest 25% F-
values, etc until two bands were remaining (0.5% F-values).  
 

The progressive increase in mean separation was done to 
evaluate the effectiveness of higher or lower data 
dimensionality versus higher or lower data quality (i.e. are 
fewer bands of higher separation better than more bands (and 
therefore data points) of lower separation). As Figure 4 shows, 
the mean separation is generally higher in the visible bands, 
particularly in the region of 500 nm to 550 nm.  
 
Graphs of JM distance for each class pair (flower-ground and 
flower-leaves) are shown in Figure 5. There is a general 
increase in JM Distance (and therefore spectral separation) with 
restriction of the spectral bands to those associated with 
increasing F-value from the ANOVA analysis. 
 

 
Figure 5. Number of spectral bands versus JM Distance values 

 
Using the median values as a reliable estimate of separability 
and a filter of median JM Distance > 1.9 for accurate 
classification (Vaiphasa, Ongsomwang et al. 2005), the top 10% 
of spectral bands from the ANOVA classification should be 
able to achieve reliable classification results between flowers 
and other objects (28 bands of wavelengths 476 – 566 nm). 
Using the top 14 of the spectral bands, or less, means that over 
75% of the data points are clearly separated (wavelengths 518 – 
557 nm). 
 
Note that this finding only applies to the detection of flowers 
versus leaves or ground in Red Gum forests for spectral data of 
equivalent spectral and spatial resolution as this dataset. 
 

4. MULTISPECTRAL SEPARATION ASSESSMENT 

While a proven spectral discrimination ability from 
hyperspectral data is a useful finding, the ability to detect 
flowering plants typically relies on the temporal variability of 
the area of interest to track phenological changes (Blomstedt, 
2014). Given the cost of acquiring hyperspectral images, 
acquiring repeat hyperspectral datasets at regular intervals over 
a season is unlikely to be a practical solution. 
 
As a result, the raw spectra acquired with the FieldSpecPro 
were convolved with the spectral response functions of a range 
of different multispectral satellite-borne sensors to produce 
synthetic pixels of the hypothetical measured reflectance of 
flowers, leaves and ground classes. The convolution was 
applied to each of the field-measured spectra, creating 325 
measurements for each band of each satellite sensor. Graphs of 
the spectral bands for each sensor overlain on the median 
spectra for leaves, flowers and ground are provided in Figure 6. 
Note that, as per the previous section of this paper, the peak 
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separation is between 518 – 557 nm from the JM Distances 
calculated from the original spectroradiometer data. 
 
The JM Distances of the synthetic satellite reflectances were 
calculated, using progressively greater mean separation to select 
the bands (similar to the assessment of the original 
spectroradiometer JM distances from the ANOVA results).  
 
The results from this process are shown in Table 2. With the 
highest separation from the ASD spectroradiometer data being 
achieved across a bandwidth of 39 nm, this result correlates 
with Figure 4 and Figure 5, as while the majority of the 
wavelengths between 350 nm to 1800 nm are statistically 
different based on ANOVA analysis, only a small portion of the 
wavelengths are able to reliably separate the target classes. 
Satellites with too broad a bandwidth are not able to adequately 
resolve this key spectral zone, as are satellites with higher 
spectral resolution but not attuned to the 518 – 557 nm 
wavelengths. 
 

Table 2 shows that only the MODIS sensor has a median JM 
distance greater than 1.9 and thus has sufficient spectral 
resolution to reliably distinguish between the flower, leaves and 
ground classes in the spectral space. Two bands from MODIS 
achieved this degree of separation; Band 4 (538 – 568 nm) and 
Band 11 (519 – 540 nm). Both of these bands are within the 
portion of the spectrum that achieved a median JM Distance of 
2 from the ASD spectroradiometer data (476 – 566 nm). 
 
Satellite Spectral resolution range 

(min and max bandwidth) 
Highest median 
JM Distance 

AVHRR 60 – 1,000 nm 0.17 
Sentinel 2 15 – 180 nm 0.37 
Landsat 7 60 – 2,100 nm 0.47 
CBERS 60 – 2,100 nm 0.49 
Landsat 8 20 – 1,100 nm 0.81 
ASTER 40 – 700 nm 1.11 
Sentinel 3 2.5 – 40 nm 1.56 
VIIRS 15 – 600 nm 1.82 
MODIS 10 – 1,000 nm 2.00 
Table 2. Median JM Distance results for common multispectral 

satellite sensors 
 

 
Figure 6. Spectral bands for satellite sensors overlain on median reflectance spectra from ASD spectroradiometer measurements. 
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5. MINIMUM FLOWER COVERAGE FOR 

DETECTION 

While the JM Distance analysis has indicated that the MODIS 
sensor is capable of spectrally separating Red Gum flowers 
from background reflectance, the very high spatial resolution of 
the data in this analysis (field of view typically less than 50 
cm2) means that the flowers made up almost the entire field of 
view of the spectroradiometer. With the optimum MODIS 
bands having a spatial resolution of 500 m (Band 4) or 1,000 m 
(Band 10), it is considered improbable that a single MODIS 
pixel would consist entirely of Red Gum flowers. 
 
In order to estimate the percentage flower cover required for 
flowers to be detected, the percentage of flower coverage was 
calculated to increase the reflectance by 1 standard deviation 
(SD) for backgrounds ranging from 0 – 100% leaf cover. This 
was done for the MODIS bands with the highest JM Distance 
(bands 3, 4, 10, and 12), as well as for several derived spectral 
products. These derived products included calculated NDVI and 
EVI products, as well as other combinations of MODIS visible 
spectral bands to determine the effectiveness of a ‘visual band 
intensity’metric. This is in a similar vein to the work completed 
by Sulik and Long (2016), who developed a Normalised 
Difference Yellowness Index (NDYI) to better predict canola 
yields based on the coverage of yellow canola flowers as it was 
found that NDVI decreased as flower cover decreased. 
 
The results from this process are presented graphically in Figure 
7 for the MODIS bands and Figure 8 for the MODIS derived 
indices. The minimum, maximum and mean flower coverages 
required for 1 SD variation for all background scenarios are 
provided in Table 3. 
 
For a minimum detection limit cutoff of 1 standard deviation 
(i.e. the intensity of the pixel would be at least 1 SD different to 
the background median value), the percent flower coverage 
limit is between 20 and 30% for the visible MODIS spectral 
bands tested here, that all had a median JM distance of greater 
than 1.9 between flowers and other classes. The best performing 
band was Band 4, with a 24.9% mean flower coverage. 

 
Figure 7. Percentage cover of flowers require to change the 
reflectance by 1 standard deviation for different background 

ratios of ground and leaves for MODIS bands 
 

 
Figure 8. Percentage cover of flowers require to change the 
reflectance by 1 standard deviation for different background 

ratios of ground and leaves for MODIS derived indices 
 

 

Band/Indices 1 3 4 10 11 12 NDVI EVI 3+4 10+11 
10+11 

+12 
(3-8) 
(3+8) 

3/8 4/8 11/8 10/8 

Minimum 16.4% 22.5% 23.7% 22.5% 23.5% 23.3% 15.3% 44.0% 27.5% 24.4% 25.3% 6.5% 1.0% 3.3% 2.4% 1.2% 

Mean 27.9% 27.4% 24.9% 25.2% 27.5% 24.6% 35.8% 60.3% 28.3% 26.3% 26.5% 9.0% 1.4% 6.3% 4.9% 1.7% 

Maximum 42.6% 30.4% 26.2% 28.3% 24.5% 25.9% 69.0% 84.0% 29.1% 28.2% 27.8% 11.5% 1.9% 9.3% 7.5% 2.1% 

Table 3. Minimum, maximum and mean flower coverage required for 1 SD change in reflectance for MODIS synthetic pixels 
 
The vegetation indices required a minimum of 50 - 60% leaf 
cover for the background for flowers to create a 1 SD variation 
(NDVI required as much as 69% flower cover at 50% 
background leaf cover and EVI required 84% flower cover at 
60% leaf background cover). These minimum coverage 
percentages decrease with increasing flower coverage, which is 
not surprising due to the larger decrease in chlorophyll content 
with increasing flower coverage for higher leaf coverage. This 
correlates with the research by Sulik and Long (2015) who 
found the same result in canola, with NDVI decreasing as the 
yellow flowers became a dominant influence on the spectra. 
 

The best results are from indices created by dividing the visible 
band data with the highest JM Distance (bands 3 or 4 in the 500 
m spatial resolution data and bands 10 or 11 in the 1,000 m 
data) by Band 8 (ultraviolet). As flowers have predominantly 
higher reflectance in the visible bands and lower reflectance in 
the UV and near-UV bands (see detail of spectra in Figure 9), 
this process highlights both differences. 
 
As a result, these calculated indices reach the 1 SD criteria at a 
mean of 1.4% flower coverage for Band 3 (500 m resolution 
data) and 1.7% for Band 10 (1,000 m resolution data). The 
response was also consistent regardless of leaf versus ground 
present in the background for the synthetic pixel, with Band 3 
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requiring no more than 1.9% flower cover and Band 10 no more 
than 2.1%. This is a significant improvement over using 
individual visible band data, visible band combinations or 
vegetation indices for flower detection. 
 

 
Figure 9. Flower, leaf and ground spectra from 350 - 700 nm 

 
A similar process of assessing flower coverage detection was 
performed on synthetic datasets for other satellite-borne sensors 
(Figure 10 and Table 4). The results for individual sensor bands 
correlated with the results of the JM distance analysis, showing 
that the bands most sensitive to flower detection for all sensors 
are less sensitive than the MODIS bands with higher JM 
distances. This correlates with the JM distance analysis of the 
synthetic data summarised in Table 2. 
 

 
Figure 10. Percentage cover of flowers require to change the 
reflectance by 1 standard deviation for different background 
ratios of ground and leaves for other sensors and satellites 

 
Where satellites had UV and near-UV bands (Band 1 for both 
Sentinel 3 and VIIRS), the same indices were calculated as were 
done for the MODIS data (visible band divided by the UV or 
near-UV band). The results of this, shown in Figure 11 and 
Table 4, show greater sensitivity to flower detection at low 
flower coverages than visual band data alone, producing 
detection limits more sensitive to flower coverage than when 
the same process was applied to MODIS data. The highest 
sensitivity was from Sentinel 3 (Band 6 / Band 1), with a mean 
flower coverage of just 1.1% required to make a difference of 1 
SD to the synthetic pixel reflectance. 
 
The improvement relative to MODIS is likely due to the 
specific bandwidth of the UV to near-UV bands, for example 
Band 8 in MODIS ranges from 405 nm to 420 nm, while 

Sentinel 3 is from 350 nm to 405 nm. These slightly different 
bands mean that the Sentinel 3 band is located entirely in the 
low reflectance spectral region for flowers (< 410 nm) whereas 
the MODIS band includes a portion of the spectra where the 
flower reflectance is starting to increase (see Figure 9). As a 
result, the UV band reflectance of flowers from Sentinel 3 and 
VIIRS is generally lower than for MODIS, thus having a larger 
impact on the band ratio. 
 

 
Figure 11. Percentage cover of flowers require to change the 

reflectance by 1 standard deviation for different ratios of ground 
and leaves for Sentinel 3 and VIIRS derived indices 

 
 

6. MODIS FLOWER DETECTION TEST USING 
HONEY HARVEST DATA 

To assess the ability of satellite data to detect flowers from real-
world rather than synthetic data, the flower coverage as inferred 
from MODIS data was compared to qualitative honey harvest 
data from 2003 – 2017 for an apiary site near Mundaring (near 
Perth, Western Australia). This site was also one of the 
locations where the spectroradiometer data were collected 
(Figure 2). The vegetation consists of Red Gum forest for more 
than 4 km in each direction from the apiary site.  
 
Honey harvest data were in the form of the times when hives 
were placed and removed from the site (corresponding to the 
main flowering event for the season) and a rating of the year by 
the apiarist as poor/failed, moderate or good. While not a 
detailed quantitative dataset, it does give a reliable indication of 
honey flow. The harvest data are summarised in Table 5, with 
the week of the month that the hives were placed on and 
removed from the site shown by the width of the bar for the 
year. 
 
It was suggested by the apiarist that poor to failed harvests were 
due to either hot, dry or wet summers. This claim is 
substantiated by a comparison of the harvest data in Table 5 
with mean maximum temperature and rainfall over January and 
February from the Bureau of Meteorology, which are shown in 
Figure 12. The data were from the closest meteorological station 
to the apiary site, which were Mundaring Weir for rainfall (6.7 
km north) and Bickley for temperature (12.5 km west). 
 
The good to moderate years are clearly bounded by years of less 
than 40mm but more than 0 mm of rainfall and a mean 
maximum temperature of less than 32 degrees Celsius. There is 
only one failed year within these bounds (0.6 mm rainfall, mean 
maximum temperature 31.4 degrees Celsius).  
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Minimum 25.7% 26.8% 27.9% 39.8% 27.1% 27.4% 27.0% 53.0% 32.7% 25.4% 85.5% 25.4% 27.6% 0.9% 1.1% 1.3% 3.7% 

Mean 26.8% 27.2% 29.2% 53.0% 27.5% 27.9% 27.5% 57.9% 36.4% 26.7% 91.6% 26.8% 28.5% 1.1% 1.3% 1.8% 6.5% 

Maximum 28.0% 27.6% 30.3% 77.6% 27.8% 28.5% 27.9% 63.8% 40.6% 28.2% 98.0% 28.3% 29.5% 1.3% 1.6% 2.3% 9.2% 

Table 4. Minimum, maximum and mean flower coverage required for 1 SD change in reflectance for non-MODIS synthetic pixels 
 

1 2 3 4 1 2 3 4 1 2 3 4
2003 MODERATE MODERATE MODERATE MODERATE

2004 FAILED FLOW

2005 MODERATE MODERATE MODERATE MODERATE MODERATE MODERATE MODERATE MODERATE

2006 FAILED FLOW

2007 GOOD GOOD GOOD GOOD GOOD GOOD GOOD GOOD

2008 FAILED FLOW

2009 MODERATE MODERATE MODERATE MODERATE MODERATE MODERATE MODERATE

2010 POOR POOR POOR POOR POOR

2011 FAILED FLOW

2012 NO HARVEST FROM SITE - HIVES KEPT SOUTH OF PERTH

2013 GOOD GOOD GOOD GOOD GOOD GOOD GOOD

2014 FAILED FLOW

2015 GOOD GOOD GOOD GOOD GOOD GOOD GOOD GOOD

2016 FAILED FLOW

2017 FAILED FLOW

JANUARY FEBRUARY MARCH
Year

 
Table 5. Honey harvest data from Mundaring, Western Australia 

 
 

 
Figure 12. Annual summer weather conditions versus honey 

harvest quality 
 
MODIS data were chosen for the correlation with honey harvest 
data as it has a longer temporal range of Sentinel 3 and VIIRS 
(since 2002 for MODIS, since 2016 for Sentinel 3 and since 
2011 for VIIRS) and better temporal resolution than VIIRS (1 -
2 days for MODIS versus 16 days for VIIRS). 
 
Daily MODIS data were processed for a 3x3 pixel region at the 
apiary site (9 pixels, or a 3 x 3 km area). The median value of 
the most sensitive metric of consistent pixel size (Band 10/Band 
8) was calculated for February each year. For 9 pixels and 15 
years of data, this created 135 datapoints for comparison. Figure 
13 shows the annual MODIS average band ratio from 2003 to 
2017 with the honey harvest data represented by colours 
indicating the poor/failed, moderate and good years. 
 
Using the ANOVA algorithm on the null hypothesis of there is 
no difference in the means between the good, moderate and 

poor years, it was found that there was a statistically significant 
difference between good vs poor and moderate vs poor years ( 
< 0.0002 in both cases). However, there is not a statistically 
significant difference between the means of good vs moderate 
years ( = 0.0657). The data ranges are shown in Figure 14, 
where the difference in the medians of the groups is clear. 
 

 
Figure 13. Median February MODIS and honey harvest data 

 

 
Figure 14. February median band 10/8 ratio data ranges for 

good to poor years 
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The ability of the MODIS data to generate a classification tool 
was also tested, by considering minimum cutoff values for good 
and moderate vs poor years and calculating how accurately 
these cutoffs separated the data into the correct classifications. 
The results show that a cutoff for the band 10/8 ratio of between 
1.34 and 1.35 gives the best result, with a classification 
accuracy of 78%. A lower cutoff than this results in 
classification accuracy of the poor years decreasing. Above this 
cutoff, the accuracy of prediction of the good and moderate 
years decreases. While limited in spatial extent, this analysis 
does show that the quality of honey flow can be assessed using 
MODIS data and classified on a site-specific basis. 
 

7. CONCLUSIONS 

Based on an ANOVA analysis of field spectroradiometer data 
we can conclude that Red Gum flower reflectance spectra are 
significantly statistically different from the spectra of the 
surrounding environment for most wavelengths between 350 
nm and 1800 nm. The JM Distance assessment suggests flowers 
are separable in hyperspectral data for 10% of wavelengths. The 
highest degree of separation is between 518 – 557 nm. 
 
However, this difference does not translate well to bands of 
most satellites. Using the JM Distance assessment on synthetic 
satellite data generated from the field spectroradiometer data, 
only the MODIS data achieved a JM Distance of greater than 
1.9 (using bands 3, 4, 10 or 11). 
 
Further analysis showed that this spectral separation could be 
improved by dividing these bands by Band 8, which is on the 
blue/ultraviolet boundary and where flowers have a lower 
reflectance than their surrounding environment. A simple 
sensitivity assessment showed that as little as 1.0% flower 
coverage in a pixel may increase the band 10/8 ratio value by 
more than 1 SD of the background. 
 
The Sentinel 3 and VIIRS synthetic satellite data also perform 
well with this approach, as their shortest wavelength bands are 
at slightly shorter wavelengths than the MODIS Band 8 and 
therefore increase the effect of dividing by this band. 
 
The MODIS Band 10/Band 8 metric was tested for its ability to 
detect flowers in real-world data using 15 years of qualitative 
honey harvest data as a proxy for the presence of flowering Red 
Gum trees. This test was successful as, while there was some 
overlap between good, moderate and poor years, the poor years 
could be separated from the other years to nearly 80% accuracy. 
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