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ABSTRACT:  

 

Sampling the Earth’s surface using airborne LASER scanning (ALS) systems suffers from several factors inherent to the LASER 

system itself as well as external factors, such as the presence of particles in the atmosphere, and/or multi-path returns due to 

reflections. The resulting point cloud may therefore contain some outliers and removing them is an important (and difficult) step for 

all subsequent processes that use this kind of data as input. In the literature, there are several approaches for outlier removal, some of 

which require external information, such as spatial frequency characteristics or presume parametric mathematical models for surface 

fitting. A limitation on the height histogram filtering approach was identified from the literature review: outliers that lie within the 

ground elevation difference might not be detected. To overcome such a limitation, this paper proposes an adaptive alternative based 

on point cloud cell subdivision. Instead of computing a single histogram for the whole dataset, the method applies the filtering to 

smaller patches, in which the ground elevation difference can be ignored. A study area was filtered, and the results were compared 

quantitatively with two other methods implemented in both free and commercial software packages. The reference data was 

generated manually in order to provide useful quality measures. The experiment shows that none of the tested filters was able to 

reach a level of complete automation, therefore manual corrections by the operator are still necessary.  

 

 

                                                                 
*  Corresponding author 

 

1. INTRODUCTION 

Despite the robustness of state of the art of airborne LASER 

scanning (ALS) systems, and even with diligent data 

acquisition, the resulting point clouds may contain undesired 

measures due to external factors present in the scene. According 

to Ben-Gal (2005), the presence of outlying observations in the 

dataset may lead to model misspecification, biased parameter 

estimation and, consequently, incorrect results. As suggested by 

Lin and Zhang (2014), automatic outlier removal is quite a 

challenging task due to the various types of error possible. 

 

Within the scope of ALS, the outliers (Figure 1) can be divided 

into positive and negative (Matkan et al., 2014): the positive 

ones consist of LASER returns from objects near the scanning 

system (Figure 1b), such as birds or small unmanned aircraft, 

for instance. In addition to those causes, Leslar et al. (2010) 

mention that suspended particles in the atmosphere (snow and 

dust, for example) are also possible sources of positive outliers. 

Theoretically the atmospheric effects could interfere in some 

situations, in practice however, they are less likely to generate 

outliers since the data acquisition is usually planned to occur 

under reasonable weather conditions.  

 

Aside from the robust state-of-the-art equipment used on 

conventional airplanes, there has been a constant development 

of lightweight LiDAR systems that were designed specifically 

for unmanned aerial vehicles (UAV) as well as some which 

were adapted from automated driving systems. Assuming that 

these LiDAR systems coupled to UAVs are equal or less robust 

than the full-sized variants, and also that the platform usually 

flies at lower heights, it can be expected that the resulting point 

clouds will contain outlaying points.  

 

Negative outliers (Figure 1c) are usually attributed to multipath 

trajectory of the LASER pulse, analogous to the effect that 

occurs in the Global Navigation Satellite System (GNSS), that 

is, the pulse travels a longer trajectory than the real, resulting in 

points whose positions are below the Earth’s surface. According 

to Sithole and Vosselman (2004), negative outliers may lead to 

problems during terrain filtering operations, since the 

commonly applied methods assume lowest points as terrain.  

 

Some authors such as Sithole and Vosselman (2004), Mongus 

and Žalik (2012), and Lin and Zhang (2014), for instance, adopt 

high and low outliers instead of positive and negative. Other 

possible nomenclature is proposed by both the American 

Society for Photogrammetry and Remote Sensing (ASPRS) and 

the United States Geological Survey (USGS), which considers 

high and low noise as synonyms for positive and negative 

outliers (Heidemann, 2018), respectively. Lin and Zhang (2014) 

provide yet two other classes of outlier based on spatial 

distribution: isolated outliers and clustered outliers.  

 

According to Ben-Gal (2005), the methods for outlier detection 

can be distinguished as parametric or non-parametric, that is, 

model independent. In the context of airborne LiDAR data or 

ALS data, the mathematical model for the Earth’s surface and 

its features can be quite complex, thus the non-parametric 

techniques are preferred. An alternative is the use of local 

mathematical models, such as proposed by Leslar et al. (2010).  

 

Among the non-parametric methods for outlier detection, there 

are the distance-based ones, which are recommended for large 

datasets and are implemented in most of the point cloud 
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processing software. Usually, they search for observations that 

are significantly different from the average value, which is 

computed locally in a given neighbourhood, introducing 

another problem, that is, the definition of this neighbourhood. 

 

As the outlier filtering problem is a binary classification 

problem, the quantitative analysis can be performed with the 

computation of error matrices, which enable the evaluation of 

Type I (failure to remove outliers) and Type II (removal of valid 

points) errors. Besides relative comparisons with other methods, 

the error matrix computation requires reference data (otherwise 

known as ground truth), however, such data is rather difficult to 

produce, since it will be manually made in most cases.  

 

 

 
 

 

 
 

Figure 1. (a) ALS outlier taxonomy. Examples of datasets with 

(b) positive and (c) negative outliers 

 

Several approaches can be used for outlier removal in ALS data, 

the simplest being based on external information such as the 

average terrain altitude of the region of work, or the maximum 

difference between the altitudes of the first and last return 

(Matkan et al., 2014). Another strategy was proposed by Leslar 

et al. (2010), which consists in bivariate quadratic polynomial 

fitting to the neighborhood of all points in the dataset. In this 

approach, points whose altitudes are very different from those 

expected according to the mathematical model are removed. 

Fitting such a mathematical model to the surface is a valid 

approach, however, dense urban regions or vegetated areas 

might be incorrectly modelled depending on the object’s 

complexity.   

 

Some approaches, such as Li et al. (2011) and Shen et al. 

(2011) attempt to detect outlaying points from the heights 

histogram. Both papers also employed the KD-tree (K-

dimensional tree) towards computation time savings, as the 

query for neighbouring points is less time-demanding due to the 

topological structure of the tree. This abstract data type was also 

used in other methods, such as the one proposed by Lin and 

Zhang (2014).  

 

Similarly, Silván-Cárdenas and Wang (2006) presented an 

approach which was later modified and extended by Lin and 

Zhang (2014). The authors proposed a semi-automatic method 

where the operator has to visually inspect the elevation 

histogram to locate the lowest and highest tails of the 

distribution. A second step is then employed to remove 

remaining outliers using a criterion based on height difference 

thresholding. Finally, the operator has to manually correct 

possible misclassifications of the filter. 

 

The height histogram analysis is a useful mechanism to identify 

outliers in airborne derived point clouds, however, they ignore 

the terrain relief and also the height variation of the objects 

above it. If the studied area is large and with rugged relief, then 

the method is likely to fail detecting outliers close to the 

surface. 

 

Alternatively, based on the aspects discussed and in order to 

develop a more balanced approach, this paper proposes an 

adaptive outlier filtering algorithm for ALS data. In Section 2 a 

brief description of outlier filtering approaches is given. The 

proposed method is introduced in Section 3. In Section 4 some 

experiments and results are discussed, followed by some 

concluding remarks in the last section. 

 

2. OUTLIER FILTERING APPROACHES 

2.1 Parametric surface fitting 

Several methods of outlier detection were designed as a local 

descriptor over the point’s surroundings. The main idea is to 

compute the distance of the point to a parametric surface 

estimated from its neighbors. The usual mathematical models 

are bivariate quadratic polynomials (Leslar et al., 2010) and 

planes (Rashidi and Brilakis, 2016). The assumptions of this 

approach over the sampled data may be violated depending on 

the neighborhood size and also on the complexity of the 

parametric surface selected. Vegetated areas are less likely to be 

correctly modelled with planar surfaces, also most building 

roofs with smooth continuous surfaces as bivariate polynomials, 

for instance. 

 

2.2 Morphological outlier filter 

 

According to Kilian (1996) mathematical morphology theory 

has suitable operators to compose terrain filtering algorithms. 

The general idea has been extended into adaptive approaches 

such as the progressive morphological filter introduced by 

Zhang et al. (2003). Mongus and Žalik (2012), used 

morphological operators as a pre-processing step in order to 

remove outliers and avoid problems during the later stages of 

the proposed method, which is a terrain filtering algorithm 

based on thin plate splines. 

 

Morphological filtering methods are usually based on 

extensions of digital image operators, which were adapted to 

process the point’s height instead of the grayscale intensity. The 

main operation is the opening, which is a composite of other 

two fundamental morphological operations: erosion and 

dilation. The erosion operation levels down the higher points to 

the lowest one within the structuring element which is 

convolved in the grid, while the dilation levels up the lower 

points to the highest one. The opening operation is defined as 

an erosion directly followed by a dilation using the same 

structuring element. The erosion will remove unwanted 

features, such as outliers or buildings, vegetation and other 

objects in the case of terrain filtering. The erosion operation 

will also introduce some deformation to the terrain relief, which 

is going to be partially reconstructed during the dilation. 

zmax 

zmin 

Positive outliers Negative outliers 

(b) (c) 

(a) 

Outlier 

cluster 
Isolated 

outliers 
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When using morphological operators to filter the terrain, the 

structuring element size selection might be based on the non-

ground objects that must be removed. The morphological 

outlier filter uses the same principle, however, as the outliers 

are usually isolated points, the structuring element can be rather 

small. 

 

The main drawback to using morphological operators consists 

in the requirement of a raster data format. As a consequence, 

transforming the point cloud to a grid demands interpolation, 

which may introduce error into the data. Alternatively, Mongus 

and Žalik (2012) adapted the operators to work on a grid 

created from cell subdivision. Each cell (voxel) contains an 

array of points with (X,Y,Z) coordinates. The operator will then 

select the most appropriate entry to work with, that is, the 

higher or lower point of the array, for instance. 

 

2.3 Spatial frequency (SF) outlier filter  

 

The LAStools software version 171215 implements a 

straightforward outlier removal technique (lasnoise) based on 

the spatial frequency (SF) of the points. As described in the 

documentation, for each point in the dataset, a 3D structure - 

voxel - formed by 3x3x3 elements is generated having the 

current point as centre. If the number of points within this voxel 

(27 cells) is inferior to a certain threshold, the current point is 

considered an outlier (isolated point). This approach is efficient 

but some outlier groupings are difficult to identify, which may 

result in filtering problems (Type II errors).  

 

2.4 Statistical outlier removal (SOR) filter 

The software CloudCompare version 2.9.1 uses the Statistical 

Outlier Removal (SOR) from the Point Cloud Library (PCL), 

which assumes that the distance between a given point and its 

neighbours is normally distributed. The statistical model 

implemented is described in Rusu et al. (2007), who adapted the 

filter from Zhang (1994) for another context. 

 

For each point pi (i=1…n), in the dataset, the average distance 

ri
(K) considering K-nearest neighbors (KNN) is computed. This 

value is assessed using the sigma rule on the entire dataset, that 

is, if the result is not within N standard-deviations from the 

mean, then the point is treated as an outlier. The software 

mentioned adopts K=6 and N=1 as default parameters for the 

SOR filter.  

 

Assuming that the average distance to the KNN is normally 

distributed, the standard-deviation multiplier (N) can be chosen 

based upon the cumulative distribution function (CDF) from the 

normal distribution. If the data seems to have few outliers, a 

higher N value can be selected, which will result in fewer points 

being removed. When adopting N=3, the expected inlier 

percentage should be approximately 99.73%. In this way, a low 

value for N might result in more Type II errors in the filtering. 

For this filter, Shen et al. (2011) suggest that K must be larger 

than the number of points within a cluster in order to remove it.  

 

This approach was intended for terrestrial (mostly indoor) point 

clouds (as the original paper suggests), and it is sensitive to 

density variations. For ALS data the method may lead to 

problems in some regions, such as in areas of vegetation, where 

the LASER pulse penetrates the canopy (resulting in multiple 

returns, and therefore an increase in the point density), power 

transmission lines, and overlapping strips. 

Similar ideas have been shown in Rashidi and Brilakis (2016), 

where the authors proposed metrics based on the KNN. The 

first criterion is analogous to the SOR filter, whereas the second 

assume that the point cloud was sampled over planar segments 

and attempt to adjust a plane to the KNN using the least squares 

(LS) or random sample consensus (RANSAC) algorithm. The 

point is more likely to be an outlier as the distance to the 

adjusted plane increases. Apart from being a suitable alternative 

for indoor point clouds, the assumptions for this criterion will 

be violated when dealing with ALS data. 

 

3. CELL HISTOGRAM FILTER 

The proposed outlier removal method, designated here as cell 

histogram (CH) filter, consists of a straightforward variation of 

the Lin and Zhang (2014) algorithm. Initially, the point cloud is 

divided into a two-dimensional grid of rectangular cells, using a 

similar data structure described in Mongus and Žalik (2012). 

Apart from the computation time savings (as with the KD-tree 

mentioned earlier), structuring the point cloud in a grid of 

rectangular cells is particularly helpful in order to accommodate 

the terrain variations for the height histograms. The height 

histogram is built for each cell, considering a bin width in order 

of magnitude of vertical accuracy. The algorithm sweeps the 

histogram searching for the first and last bin whose frequency is 

above a specified threshold in terms of number of points, that is, 

the highest and lowest tails of the height distribution. The 

acceptance interval is computed as corresponding to minimum 

and maximum height for the first and last bin, respectively. 

 

4. EXPERIMENTS AND RESULTS 

The selected study area shown in Figure 2 consists of a small 

portion of the urban region of Presidente Prudente/Brazil. The 

LiDAR dataset was acquired with a RIEGL LMS Q680i in 2014 

by Sensormap Geotecnologia, a subsidiary company of the 

Engemap Group (Tommaselli et al., 2018). The point cloud has 

1.65 million points and covers an area of 428 m by 351 m, 

resulting in a average point density of 10.9 pts/m2. According to 

Tommaselli et al. (2018), the average flying height was 550 m, 

and the point cloud has a 12 cm vertical root mean square error 

(RMSE), which was assessed using ground control points 

(GCPs) tracked with double frequency GNSS receivers.  

 

 
Figure 2. Study area limits in UTM zone 22 S grid coordinates  

 

This point cloud has a considerable ground elevation difference 

of about 30 m. In addition, the region contains several objects 
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that are easily mistaken as positive outliers, such as light poles, 

power transmission lines, and low density sampling on building 

walls. A total of 848 outliers were detected manually in the 

point cloud, most of them being negative outliers (650) and 

situated below the bigger edifications. Positive outliers are 

mostly isolated points (198), while negative outliers where 

found in clusters. 

 

4.1 Establishing benchmarks  

In order to provide results for comparison, the point cloud 

mentioned was processed with two outlier filters available in 

both LAStools and CloudCompare softwares. A comparison 

with morphological filters, not considered in this study, would 

also be interesting.  

 

Firstly, the SOR filter was applied several times using 

CloudCompare, each application considering a standard-

deviation multiplier (N) of 4, which assumes 99.9936% of the 

population as inliers. In theory, if the ri
(K) distances were 

normally distributed, approximately 105 outliers would be 

expected on the point cloud (1.65 million points). However, the 

assumption of normality was not assessed in this study, and the 

parameter (K) also needs to be considered in this algorithm.  

 

The point cloud was processed ten times with the SOR filter, 

the first time with K=4, and then increasing by 2 in each 

consecutive run. The results for true positive (TP) and false 

positive (FP) are presented in Figure 3. The false negative (FN) 

was omitted from the graph, since the values were too high 

(about 13000 for K=4 and increased towards 14500 for K=22) 

and would interfere in the scale for the vertical axis. 

 

 
Figure 3. Effect of neighbouring points (K) on SOR filter, 

considering a sigma multipliyer (N) equals 4 

 

The graph shows two trends and also two asymptotes, one for 

each quantity. The TP curve starts with about 340 correct 

filtered outliers and stabilizes close to 680 (approximately 80% 

of the outliers). As expected, the FP decreases at almost the 

inverse rate, and shows no further improvement when it reaches 

165 undetected outliers (about 20% of the outliers). As 

mentioned before, the main problem with this filter is that, it 

removed almost 0,9% of valid points (14500 FN) in order to 

achieve those results. 

 

The point cloud was also processed several times with the SF 

filter implemented on LAStools. All runs considered the same 

voxel size (a 8 m3 cuboid), only changing the frequency 

threshold. Some patterns shown in Figure 4 are similar to the 

SOR filter (Figure 3), the main difference being that the SF 

filter has fewer FN occurrences than the method mentioned 

before.  

 

As can be seen in Figure 4, the FN increases at a higher rate 

than the TP. This is not optimal since the method should avoid 

FN occurrences, however, those values are still considerably 

lower when compared to the SOR filter. It can be assumed that 

further increasing the frequency threshold may remove many 

more valid points while making less difference on the outlier 

detection rate. 

 

 
Figure 4. Effect of frequency threshold (isolated) on SF filter, 

using a voxel size (step) of 2 m 

 

The results from the experiments conducted highlight the 

difficulty of the outlier detection problem. The trends observed 

were expected, that is, a higher outlier detection rate causes a 

higher valid point removal as well. Although the experiments 

were performed with only one point cloud, this behavior can 

also be expected for other filters and other datasets. 

 

4.2 Proposed method evaluation 

The CH filter was applied several times on the study area point 

cloud in the same way as the other two filters (SOR and SF). 

All processes considered the same square cell size of 50 m, and 

histogram bin width of 15 cm. The bin width value was selected 

based on the vertical accuracy of the point cloud (12 cm, as 

mentioned before). 

 

 
Figure 5. Effect of frequency threshold on CH filter, using 

square cells of 50 m and bin width of 15 cm 

 

The results shown in Figure 5 are comparable to the other 

filters, principally at the rate at which the FN increases for both 

SF and CH filters. Apart from having similar behavior, the TP 

and FP rates for those filters appear to be different, that is, the 

CH filter shows a more modest increase on accuracy over the 

parameter changes. 

 

The F-score (also known as F1-score or F-measure), is a metric 

based on the effectiveness measure proposed by Van Rijsbergen 

(1979). This metric was computed for both SF and CH filter 

results (Figure 6) in order to provide a proper numeric 

comparison. This measure is suitable for this comparison since 

it provides a unique value and it takes the TP, FP and FN into 

acount. The SOR filter was ignored in this comparison due to 
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its high FN values, which were discrepant from the other two 

filters.  

 

 
Figure 6. F-score comparison between the SF and CH filters 

 

As can be seen from the diversified results in Figure 6, it is not 

clear which filter stands out. Numerically, both filters achieved 

incomplete detection, with F-scores below 50%. No tested 

filters was able to provide a proper outlier detection on the 

study area, so manual corrections would be necessary in order 

to refine the filtering.  

 

Table 1 shows the peak of correctly detected outliers using the 

same configuration as before, except for the frequency threshold 

which was increased. Those values (around 550 and 520, for SF 

and CH filters, respectively) represent at least 130 fewer 

detected outliers (15%) when compared to the SOR filter.  

 

Method 
Spatial 

 Frequency (SF) 

Cell 

 Histogram (CH) 

Frequency  

threshold 
22 12 

TP 553 65,2% 522 61,5% 

FP 295 34,8% 326 38,5% 

FN 2648 312,3% 1711 201,8% 

Table 1. Higher TP ocurrences for SF and CH filters 

 

Based only on the TP and FP rates, the SF filter seems to 

provide a better result than the CH filter, however, it removed 

almost a thousand more valid points. In practical terms, the 

algorithm selection can be based on the misclassification costs, 

that is, choosing between “failing to remove outliers” or 

“removing valid points”, whichever has fewer errors prejudicial 

to your work.  

 

In order to provide a more detailed analysis, the TP shown in 

Table 1 were classified as positive and negative outliers, and the 

results are presented in Table 2. The SOR values are based on 

the processing with K=18. It can be noted from the values that 

the SOR filter has detected almost the double the positive 

outliers than the other two filters. Another noticeable fact is 

related to both SF and CH filters, which detected almost the 

same number of negative outliers. Assuming that negative 

outliers are more problematic than positive ones, since they 

might cause problems with terrain filtering algorithms as 

discussed before, the SF and CH filters were able to detect at 

least 73% of them. These methods seem to have problems when 

detecting positive outliers, as for the CH filter, for instance, 

which was capable of identifying only 23% of the total (198). 

 

In summary, neglecting other factors that might influence the 

filtering (such as the voxel size, which were not explored in this 

study), the SOR filter has higher rates for both TP and FN. The 

CH filter achieved less for TP, however FN numbers were much 

lower. Finally, the SF filter is a more balanced approach 

between the three evaluated filters. 

 

 
Correctly detected outliers (TP) 

Filter Positive Negative Total 

SOR 113 567 680 

SF 66 487 553 

CH 46 476 522 

Reference 198 650 848 

Table 2. Positive and negative outlier distribution 

 

4.3 Visual analysis 

A visual interpretation of the filtering results as well as the 

numerical assessment might provide useful insights on their 

characteristics. Figure 7 shows some differences on the FN 

occurrences among the filters using the same results presented 

on Table 2. The algorithms with higher FN rates have removed 

a few (SF) or several (SOR) points sampled on the walls of the 

evaluated building. The CH filter did not suffer from this 

problem, since only the highest and lowest tails of the histogram 

are removed, while the bins in between remain unchanged.  

 

   
(a) CH (b) SF (c) SOR 

Figure 7. FN occurrences on building walls for the three 

evaluated filters 

 

The lateral view of the dataset presented in Figure 8 shows the 

original point cloud and the filtering results for the CH, SF and 

SOR algorithms. It can be seen in Figure 8(b) that the CH filter 

removed some objects attached to building roofs. However, the 

CH filter appeared to remove more isolated negative outliers 

than the other two algorithms. The FN occurrences on building 

walls is noticeable when comparing Figure 8(d) with the others. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 
Figure 8. Visual comparison of results, (a) original data, (b) 

CH, (c) SF, and (d) SOR filter results 
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5. CONCLUSIONS 

This paper provides a brief description of current approaches 

for outlier detection on point clouds. A straightforward 

variation of the height histogram filter was proposed, the cell 

histogram filter which aims at an adaptive solution to terrain 

relief. Two outlier filters were compared to the proposed 

method, and the experiments highlighted some characteristics of 

the methods. While it was not possible to point out which was 

the best solution, this simple analysis provided information to 

help choose the correct algorithm based on the TP, FP and FN 

rates. Independently of the chosen filtering method, manual 

corrections are still necessary in order to achieve a reasonable 

result.  

 

It is clear that the outlier detection problem is difficult and far 

from a proper solution. Further study towards the improvement 

of current algorithms is required. As for future developments, 

the quantitative evaluation of other approaches such as the 

parametric surface fitting and morphological filters is suggested 

in order to provide a broader analysis. Also, the impact of voxel 

size should be also studied as well as the frequency threshold. 

Finally, a study must be performed to assess the impact of valid 

point removal (FN) on subsequent post processing algorithms 

on the point cloud, and how to reduce those FN rates. 
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