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ABSTRACT: 

Measurement of the areal extent of snow cover with high accuracy plays an important role in hydrological and climate modeling. 

Remotely-sensed data acquired by earth-observing satellites offer great advantages for timely monitoring of snow cover. However, 

the main obstacle is the tradeoff between temporal and spatial resolution of satellite imageries. Soft or subpixel classification of low 

or moderate resolution satellite images is a preferred technique to overcome this problem. The most frequently employed snow cover 

fraction methods applied on Moderate Resolution Imaging Spectroradiometer (MODIS) data have evolved from spectral unmixing 

and empirical Normalized Difference Snow Index (NDSI) methods to latest machine learning-based artificial neural networks 

(ANNs). This study demonstrates the implementation of subpixel snow-covered area estimation based on the state-of-the-art 

nonparametric spline regression method, namely, Multivariate Adaptive Regression Splines (MARS). MARS models were trained by 

using MODIS top of atmospheric reflectance values of bands 1-7 as predictor variables. Reference percentage snow cover maps were 

generated from higher spatial resolution Landsat ETM+ binary snow cover maps. A multilayer feed-forward ANN with one hidden 

layer trained with backpropagation was also employed to estimate the percentage snow-covered area on the same data set. The results 

indicated that the developed MARS model performed better than the ANN model with an average RMSE of 0.1656 over the test 

areas; whereas the average RMSE of the ANN model was 0.3868. 

 

 

1. INTRODUCTION 

Snow is an important land cover whose distribution over space 

and time plays a significant role in various environmental 

processes. Its high reflectance and low thermal reduce energy 

absorbed by the land surface, while snowpack stores water 

during the winter and releases it in the spring as snowmelt 

(Dobreva and Klein, 2011). During the winter period in the 

Northern hemisphere, snow can cover up to 40% of the earth's 

surface, which makes it not only a significant determinant of the 

earth's radiation budget, but also a vital source of irrigation and 

drinking water supply for many areas of the world (Hall et al., 

1995). Thus, continuous monitoring of snow cover and accurate 

prediction of its areal extent are basically the key factors in 

order to deepen our understanding for present and future 

climate, water cycle, and ecological changes (Dobreva and 

Klein, 2011; Hall et al., 1995).  

 

Remote sensing (RS) data available from various kinds of 

coarse and medium spatial resolution instruments is a powerful 

alternative, and has been employed to provide environmental 

data worldwide. Along with the parallel developments in the RS 

technologies, significant progress has been made in monitoring 

the snow cover since the mid-60s when the first operational 

snow mapping was done by National Oceanic and Atmospheric 

Administration of U.S. Department of Commerce (Gafurov and 

Bárdossy, 2009).  

 

The most frequently used instrument in snow cover mapping is 

probably the Moderate Resolution Imaging Spectroradiometer 

(MODIS) due to its high temporal frequency. MODIS has 36 

spectral bands ranging in wavelength from 0.4 to 14.4 µm at 

varying spatial resolutions (bands 1-2: 250 m, bands 3-7: 500 

m, and bands 8-36: 1000 m) (Qu et al., 2006a). Since its launch 

in 1999, data collected by MODIS on the Terra satellite have 

been extensively used for mapping global snow cover through 

the binary snow mapping algorithm, where each MODIS 500-m 

pixel is classified as snow or non-snow (Salomonson and 

Appel, 2006). This traditional binary snow cover mapping 

algorithm of MODIS uses normalized difference snow index 

(NDSI) together with various predefined threshold values and a 

thermal mask to improve snow mapping accuracy (Tekeli et al., 

2005). For MODIS, NDSI is calculated as the difference of 

reflectance in MODIS band 4 (i.e., visible band from 0.545 to 

0.565 µm), and the MODIS band 6 (i.e., short-wave infrared 

band from 1.628 to 1.652 µm), and is expressed as: 

 

 
band 4 band 6

NDSI .
band 4 + band 6

MODIS MODIS

MODIS MODIS


  (1) 

 

One frequently encountered challenge in snow mapping is the 

tradeoff between the temporal and spatial resolution of satellite 

imageries. Since high spatial resolution reduces the temporal 

resolution (i.e., Landsat 7 ETM+'s spatial resolution is 30 m; 

whereas its temporal resolution is 16 days), it eventually limits 

timely monitoring of the changes in snow cover (Moosavi et al., 

2014). On the other hand, high temporal resolution data reduces 

the precision of snow cover maps due to low spatial resolution.  

 

In order to tackle with this problem, subpixel classification 

methods have been applied to low or moderate resolution 

images (Foody and Cox, 1994). In contrast to binary 

classification approach where a pixel is labeled as either snow-

covered or snow-free, the true class distribution can be well 

estimated in subpixel snow cover mapping even though the 

precise location of class fractions within each coarse resolution 

pixel still remains unknown (Moosavi et al., 2014). Subpixel 
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snow cover mapping methods have evolved from various 

spectral mixture analysis (Painter et al., 2003; Painter et al., 

2009) to latest machine learning-based artificial neural 

networks (ANNs) (Czyzowska-Wisniewski et al., 2015; 

Dobreva and Klein, 2011; Moosavi et al., 2014). 

 

Nonparametric regression and classification techniques are 

mostly the key data mining tools in explaining real-life 

problems and natural phenomena where many effects often 

exhibit a nonlinear behavior. As a form of regression analysis, 

multivariate adaptive regression splines (MARS) (Friedman, 

1991) is a nonparametric regression technique widely used in 

data mining and estimation theory in order to built flexible 

regression models for high-dimensional nonlinear data. 

 

The main objective of this study is to represent the results of the 

first attempt to estimate the snow-covered area in RS by MARS. 

Total eight Landsat 7 ETM+ and MODIS image pairs taken 

over European Alps were used in the study. Top-of-atmospheric 

(TOA) reflectance values of MODIS bands 1-7 were used as 

predictor variables. Percentage snow cover maps were obtained 

by binary classification of higher spatial resolution Landsat 

ETM+ images, and they were used as predictor variable. A 

multilayer feed-forward ANN model was also trained over the 

same data set. The performance of MARS and ANN models 

were compared on independent test scenes.      

 

2. SATELLITE DATA AND REFERENCE SNOW MAPS 

2.1 MODIS TOA Reflectance 

MODIS Level 1B product provides radiometrically calibrated 

and geometrically located Earth view data sets in scaled integer 

(SI) scientific data format. MOD02HKM Level 1B product 

contains top-of-atmospheric (TOA) radiometric information for 

the visible and near-infrared portion of the electromagnetic 

spectrum at 500 m spatial resolution in SI format, i.e., the first 

seven solar reflective bands of MODIS (Qu et al., 2006a).  

 

Eight MODIS MOD02HKM scenes taken over European Alps 

(cf. Figure 1) were reprojected to a common UTM projection 

with WGS84 datum to be compatible with the corresponding 

ETM+ scenes by using MODIS reprojection tool (Qu et al., 

2006b).  

 

 

Figure 1: MODIS RGB real color composite image of the study 

area (24.04.2003) and Landsat 7 ETM+ tiles. 

Then, SI values for bands 1-7 were converted to TOA 

reflectance values. By using a mask generated from MODIS 

MOD09GA quality assurance data (Vermote et al., 2015), 

pixels identified as cloud-covered, cloud shadow, water or bad-

quality were excluded from further analysis. TOA reflectance 

values of bands 1-7 were input as predictor variables in MARS 

and ANN models. Details of the image data set can be found in 

Table 1. 

 

Scene 
Acquisition 

Date 

WRS-2 

path/row 

Total no.  

of training 

samples  

Total no.  

of test 

samples 

Training scenes 

1 07.03.2000 193/28 58,253 0 

2 07.12.2001 193/28 55,426 0 

3 25.01.2003 195/29 66,143 0 

4 28.02.2003 193/28 63,947 0 

5 24.04.2003 194/28 76,110 0 

Test scenes 

6 08.04.2000 193/28 0 89,032 

7 14.01.2001 192/27 0 46,912 

8 23.03.2003 194/28 0 81,064 

Table 1: ETM+ Training and test data scenes. 

2.2 ETM+ Reference Snow Maps 

All ETM+ images were selected for minimal cloud cover and 

were taken between February 2000 when MODIS became 

operational and May 2003 when ETM+ Scan Line Corrector 

failed which results in wedge-shape gaps degrading the image 

quality. 

 

All ETM+ scenes were converted to TOA reflectance values as 

described by Chander et al. (2009). At this point it is necessary 

to emphasize that atmospherically corrected surface reflectance 

was not used due to unsuccessful attempts of atmospheric 

correction on Landsat TM/ETM+ alpine snow scenes reported 

in several studies (Czyzowska-Wisniewski et al., 2015; Masek 

et al., 2006; Vermote et al., 2006).  

 

Binary reference snow maps in which each pixel is labeled as 

snow or non-snow were produced from ETM+ images by 

adapting the original MODIS binary snow mapping algorithm 

as in the following form (Hall et al., 1995): 

 

 
band 2 band 5

NDSI .
band 2 + band 5

ETM ETM

ETM ETM

 

 


  (2) 

 

For an ETM+ pixel to be mapped as snow, its NDSI value must 

be greater than or equal to approximately 0.4 and its ETM+ 

band 4 reflectance must be greater than 11%. The reason for 

using reflectances instead of DN values lies in the fact that the 

same DN values on different ETM+ scenes may correspond to 

different reflectances. Additionally, the use of reflectances 

improves the identification of snow since reflectance is the 

fraction of incoming solar radiation, and the cosine effect of the 

sun angle on incident radiation is accounted for (Hall et al., 

1995).  

    

Then, snow fraction was calculated as the ratio of snow covered 

area to the total area within a 500 m radius of the center of a 

MODIS pixel. It was not preferred to calculate the snow cover 

fraction within an exact area delimited by a MODIS pixel in 

order to avoid MODIS geolocation uncertainties (Dobreva and 

Klein, 2011). 
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3. METHODOLOGY 

3.1 Multivariate Adaptive Regression Splines (MARS) 

In MARS, piecewise linear basis functions (BFs) are involved 

in order to define relationships between a response variable and 

a set of predictors. The range of each predictor variable is cut 

into subsets of the full range by using knots which defines an 

inflection point along the range of a predictor. The slope of the 

linear segments between each consecutive pair of knots varies 

which ensures the full fitted function has no breaks or sudden 

steps. Selection of BFs is data-based and specific to the problem 

in MARS, which makes it a powerful adaptive regression 

procedure, suitable for solving high-dimensional problems 

(Kuter et al., 2016). In MARS model building, BFs are fitted in 

such a way that additive and interactive effects of the predictors 

are taken into account to determine the response variable (Kuter 

et al., 2015). 

 

MARS uses two stages when building up regression model, 

namely, the forward and the backward step algorithms 

(Friedman, 1991). In the forward step, BFs are added up until 

the highest level of complexity is reached. Since the first step 

creates an over-fit model, preferred and eventual model is 

obtained by the elimination of BFs in the backward step. The 

truncated piecewise linear BFs implied in MARS is expressed 

as follows: 

 

 

 

 

, if  ,
 
   otherwise,0,

, if  ,
 
   otherwise,0,

x x
x

x x
x

 


 






 
  



 
  



 (3) 

 

where   is a univariate knot ( ,x   ). These two functions 

are called as a reflected pair, and the symbol “+” indicates that 

only the positive parts are taken, and zero otherwise. The set of 

1-dimensional BFs of MARS can be represented in the 

following form: 

 

       1, 2, ,: ,  ,   , , , ,j j j j N jC x x x x x  
 

     (4) 

 

where N is the total number of observations,  1,2, ,j p , 

and p is the dimension of the input space. Then, the general 

model on the relation between the predictor variables and their 

response is defined by the following equation: 

 

  0

1

,
M

m

m m

m

Y B  


   X  (5) 

 

where Bm is a BF or product of two or more BFs from the set C, 

and it is taken from a set of M linearly independent BFs, ε is an 

additive stochastic component with zero mean and finite 

variance. Here, Xm is a subvector of X contributing to the 

function Bm, and βm denotes an unknown coefficient of the mth 

BF, or the constant 1 (m = 0). 

 

In the forward step, the algorithm chooses the knot and its 

corresponding pair of BFs that result in the largest decrease in 

residual error, and the products satisfying the above mentioned 

condition are successively added to the model until a predefined 

value Mmax is reached. Then, the backward step is applied in 

order to prevent the model obtained in the forward step from 

over-fitting by decreasing the complexity of the model without 

degrading the fit to the data. The BFs that give the smallest 

increase in the residual sum of squares are removed at each step 

iteratively. The final model with optimal number of effective 

terms is selected according to the lack-of-fit (LOF) criteria 

defined by generalized cross validation (GCV): 

 

 

2

=1

2

ˆ( ( ))
ˆLOF( ) = GCV( ) := ,

(1 ( ) / )

N

i i

i

y f

f
Q N



 






 X

 (6) 

 

where f̂ is the estimated best model with the optimum number 

of terms α that gives the best predictive fit, N is the number of 

sample observations, Q(α) = u+dK with K representing the 

number of knots which are selected in the forward step, u is the 

number of linearly independent functions in the model, and 

finally, d denotes a cost for each BF optimization. 

 

3.2 Artificial Neural Networks (ANNs) 

ANNs generate an information processing model that mimics 

the knowledge acquisition mechanism of the brain from the 

environment. This knowledge is stored in the form of 

interneuron connection strengths (Haykin, 2009). 

 

The multilayer perceptron is basically a system of simple 

interconnected neurons, i.e., nodes, which is used as a model to 

represent a nonlinear mapping between an input vector and an 

output vector. The nodes are connected by weights and output 

signals which are a function of the sum of the inputs to the node 

modified by a simple nonlinear transfer, or activation, function. 

 

The multilayer perceptron can approximate extremely non-

linear functions by superposition of many simple nonlinear 

transfer functions. The output of a node is scaled by the 

connecting weight and fed forward to be an input to the nodes in 

the next layer of the network. This implies a direction of 

information processing, therefore the multilayer perceptron is 

known as a feed-forward neural network (Gardner and Dorling, 

1998). 

 

The structure of neurons in an ANN is determined by the 

network's architecture which is variable, but in general consists 

of several layers of neurons. The input layer does not consist of 

neurons, but rather of nodes which pass each input element to 

the first layer of neurons (Dobreva and Klein, 2011). The terms 

input and output vectors refer to the inputs and outputs of the 

multilayer perceptron, and in Statistical Learning Theory they 

are also named as vector of predictor and vector of response 

variables, respectively. 

   

A multilayer perceptron may have one or more hidden layers 

and finally an output layer. Multilayer perceptrons are described 

as being fully connected, with each node connected to every 

node in the next and previous layer. By selecting a suitable set 

of connecting weights and transfer functions, it has been shown 

that a multilayer perceptron can approximate any smooth, 

measurable function between the input and output vectors 

(Hornik et al., 1989). 

 

3.3 Training Data Set 

Five Landsat - MODIS image pairs taken on 07.03.2000, 

07.12.2001,  25.01.2003, 28.02.2003 and 24.04.2003 were used 

for the training of MARS and ANN models. After the exclusion 

of unsuitable pixels from the training set, 319,879 observations 

remained available to be sampled as training data. Next, 3% of 
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the available pixels were selected by stratified random 

sampling. Stratification was carried out with respect to snow 

cover fraction from 0.0 to 1.0 with 0.1 intervals in order to 

prevent MARS and ANN models from being biased towards a 

certain snow cover fraction. TOA reflectance values of MODIS 

bands 1-7 were used as predictor variables, and the 

corresponding percentage snow cover fraction values were the 

response variable. The final training data set was composed of 

9,597 points. 

 

3.4 Training of MARS and ANN Models 

In MARS model training, 70% of the pixels available in the 

final training data set was used for training, and 30% was used 

for testing. As in all nonparametric regression methods, MARS 

has also certain basic model-tuning parameters. The first one is 

the maximum allowed number of BFs in the forward model 

(maxBF), increasing of which gives a rise in the amount of 

flexibility, i.e., complexity of the resulting model. The second 

parameter is the maximum allowed degree of interactions 

between variables (maxINT). By increasing maxINT, MARS 

gain more ability to model nonlinearities and statistical 

dependencies between response variables.  

 

In order to decide the optimal MARS model building 

parameters, a basic grid-search method was applied. First, the 

value of maxINT was fixed, and then the values of maxBF was 

varied taking the values (20,40,...,200). The value of maxINT 

was set as taking the values (1,2,3). The trained model for each 

setting was then applied on the test portion of the training data 

set. 

 

In this study, the chosen ANN for subpixel snow mapping was a 

feed-forward network with one hidden layer trained via 

backpropagation learning rule with 7 nodes in the input layer 

and 1 node in the output layer. Since there is no unique theory 

to determine the optimal values of an ANN's internal variables 

(Moosavi et al., 2014), the number of nodes in the input and 

output layers were set equal to the number of predictor (i.e., 

input) and response (i.e., output or target) variables. The 

gradient-based Levenberg-Marquardt backpropagation was used 

during ANN training. The tangent sigmoid function and the log-

sigmoid function were assigned to the hidden and the output 

layers, respectively. Log-sigmoid function was preferred as the 

transfer function between the hidden layer and the output layer 

since it scales its outputs within the range of snow fraction 

values, i.e., [0, 1].  

 

Several methods have been proposed to determine the optimum 

number of neurons in the hidden layer such as 2n + 1, 2n and n, 

where n is the number of nodes in the input layer (Moosavi et 

al., 2014); however, trial-and-error approach is an appropriate 

way as indicated by Mishra and Desai (2006), and 

Shirmohammadi et al. (2013). Therefore, 4-22 nodes with 

increment of 3 were tested for the hidden layer. The ANN 

training data was split into three parts by random sampling: 

70% for training, 15% for validation, and 15% for testing. 

  

The selected MARS model had maxINT = 2 and maxBF = 40. 

MARS models with higher number of interactions and BFs did 

not result in further improvement in the percentage snow-

covered area accuracies. On the other hand, the final ANN 

model comprised a single hidden layer with 10 neurons. Further 

increase in the number of neurons in the hidden layer did not 

provide any improvement in the results.     

 

3.5 Testing of MARS and ANN Models 

The independent test data sets were undoubtedly the most 

valuable source to analyze the performances of ANN and 

MARS models trained with optimal settings. Totally four 

scenes, three test scenes taken on 08.04.2000, 14.01.2001, 

23.03.2003, and a combination of them, were used in testing.   

 

In order to compare the accuracies of percentage snow-covered 

area estimates of the MARS and ANN models with the 

associated reference Landsat ETM+ estimates, root mean square 

error (RMSE) and the Pearson correlation coefficient (r) values 

were used: 
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where N is the total number of observations, iy  is the ith 

reference value, and ˆiy  is the ith predicted value. 

 

4. RESULTS 

The obtained MARS model had quite satisfying mapping 

accuracy on the test pixels from the training data set with 

RMSE of 0.093 and r of 0.97 (cf. Table 2). RMSE and r of 

ANN model on the test pixels from the training data were 0.431 

and 0.94, respectively. 

 

Test 

Scenes 

MARS ANN 

RMSE r RMSE r 

6 0.128 0.96 0.414 0.95 

7 0.221 0.67 0.232 0.62 

8 0.150 0.95 0.501 0.85 

Combined 0.164 0.93 0.400 0.89 

Table 2: RMSE and r values of MARS and ANN on test scenes. 

For the independent test data sets, i.e., 1st, 2nd, 3rd and combined 

test scenes, r values of 0.96, 0.67, 0.95 and 0.93 were obtained 

with MARS, respectively. On the other hand, the corresponding 

r values for ANN were 0.95, 0.62, 0.85 and 0.89. The mean 

values of RMSE for MARS and ANN models on the test scenes 

were 0.166 and 0.387, respectively.  

 

According to these values, it can be concluded that the MARS 

model was able to estimate the percentage snow-covered area 

with fairly good accuracy; whereas ANN model exhibited 

comparatively poorer performance     

 

5. CONCLUSIONS AND OUTLOOK 

These results indicated that use of MARS provided a significant 

increase in the accuracy for percentage snow cover estimation 

when compared to ANN. ANNs are often considered as "black 

box" since they do not give explicit information about the 

functional relationship between predictor and response 

variables, which reduces their explanatory capability to provide 

insight into the characteristics of the data set. Additionally, 

ANNs, in general, are hard to implement in point of choosing 
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the suitable network structure and determining the optimal 

model training parameters.  

 

This study proved that with its elaborately designed 

mathematical structure and simplicity in model building, MARS 

provides a better alternative to estimate percentage snow cover 

area than ANNs. 

 

An interesting and potential future extension for the current 

study would be the implementation of recently introduced 

version of MARS, namely, Conic MARS (CMARS) (Weber et 

al., 2011), which is originated from the Theory of Inverse 

Problems and supported by the modern methods of Continuous 

Optimization, and also support vector regression machines 

(Smola and Vapnik, 1997) on larger data sets, and compare their 

performances with ANNs and MARS.      
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