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ABSTRACT 
 
Timely and accurate acquisition of information on the condition and structural changes of urban trees serves as a tool for 
decision makers to better appreciate urban ecosystems and their numerous values which are critical to building up strategies 
for sustainable development. The conventional techniques used for extracting tree features include; ground surveying and 
interpretation of the aerial photography. However, these techniques are associated with some constraint, such as labour 
intensive field work, a lot of financial requirement, influences by weather condition and topographical covers which can be 
overcome by means of integrated airborne based LiDAR and very high resolution digital image datasets. This study presented 
a semi-automated approach for extracting urban trees from integrated airborne based LIDAR and multispectral digital image 
datasets over Istanbul city of Turkey. The above scheme includes detection and extraction of shadow free vegetation features 
based on spectral properties of digital images using shadow index and NDVI techniques and automated extraction of 3D 
information about vegetation features from the integrated processing of shadow free vegetation image and LiDAR point cloud 
datasets. The ability of the developed algorithms shows a promising result as an automated and cost effective approach to 
estimating and delineated 3D information of urban trees. The research also proved that integrated datasets is a suitable 
technology and a viable source of information for city managers to be used in urban trees management. 
 
 

1. INTRODUCTION 

Urban trees have many advantages such as preserving 
energy, improving water quality, minimizing greenhouse 
gasses and many other environmental pollutants, as well 
as connecting urban dwellers with nature (McPherson, E. 
G., 2006, Nowak D. J., 2007). In spite of efforts and 
capital spent on the conservation of trees, many city 
authorities often do not have an all- inclusive information 
on their condition (Yang, J., 2012). In order to realize 
numerous economic, environmental and sustainable 
decision-making processes, an accurate, up-to-date and in-
depth information on spatial distributions and health 
conditions of urban ecosystem is necessary. Accurate 
techniques for locating and mapping urban trees help city 
planners and other decision makers to better understand 
how much canopy cover exists, identify new planting, 
removal, or reforestation opportunities and what locations 
have the greatest need or potential to maximize benefits of 
return on investment. It can also help track trends or 
changes to the urban trees over time and inform future 
management decisions. Conventionally, this information 
is obtained through field surveying methods and 
interpretation of the aerial photography. Generally, 
ground surveying techniques are highly expensive, 
laborious (tedious), time-consuming and usually cannot be 
carry out over large areas. In addition, field surveying can 
only be carried out in areas reachable by the surveyors 
with insufficient or no data obtained in restricted 
properties and other unreachable areas. It is not easy, if not 
impossible to generate or create urban trees inventory for 
the whole city through field surveying. On the other hand, 
aerial photography does not directly provide 3D 
information of trees structure (Chen, et al., 2006) and is 
easily influenced by weather condition and topographical 
covers (Chen, et al., 2005). Therefore, somewhat 

insufficient information is obtainable about trees in many 
cities around the world, which is a major limitation for 
actualizing their benefits (Zhang, and Qiu, 2012). 
 
Advancements in remote sensing tools have introduced 
laser technology which bridges the gap of satellite 
imagery inability to pass through the trees canopy. This 
permits dense and accurate measurements of underneath 
trees structure (Rahman, et al., 2015). Light Detection 
And Ranging (LiDAR) is an evolving technology which 
has the ability to generating a well- defined 3D 
representation of ground surface over wide spatial scales 
(Carter, et al., 2012, Reitberger, et al., 2009). The distance 
between LiDAR sensor and terrain features can be 
measured with a very high degree of accuracy by 
estimating the time taken by the laser pulse to travel from 
laser instrument and then return after being reflected from 
terrain feature (Persson, et al., 2004, Persson,  et al., 2006). 
The capability of LiDAR to pass through vegetation has 
attracted remarkable concern from the field of natural 
resource management (Gaulton, et al., 2010, Hudak, et al., 
2009, Liang, et al., 2007). From a forest management 
stand-point, LiDAR has been used to define information 
about trees (Coops et al., 2007, Brolly, et al., 2013, Lang, 
et al., 2006), measure carbon stocks (Patenaude et al., 
2004), compute fuel quantity (Seielstad and Queen, 2003) 
and create habitat models (Vierling, et al., 2008), develop 
forest inventories (Zhang, C., 2010, Woods, et al., 2008). 
Even though considerable research has been carried out 
regarding LiDAR applications in forestry, its usage in the 
study of urban trees has been limited. As LIDAR 
applications in urban trees mapping expand, therefore, 
automated approach for tree detection technique is most 
likely to increase (Heinzel, et al., 2008). 
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However, LIDAR systems have no band which makes it 
insufficient for vegetation classification, especially in 
urban forests with diverse species and high spatial 
heterogeneity. Digital multispectral imagine, usually 
possesses different bands, therefore, exhibit a great 
potential in identifying tree feature with their rich spectral 
contents. Airborne LIDAR data and imagery are highly 
complementary (Caldwell, et al., 2005), the images can 
validate the filtering accuracy (Jawak, et al., 2013) while 
the elevation information from LIDAR can be used to 
ortho-rectify images datasets (Flood, M., 2002, Savopol, 
et al., 2004). Highly dense LIDAR data with multiple 
returns per square meter would be overwhelming for tree 
crown depiction and for determination of crown shape 
while spectral properties can be used to differentiate tree 
objects (Holmgren, et al., 2008, MacFaden, et al., 2012). 
It is assumed that both data sources concurrently will be 
more successful for trees detection in contrast with any of 
them alone (Chen, et al., 2005, Zhang, C., 2010). 
 
The objectives of this study includes extraction of shadow 
free vegetation features from the digital images using 
shadow index and NDVI techniques and automated 
extraction of 3D information about the vegetation features 
from the integrated processing of shadow free vegetation 
image and LiDAR point cloud datasets. The remaining 
parts of this paper describes, the study area and datasets 
used in section 2, the extraction techniques in section 3, 
the results and discussion in section 4 and finally, the 
conclusion in section 5. 
 
 

2 STUDY AREA AND DATA 
 
2.1 Study Area 
 
The study area is located in Besiktas district inside the city 
centre of Istanbul in north-western Turkey with a total area 
of 5,343 Km2 (Başar, et al., 2011). Istanbul is among the 
most special cities in the world with its position as a bridge 
between Europe and Asia. The western part of the city is 
in Europe, and the eastern is in Asia. It is positioned 
between 280 01’ and 290 55’ eastern longitudes and 410 
33’ and 400 28’ latitudes. Bosphorus strait (Figure 1) 
which connects the Sea of Marmara at the north and the 
Black Sea to its south divides the city into an Asian city 
closest to Europe and the closest European city to Asia 
(Gregory, T. E., 2010, Efe, et al., 2011). Istanbul is a 
typical urban area with complex spatial assemblages of 
vegetation, buildings, roads, and other man-made features. 
 

  
 
Figure 1: Istanbul and the Bosphorus strait. 

2.2 Datasets Used 
 
Two datasets were used to achieve the objectives of this 
research study; namely: 
 

 Airborne based multispectral digital images 
which possess red, green, and blue bands 
(Figure 2) and near infrared band (Figure 3) at 
0.1 and 0.5 spatial resolutions respectively. 

 Airborne based LIDAR points cloud. 
 

These datasets were collected in 2013 by BIMTAS 
Company in Istanbul, Turkey, using airborne laser 
scanning system. 
 
2.2.1 Multispectral Digital Images (RGB and NIR 
Bands) 
 
The multispectral images provide more details about 
spatial geometry and spectral information about surface of 
the study area used for detection and extraction of the 
vegetation features. The spatial reference of the images is 
WGS 1984, UTM Zone 35N. 
 

 
 
Figure 2: RGB bands image 
 

  
 
Figure 3: NIR band image. 
 
2.2.2 Airborne LIDAR Point Cloud 
 
The LIDAR data (Figure 4) provides an accurate, 
georeferenced and highly effective 3D spatial information 
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about the shape and surface characteristics of the study 
area through x, y and z points commonly referred to as 
point clouds. It provides accurate height information 
which is missing in the digital images and also supporting 
information about crown shape (Hyyppä, et al., 2008). 
This information from LiDAR has the ability to ortho-
rectify the digital images and generate a well-defined 3D 
representation of ground and features above the ground 
surface over wide spatial scales. The LIDAR data contains 
about 2,335,245 number of points. 
 

  
  
Figure 4: Airborne LIDAR points cloud. 
  
 
 

3. THE EXTRACTION TECHNIQUES 
 
Figure 5 present a work flow chart for identifying and 
extracting tree features from the integrated datasets. 
 

  
 
Figure 5: The workflow chart. 

3.1 Image Geometric Correction 
 
The NIR image does not have the same spatial resolution 

and pixel depth with the multispectral image. 
Consequently, the NIR image which has 0.5 spatial 
resolution and 16bit pixel depth has been geo-rectified in 
order to have the same spatial reference with the RGB 
image which has 0.1 spatial resolution and 8bit pixel 
depth. 

3.2 Shadow Index (Si) 
 
Shadow index is an indicator which describes presence of 
shadow objects for each pixel in a digital image. 
Consequently, in order to get rid of the confusing spectral 
problem between reflected spectra of specific kind of trees 
and the reflected spectra of the shadow of trees, the 
shadow values of the digital image have been determined 
using Equation 1 as below. 
 
SI = √ (256 – Red) (256 – NIR) (1) (Mustafa, et al., 2015). 
 
where; NIR and Red are the Near Infrared and the Red 
reflectance bands respectively. 
 
Furthermore, the shadow index image which provides 
precise shadows information was thresholded to detect 
absolute information. By utilizing this threshold value, a 
binary image was obtained with a value of 0 indicating the 
non-shadow objects and a value of 1 indicating the shadow 
objects. 
 
3.3 NDVI 
 
NDVI is an indicator that describes the greenness, relative 
density and health of vegetation for each pixel in a digital 
image (Mróz, et al., 2004, Bannari, et al., 1995, Blanco, et 
al., 2008). The NDVI helps to distinguish between 
vegetation and non-vegetation features (Geerken, et al., 
2005, Moleele, et al., 2001, Fuller, et al., 1998). Therefore, 
the vegetation objects were separated from non-vegetation 
objects using Equation 2 as below. 
 
NDVI = (NIR – Red) / (NIR + Red) (2) (Mustafa, et al., 
2015) 
 
where; NIR and Red are the Near Infrared and Red- 
reflectance bands, respectively. 
 
Furthermore, the NDVI image which provides precise 
information about vegetation features was thresholded to 
detect absolute information. By utilizing this threshold 
value, a binary image was obtained with a value of 0 
indicating non-vegetation features and a value of 1 
indicating vegetation features. 
 
3.4 Determining Shadow Free Vegetation Image 
 
Shadow free vegetation image was determined by 
masking out features identified as shadows from the 
NDVI image. Hence, a binary image was created with a 
value of 0 indicating the non-vegetation features and a 
value of 1 indicating the shadow free vegetation features. 
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3.5 Extracting 3D Information of Vegetation Features 
 
In order to achieve this objective, the shadows free 
vegetation image and the LIDAR datasets have been 
integrated to extract 3D information about the vegetation 
features. This task has been completely processed in a 
fully automated fashion using the Python programming 
tool. The modus operandi of the developed algorithm in 
processing this task includes: 
 

i. Accessing and reading the shadows free 
vegetation image file. 

ii. Detecting contour polygons of the vegetation 
features. 

iii. Determining boundaries of each contour 
polygon of the vegetation features.  

iv. Accessing and reading the LiDAR text file. 
v. Integrating the shadows free vegetation image 

and the LiDAR data files. 
vi. Extracting LiDAR points falling inside each 

polygon of the vegetation features. 
vii. Saving the extracted LiDAR points into a new 

text file.  
 
The mode of operation of this task have been represented 
using pseudo code flow chart. See Figure 6 below for more 
details. 
 

 
 
Figure 6: Pseudo code flow chart of extracting 3D 
information about vegetation from the integrated datasets 

4. RESULTS AND DISCUSSIONS 
 
The purpose of this paper is to develop a feasible and 
efficient algorithm useful for extracting urban trees from 
the integrated airborne based LIDAR point cloud and 
multispectral digital imagine datasets. The above scheme 
includes extraction of shadow free vegetation features 
image from the digital image and automated integration of 
the LIDAR data and shadow free vegetation image in 
order extract 3D information about vegetation objects. 
 
4.1 Shadow Index 
 
It has been evidently proved that shadows presence is 
posing a great challenge during trees detection and 
extraction from the digital image (Mustafa, et al. 2015). 
This is due to the fact that NDVI normally fails to 
distinguish between the spectral reflectance of vegetation 
objects and that of their shadows. Therefore, the shadow 
index have been used to distinguished pixels which belong 
to shadow objects on the digital image from those of non-
shadow objects by applying Equation 1 to determines 
shadow values of the digital image on a per-pixel basis. 
The result of shadow index (Figure 7) is a new image file 
with shadow values ranging from 1 to 239. The white 
pixels which have high shadow values represent the 
shadow objects while the black or dark grey pixels which 
have low shadow values represent the non-shadow 
objects. 
 

  
 
Figure 7: Shadow index image. 
 
By applying an absolute threshold value to the shadow 
index image, a binary image (Figure 8) was determined 
with a value of 0 indicating the non-shadow objects (i.e. 
black colour pixels) and value of 1 indicating the shadow 
objects (i.e. white colour pixels). The threshold value for 
shadow index image was estimated experimentally as 180. 
 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W1, 2016 
3rd International GeoAdvances Workshop, 16–17 October 2016, Istanbul, Turkey

This contribution has been peer-reviewed. 
doi:10.5194/isprs-archives-XLII-2-W1-81-2016

 
84



  
 
Figure 8: Shadow index image after thresholding. 
 
4.2 NDVI 
 
The NDVI which is an index of plant greenness or 
photosynthetic activity has been used to distinguished 
pixels which belong to vegetation features on the digital 
image from those of other features by applying Equation 
2 to calculate NDVI values of the digital image on a per- 
pixel basis. The output of this operation is a new image 
file (Figure 9) with NDVI values ranging from -1.0 to 
0.989. The white pixels which have high NDVI values 
represent the vegetation features while the black or dark 
grey pixels which have low NDVI values represent the 
non-vegetation features. 
 

  
 
Figure 9: NDVI image. 
 
After applying an absolute threshold value to the NDVI 
image, a binary image (Figure 10) was created with a 
value of 0 indicating the non-vegetation features (i.e. 
black colour pixels) and value of 1 indicating the 
vegetation features (i.e. white colour pixels). The 
threshold value for NDVI image was estimated 
experimentally as 0.3. 

 
 
Figure 10: NDVI image after thresholding. 
 
4.3 Shadow Free Vegetation Image 
 
The shadow free vegetation image was determined by 
masking out objects identified as shadows from the NDVI 
binary image. After the shadow objects were removed, the 
final output was turned into an image without shadow. 
Thus, a binary image (Figure 11) was created with a value 
of 0 indicating the non-vegetation features and value of 1 
indicating the shadow free vegetation features. In this 
way, it became possible to get rid of the confusing spectral 
problem between reflected spectra of trees and that of their 
shadows. 
 

 
 
Figure 11: Shadow free vegetation image. 
 
4.4 Extracting 3D Information of Vegetation Features 
 
The 3D information about the vegetation features (Figure 
12) has been determined in a fully automated fashion by 
extracting LIDAR points belonging to vegetation features 
from the integrated processing of shadow free vegetation 
image and LiDAR point cloud datasets. 
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Figure 12: 3D information about vegetation features. 
 

 
5. CONCLUSIONS 

 
This paper presented workflow about semi-automated 
approach for extracting urban trees from integrated 
airborne based LIDAR point cloud and multispectral 
digital image datasets. The paper proved that the 
integrated datasets is a suitable technology and a viable 
source of information for city managers to evaluate, 
enhance urban landscape patterns and gain a better 
understanding of the current spatial distributions, 
composition and extent of trees in an urban area. The 
ability of the developed algorithms shows a promising 
result as a fast and cost effective approach for estimating 
and delineated 3D information about urban tree, especially 
over a very large area. The extracted information will 
provides a snapshot of location, status and extent of trees 
in the study area which will be useful to city planners and 
other decision makers to better understand how much 
canopy cover exists, identify new planting, removal, or 
reforestation opportunities and what locations have the 
greatest need or potential to maximize benefits of return 
on investment. It can also help track trends or changes to 
the urban trees over time and inform future management 
decisions. 
 
Finally, it is important to note that the object of interest in 
this study are the tree objects. However, critical analysis 
of the extracted LiDAR data (i.e. 3D information about 
vegetation features) reveals that the extracted data consist 
of trees and other unwanted vegetation objects such as 
grassland and shrubs which would have to be completely 
filtered out from the dataset. Therefore, future work 
should concentrate on developing an approach or 
techniques which can be used to completely filter out these 
undesirable LiDAR points of non-tree features from the 
dataset. In addition, the designed algorithms have so far 
only been tested over the Istanbul urban area. Further 
research is needed in other urban areas with different 
species, forest compositions and/or spatial distributions in 
order to examine the robustness and extensibility of these 
techniques. 
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