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ABSTRACT: 

 

Metrology is fundamental in all the applications that require to qualify, verify and validate measured data according to standards or, in 

other words, to assess their compliance with predefined tolerances. At sea, metrology is commonly associated with the process of 

measuring underwater structures, mainly pipeline elements widely used in offshore industry. Subsea operations are very expensive; 

optimizing time and money resources are the core factors driving innovation in the subsea metrology industry. In this study, the authors 

investigate the use of state-of-art vision-based algorithms, i.e. ORB-SLAM2 and Visual Odometry, as a navigation tool to assist and 

control a Remotely Operated Vehicle (ROV) while performing subsea metrology operations. In particular, the manuscript will focus 

on methods for assessing the accuracy of both trajectory and tie points provided by the tested approaches and evaluating whether the 

preliminary real time reconstruction meets the tolerances defined in typical subsea metrology scenarios. 

 

 

1. INTRODUCTION 

In subsea metrology, high accuracy 3D measurements are needed 

to inspect or assist the correct assembling of parts such as pipes, 

rigs and alike, as well as to reverse engineer and manufacture 

parts that may need a replacement. Besides the high accuracy 

requirements (in order for the part to fit the engineering structure 

it is made for), a very important aspect to be considered is the 

capability to provide in real time preliminary measurements 

(such as bending of a pipe, extension of a damaged part, 

deformation, etc.), and to make sure that all required parts of the 

object have been acquired by the metrology system (on-line full 

coverage verification). Other use cases may include the repeated 

monitoring over time of objects of different nature (organic or 

manmade) on the seafloor. A localization system that allows the 

ROV to localize itself in the marine environment, and with 

respect to the object to be monitored is desired to increase 

effectiveness of operations. 

While above the water these tasks can be accomplished in real-

time in most situations, guaranteeing an easy revisiting and re-

measurement, under-the-water precise localization remains an 

expensive and complex activity. The lack of a high accuracy 

global positioning subsea system like the GNSS available above-

the-water, together with the complexity given by the physical 

environment itself, keep geo or even locally referenced 3D 

measurements an open issue. Acoustic positioning systems 

deployed on the seabed in the form of a network of Long 

BaseLine (LBL) transponders are the current industry standard 

for navigation, positioning and metrology applications 

underwater. These systems are expensive not only for the cost of 

the sensors themselves, but also because they require specialized 

teams and time consuming installation and initialization 

procedures before they are ready to be used. Moreover, real-time 

centimetre accuracy positioning can be obtained only in confined 

areas, within the network of transponders, thus making a 

systematic mapping of larger areas time consuming and 

ineffective. 

On the other hand, vision-based localization techniques, such as 

visual odometry and Simultaneous Localization And Mapping 

(SLAM), are receiving more and more attention because of their 

significantly lower cost with respect to acoustic positioning 

methods (Eustice et al., 2008; Kim and Eustice 2009; Duarte et 

al., 2016, Ferrera et al., 2019). Moreover, open source 

frameworks are becoming publicly available, making the 

integration of such technology much easier. Born for real time 

robot navigation (Hidalgo and Bräunl, 2015), SLAM and visual 

odometry techniques are being gradually introduced also in 

mobile mapping and surveying above the water (Nocerino et al., 

2017; Lehtola et al., 2017; Tucci et al., 2018). Their use can be 

seen as a stand-alone alternative solution for limited areas or as 

an additional technology, integrated with current state-of-the-art 

navigation technology. 

 

1.1 Motivations and aim 

In this study the authors investigate the use of vision based real 

time techniques, namely SLAM and Visual Odometry, as a 

navigation tool to assist and control a Remotely Operated Vehicle 

(ROV) while performing inspection and monitoring tasks 

underwater. In particular, the paper focuses on methods of 

investigation able to assess the accuracy of both trajectory and 

3D tie points used in the image orientation process and evaluate 

whether the preliminary real time reconstruction meets the 

tolerances defined in typical subsea metrology surveys. 

Although the use of real time techniques for underwater 

navigation and mapping is not recent, few studies have been 

presented to evaluate the accuracy of such methods in a real 
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environment using a certified ground truth benchmark surveyed 

with high accuracy techniques.  

Studies and benchmark datasets for the evaluation of different 

SLAM techniques exist above the water (Sturm et al., 2012; 

Geiger et al., 2013). Using such datasets, issues have been 

reported in the literature such as trajectory or scale drifts 

reporting also a metric accuracy evaluation (Mur-Artal et al., 

2015; Mur-Artal and Tardós, 2017; Yuan et al, 2017). 

 

Under the water, because of the complexity of the environment 

and thus difficulty to obtain very accurate 3D measurements, 

comparative studies have been focused on simulated trajectories 

(Duarte et al., 2016) or on comparing real-time results with 

photogrammetrically derived trajectories obtained offline, in post 

processing, using for example BINGO software or Agisoft 

Photoscan (Drap et al, 2015; Nawaf et al., 2018) or Colmap 

structure from motion application (Ferrera et al, 2019). 

A real accuracy assessment of visual odometry and SLAM 

techniques, evaluated against a ground truth surveyed using an 

independent and more accurate method is still missing. This 

study wants to present a first evaluation of the open source 

implementation ORBSLAM2 Mur-Artal et al (2015) together 

with a variant of the visual odometry approach developed by the 

authors (Drap et al, 2015; Nawaf et al., 2018). 

The COMEX underwater test field is used to provide qualitative 

and quantitative measures. A trifocal sensor ORUS3D 3000 m 

depth rated system developed by COMEX SA is used in the 

COMEX underwater test field to capture synchronized imagery 

and inertial sensors raw data. 

 

2. SUBSEA METROLOGY 

Metrology is defined by the International bureau of weights and 

measures (BIPM) as the ‘science of measurement, embracing 

both experimental and theoretical determinations at any level of 

uncertainty in any field of science and technology.’1 Metrology 

aims at qualifying, verifying and validating measured data 

according to accepted standards. Consequently, a key aspect in 

metrology is traceability, i.e. the ‘property of a measurement 

result whereby the result can be related to a reference through a 

documented unbroken chain of calibrations, each contributing to 

the measurement uncertainty’ (VIM3 2.41). Traceability requires 

the definition of references, allowing for the assessment of 

measurement uncertainty and comparison of different 

measurement results, under the assumption that they are traceable 

to the same reference. Metrology is fundamental in industry, 

where it serves the purpose of ensuring quality and accuracy of 

manufactured parts and components against standards developed 

at different levels, from international and national basis to 

industry specific or even customized for internal purposes. 

 

 
Figure 1. A pictorial representation of subsea structures whose 

relative positions are measured through subsea metrology 

techniques (Bai and Bai, 2010). 

1 https://www.bipm.org/en/worldwide-metrology/ 

In the underwater environment, metrology commonly refers to 

the process of acquiring accurate and traceable dimensional 

measurements of subsea structures (Figure 1), widely used in the 

offshore, marine and underwater engineering companies (Bai and 

Bai, 2010; IMCA, 2017). Subsea structures are mainly pipeline 

interconnections, joining subsea assets from hydrocarbons 

reservoir to processing and storage facilities. The pipeline 

connectors are called hubs or flanges; the pipeline elements that 

separate the hubs are called spools, when they run parallel (i.e, 

horizontally) to the seabed, and jumpers, if they are vertical. 

The objective of subsea metrology is to determine accurately 

(Jørgensen et al., 2015; IMCA, 2017): 

• Horizontal position and depth of the hubs; 

• hub-to-hub slant and horizontal distances (also called 

baseline); 

• hub-to-hub relative heading and attitude; 

• spool azimuth (i.e., the bearing of the spool from the 

hub) and angle of approach (difference between the 

spool azimuth and hub headings); 

• seabed profile along the structure route. 

Typical subsea metrology (Table 1) are defined according to the 

permissible hubs misalignment, taking into account several 

factors which include stress analysis, fabrication tolerance and 

possible deformation resulting from deployment operations. 

 
Relative distance (mm) Relative angle (degrees) 

X Y Z Roll Pitch Heading 

50 to 150 0.5 to 1.0 

Table 1: Typical metrology tolerances (from IMCA, 2017) 

 

Because of the high daily costs for operations at sea, limiting the 

time for subsea surveying is one of the main factors driving 

innovation in the subsea metrology industry. Spools and jumpers 

are the latest elements to be fabricated and installed and require 

not only the relative positioning and orientation between the hubs 

but also the sea bed 3D topography to adjust shape and size of 

jumpers and spools accordingly; for this reason, 3D real-time 

measurement techniques are of key importance to optimize the 

fabrication processes. 

 

3. SLAM, STRUCTURE FROM MOTION AND VISUAL 

ODOMETRY 

SLAM and SfM aim both at estimating the pose of the agent (the 

robot for the SLAM and a camera for the SfM) and at 

reconstruction (or mapping) the environment (or the ‘structure’). 

The two main classes of algorithms were originally developed in 

two different communities, respectively robotic and computer 

vision (Saputra et al., 2018). According to Davison (2015), 

before his seminal work on SLAM with a single camera 

(Davison, 2003), the mobile robotics community had almost 

completely abandoned pure vision-based navigation approaches 

and the computer vision community had been almost completely 

disinterested from real-time and robotics applications. 

In a SLAM based approach, data coming from different sensors, 

or modules, are fused together to estimate the system position and 

attitude (the state vector) and build the map of the environment. 

Crucial for SLAM approaches is the identification of the so called 

‘loop closure’, i.e. the detection of a previously mapped place and 

consequent relocalization of the system with-in the already 

measured environment. The ‘loop closure’ reduces the drift 

accumulated in the SLAM solution over time (Newman & Ho, 

2005).  
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a) 

 

b) 

 
 

c) 

 

Figure 2. Underwater 3D test field set at COMEX testing pool (a,b) consisting of 200 coded targets measured  with a laser tracker 

and spherically mounted retroreflector (c). 

 

 

When cameras are the only sensors used, SLAM is based on 

visual information only, and is therefore called visual SLAM (V-

SLAM or vSLAM, Fuentes-Pacheco et al., 2015; Taketomi et al., 

2017). 

At the early stage of development, the main difference between 

visual SLAM and SfM was that the first was mainly developed 

for real-time (or on-line) computation while the second was 

traditionally performed off-line, meaning that all the data and 

measurements (i.e. images) are provided and (post-) processed 

together. Saputra et al. (2018) considered MonoSLAM (Davison, 

2003) the first approach to bring the general SLAM problem from 

the robotic community into pure vision.  

However, it should be noticed that also SLAM can be formulated 

as full or off-line problem, when the whole trajectory and the map 

is estimated providing all the sensor data and measurements. On 

the contrary, online SLAM updates incrementally both the agent 

pose and map with the most recent estimates from the sensors. 

The two approaches differ in the estimation techniques 

implemented (Bresson et al., 2017): filter-based approaches 

(such as the Kalman filter) are most suitable for iterative, real-

time implementation; optimization-based methods (bundle 

adjustment, BA, or graph-based SLAM) are usually adopted for 

solving the full SLAM approach. The feature measurements are 

integrated by estimating the probability distribution in filter-

based approaches or through optimization in BA (Saputra et al., 

2018). 

Visual odometry (VO) consists in estimating the motion of a 

single camera or stereo systems from visual input (images or 

video frames) alone (Nistér et al., 2004). The main differences 

between SLAM and VO are explained in Scaramuzza & 

Fraundorfer (2011) and are here summarised. While SLAM and 

visual SLAM aim to obtain a global and consistent estimate of 

trajectory and map, VO is mainly devoted to recover the path 

incrementally, potentially optimizing only over the last n poses 

(also called windowed bundle adjustment). VO can be 

implemented as step for a complete SLAM algorithm, where also 

loop closure and possibly a global optimization step are 

performed. Visual SLAM is potentially more accurate of VO, 

because more constraints are enforced on the mobile path; 

however, this does not ensure higher robustness, since outliers 

not detected in the loop closure can critically affect the map 

correctness.  

 

Under the water, SLAM techniques have been used to fuse 

inertial and acoustic positioning systems in particular in subsea 

metrology industry (IMCA, 2017), or for autonomous 

underwater robot navigation and localization using imaging 

sonar and visual sensors. First methods were focused on using 

acoustic images (Fusiello et al., 1999; Castellani et al., 2005; 

Roman 2005, Clark et al., 2008; Ribas et al., 2009) to move then 

to visual based methods (Eustice et al., 2008; Kim and Eustice 

2009; Duarte et al., 2016, Ferrera et al., 2019). A more 

comprehensive review of different techniques used for 

localization and mapping can be found in Paull et al. (2014) and 

Hidalgo and Bräunl (2015). 

 

4. EXPERIMENT DESCRIPTION 

4.1 COMEX 3D underwater reference test-field 

With the aim of evaluating the performances of visual based 

techniques in a subsea metrological context, a high accuracy 

underwater 3D reference test-field was recently set up in the 

COMEX test pool (Figure 2 a, b). The test-field consists of 200 

optical targets placed over a 30 m long transect, comprising two 

opposite walls facing each other, and a rectilinear pool floor 

section in between. The width of the transect is 1.2 m while 

maximum depth difference is about 1.4 m. The targets’ 

coordinates were determined through multi-lateration and 

triangulation using a laser tracker after emptying the pool. The 

laser tracker Spherically Mounted Retroreflector (SMR) was 

aligned to be in tangency (Figure 2 c) with the photogrammetric 

circular target in four points, hence the centre of the 

photogrammetric target was determined through a best fit circle. 

The multi-station measurements were then adjusted through least 

square procedures providing standard deviation of the 3D 

reference coordinates below 0.5 mm over 30 m length. The 

reference coordinate system is set with the X axis pointing along 

the main direction of the test-field, Z vertical and Y according to 

the right hand rule convention.  

 

 
Figure 3. The ORUS 3D 3Kv system mounted on a Mid-Size 

observation class ROV skid. 
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4.2 ORUS 3D underwater photogrammetry system 

The ORUS 3D (Figure 3) is an underwater system specifically 

designed for photogrammetric measurements, i.e. its design, 

materials and calibration procedures are optimized to guarantee 

high absolute accuracy taking into account the refractive effects 

of water, thermal and pressure influences.  

The ORUS 3D is composed of three main parts: 

 

1) an Embedded Processing Unit (EPU) managing the 

synchronization and real-time raw data processing of 

connected sensors; 

2) a cluster of sensors including, among the others, three 

industrial global shutter cameras (one high resolution-

HR and two low resolution-LR), 4 LED based strobes, 

an attitude/ heading reference system, underwater 

altimeter (acoustic range finder), temperature and 

pressure sensors. 

3) Surface Control Unit Computer (SCUC) connected to 

the EPU via umbilical of the ROV managing the 

remote control of the system parameters and displaying 

the remote real-time visual-inertial odometry 

performed on-board the EPU with real time 3D 

measurement capabilities.  

 

The version tested in this study is the 3Kv rated to a depth of 

3000m with camera pressure housings made of titanium and 

dome ports made of optical glass.  

The current photogrammetric processing relies on ad-hoc 

developed procedures of calibration and image triangulation with 

and without inertial sensor integration in the bundle adjustment. 

From the camera calibration process, images are rectified to 

provide distortion free images based on single view point pinhole 

camera model. This pre-processing step allows a more flexible 

and easier cross platform and software use of the images. 

The ORUS 3D system is being certified by Bureau Veritas – 

Marine & Offshore for subsea metrology inspections. The 

COMEX pool test-field was used during the certification tests 

providing an accuracy of 3D coordinates better than 1 cm over 

30 m length (RMSEX<6mm RMSEY<3 mm RMSEZ<2mm) with 

a single photogrammetric strip. 

The system is manufactured in three different versions according 

to the depth rating (1000/3000/6000 m). The 3000m (3Kv) 

system used in this study is conceived to be installed on a skid 

starting from Mid-Size ROV class.  

 

4.3 Image dataset characteristics 

The image dataset used in this experimentation consists of a 

session of 10 HZ LR stereo-rectified full HD images extracted 

from a session acquired with an ORUS3D 3Kv on the COMEX 

test-field. To reduce the risk of failures in the image orientation 

due to the almost featureless surface texture of the pool floor, 

some metallic plates with contrast random pattern were installed 

at the pool floor (Figure 4 b, c). 

 
Number of stereo pairs  4615 

Camera to object average distance  1.2 m 

Nominal Baseline 165 mm 

Baseline to distance nominal ratio 1/7 

Ground Sample Distance – GSD 1 mm 

Sidelap (left to right) 92% 

Frame rate 10 Hz 

Average speed (diver operated) 0.10 m/s 

Overlap (along the tack) >99% 

Table 2: Main information for the image dataset used in the 

presented underwater experiments 

 

The image acquisition was carried out with the ORUS 3D set 

with slightly negative buoyancy, hanged from a floating platform 

and manoeuvred by a diver as depicted in figure (Figure 4 a). The 

images were acquired at night to test the system in lighting 

conditions similar to those available at typical operative depths. 

The image sequence used in this experimentation included 

approximately two thirds to record the vertical walls of the pool 

facing each other, and another third for the rectilinear part. 

Table 2 summarizes the main acquisition parameters. 

 

4.4 Reference 3D trajectory, angles and mesh 

A reference trajectory was generated orienting the images in 

Agisoft Metashape application, using the full dataset (including 

HR cameras), then a bundle adjustment was run by constraining 

the solution using the inertial sensor and coded target coordinates 

as soft constraints (COMEX ORUS 3D software). A dense point 

cloud through dense image matching techniques and a mesh was 

generated (Figure 5). A cloud to mesh distance check was 

performed to verify the consistency between the reconstructed 

mesh and the reference coded target coordinates. The RMS of 

distances resulted below 1 mm. Left and right camera exterior 

orientations (trajectories and angles), coded targets and mesh 

were used as reference for comparing the real-time visual 

odometry and SLAM, processed offline in this experiment. 

 

 

a) 

 

b) 

 

c) 

 
Figure 4. Diver manoeuvring the system during the acquisition of the image dataset used in the presented underwater experiments 

(a) and an example of the rectified image pairs depicting the pool floor with contrast plates and targets (c). 
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a) 

 

b) 

 

c) 

 
Figure 5. A panoramic view of the pool transect (a) and the reference mesh built using full resolution images with superimposed 

coordinate reference system (c) 

 

 

4.5 ORB-SLAM2 mono and stereo test 

The monocular and the stereo pipelines of ORB-SLAM2 2 have 

been used to obtain the estimated device trajectory and the 

mapping of the environment. ORB-SLAM2 was developed on 

top of ORB-SLAM 3 adding the support for stereo and RGB 

configurations. The system requires as input a visual vocabulary, 

used to speed up feature matching and loop detections, and a 

configuration file containing the camera calibration and the 

parameters for the ORB extraction. During the tests, the default 

parameters were used. The input images were down sampled to a 

factor of 2 of original size (half width and height). 

As output the system provides the estimated structure of the 

environment (sparse point cloud of 3D tie points) and the 

estimated poses of the keyframes. The keyframes is a subset of 

the input images on which the mapping and the BA optimisation 

is performed; this is done to ensure the real-time behaviour of the 

system.  

 

4.6 Visual odometry with windowed bundle adjustment 

The visual odometry method tested in this study is a mono variant 

of the method originally developed in Drap et al. (2015) and 

further improved in Nawaf et al. (2018) with the addition of a 

windowed bundle adjustment. The method is composed of two 

steps, first, a relative pose estimation is performed on each new 

image following multiple view geometry fundamentals, second, 

a structure and motion bundle adjustment approach is applied to 

a set of images defined by a sliding window that selects the last 

n images. The implementation was tested using the python 

scripting API of Agisoft Metashape application. A visual 

odometry procedure was simulated so that images are processed 

in sequence as if they are acquired in real-time. The influence of 

window size on the accuracy of the estimated trajectory was 

studied and window sizes of 3 and 4 are reported. Furthermore, 

the effect of using down sampled images on the accuracy was 

experimented. In this study a down sampling factor of 2 of the 

images (half width and height) is reported. Calibration 

parameters were kept fixed in the bundle adjustment procedure.  

 

5. RESULTS  

Commonly available camera positions along the trajectory 

obtained respectively with the ORB-SLAM2 and the visual 

odometry methods were used to compute a best fitting similarity 

transform (according to least-squares principle) with respect to 

the reference trajectory. The transformation was then applied to 

calculate new camera positions and angles in the reference 

coordinate system and consequently translation and angular 

errors as difference against the reference values. The procedure 

is a common practice in surveying disciplines and is 

corresponding to the absolute trajectory error (ATE) presented in 

Sturm et al. (2012). Also, using the same transformation, 3D 

coordinates of tie points were brought in the reference coordinate 

system and compared against the mesh. 

In order to highlight the drift as function of the distance, another 

comparison called “drift analysis” was performed through a local 

alignment. The first third of the sequence, corresponding to the 

vertical wall of the pool and before the linear section of transect, 

was used to compute a similarity transform, then same translation 

and angular errors as for the global alignment are reported. 

The method is similar to the relative pose error (RPE) presented 

in Sturm et al. (2012) but in our opinion is better suited for 

estimating the angular and translation error for those methods 

that rely on bundle adjustment as it is less sensitive to the choice 

of the reference camera used for the relative pose error 

estimation. Indeed, even if the real-time process is based on a 

sequential estimation of the trajectory and map, their global 

integrity could be preserved even if few images were not properly 

oriented. This is the case, for example, of camera position and 

orientation estimated for those images containing only a number 

of image observations close to the minimum needed for a 

resection or relative orientation and at the same time containing 

few outliers or wrong matches.  

It is worth noticing that the scale factor was always computed, 

except for the stereo version of ORBSLAM2. 

Table 3 reports the results of the RMS of the errors for the global 

and local “drift” versions. 

Figure 6 shows planimetric OXY and vertical OXZ orthographic 

views of the drift analysis residuals for the different algorithms.  

 

2 https://github.com/raulmur/ORB_SLAM2 3 https://github.com/raulmur/ORB_SLAM 
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ORBSLAM2-

MONO (LRL) 

ORBSLAM2 STEREO 

no scale needed 

VISUAL 

ODOMETRY  
window size = 3 

VISUAL 

ODOMETRY  
window size = 4 

RMSE X|Y|Z [mm] 

 (GLOBAL BEST FIT) 
7 | 15 | 15 17 | 10 | 47 48 | 13 | 61 29 | 9 | 40 

RMSE EULER ANGLES ω|φ|κ [deg]  

(GLOBAL BEST FIT) 
0.81 | 0.34 | 0.53 1.14 | 1.09 | 1.18 1.12 | 0.98 | 0.76 0.78 | 0.65 | 0.55 

RMSE X|Y|Z [mm]  

(DRIFT ANALYSIS) 
39 | 96 | 64 37 | 36 | 502 227 | 67 | 276 137 | 34 | 176 

RMSE EULER ANGLES ω|φ|κ [deg]  

(DRIFT ANALYSIS) 
1.10 | 0.45 | 0.79 1.86 | 1.98 | 1.42 1.17 | 1.40 | 0.59 0.81 | 0.92 | 0.43 

Table 3. Results of the accuracy assessment for the different tested algorithms. 

 

Please note that the session here utilized started from the second 

wall of the pool to the first one, where the origin is represented 

in figure 5. 

Figure 7 shows the difference between the 3D tie points from 

ORBSLAM2, both mono and stereo, and visual odometry 

(windows size – WS 4) and the reference mesh. The typical 

deformation pattern or dome effect is visible, due to the 

accumulation along the path of non-fully compensated residual 

systematic errors.  

 

 

ORBSLAM2 MONO 

              

              

 

ORBSLAM2 STEREO 

                

               

 

ODOMETRY WS 4 

 

      

Figure 6. Drift analysis using a local alignment computed on the first third of the sequence, corresponding to the vertical wall of the 

pool and before the linear section of transect. The vectors indicate the difference between the reference trajectory and the tested 

methods. 
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a) 

 

b) 

 

c) 

 

Figure 7. 3D tie points colour coded according to their euclidean distance from the reference mesh for the global best fit test: a) 

ORBSLAM2 mono, b) ORBSLAM2 stereo and c) visual odometry WS 4. 

 

 

6. DISCUSSION AND CONCLUSIONS 

The paper reported the results of a preliminary accuracy 

assessment carried out to verify whether real time algorithms 

may be suited for subsea metrology purposes. Tests were run 

using default parameters for the ORBSLAM2 algorithm while for 

the windowed bundle adjustment visual odometry approach, the 

influence of window size was also reported. The tested 

algorithms showed very promising results with trajectories 

differing only for few centimetres from the reference one. By 

looking at the difference maps of 3D tie points against the 

reference mesh and from the angular error table, it is worth 

noticing that, at the moment, distance tolerance of 10 cm and 

angular tolerance of 1 degree may be potentially met only for 

transects below 30 m (under the assumption of a correct external 

scaling, except ORBSLAM2 stereo that already provides scaled 

measurements). Further tests are necessary to understand the 

repeatability of results through several repeated run of the 

algorithms and using different image acquisitions of the same 

transect. 
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