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ABSTRACT:

Visual sampling techniques represent a valuable resource for a rapid, non-invasive data acquisition for underwater monitoring purposes.
Long-term monitoring projects usually requires the collection of large quantities of data, and the visual analysis of a human expert
operator remains, in this context, a very time consuming task. It has been estimated that only the 1-2% of the acquired images are later
analyzed by scientists (Beijbom et al., 2012). Strategies for the automatic recognition of benthic communities are required to effectively
exploit all the information contained in visual data. Supervised learning methods, the most promising classification techniques in this
field, are commonly affected by two recurring issues: the wide diversity of marine organism, and the small amount of labeled data.
In this work, we discuss the advantages offered by the use of annotated high resolution ortho-mosaics of seabed to classify and segment
the investigated specimens, and we suggest several strategies to obtain a considerable per-pixel classification performance although the
use of a reduced training dataset composed by a single ortho-mosaic. The proposed methodology can be applied to a large number of
different species, making the procedure of marine organism identification an highly adaptable task.

1. INTRODUCTION

In recent years, neural networks have been successfully used to
recognize marine organisms. In particular, CNN have demon-
strated to obtain reasonably good performance in the segmen-
tation of benthic communities (King et al., 2018, Alonso et al.,
2017). While speeding up the recognition step, the use of neu-
ral networks require the preparation of a large training dataset.
The commonly used labeling methodology for underwater clas-
sification is a point-based manual annotation on all the photos
of the input dataset, that has to be carried out by experienced
personnel, resulting in a very time-consuming process. To our
knowledge, when using point-wise annotations, all the existing
approaches based on SVM, CNN or FCNN models ((Beijbom et
al., 2015), (King et al., 2018), (Alonso et al., 2017), (Mahmood
et al., 2016)) adopt a patch-based labeling, cropping a square area
around each annotated point. The Patch-based labeling could
lead to sparse training datasets (Alonso et al., 2017); further-
more, the annotated points falling close to the contours of the
specimen introduce a certain amount of uncertainty in the anno-
tation, depending on the size of the extracted patch. In (King
et al., 2018) the authors compare the performance of the state
of the art architectures, using different annotation types. Best
results were obtained by free-hand drawing labels on the inves-
tigated specimens, however, producing a similar dataset is ex-
tremely time-consuming. Nowadays, the polygonal annotation of
ortho-mosaics inside GIS tools is a raising trend among biologists
that employ geo-referenced maps to study the spatial distribution
of populations. In this work, we analyze efficient ways to use this
new, available, data format for the training of a semantic segmen-
tation CNN for benthic communities.
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In section 2 we describe the advantages of working on polygon-
annotated ortho-photo map when training CNN architectures. Then,
we discuss several simple strategies, exploiting the properties of
the starting data, to improve the per-pixel classification perfor-
mance.

• A biologically-inspired method to partition the input map
into the training, validation and test datasets.

• A simple but effective oversampling method, able to cope
with the class imbalance problem.

• A way to aggregate network scores using the prior infor-
mation about the actual coverage of the specimens on the
surveyed area.

Finally, as a final step in our workflow, we employ a validation
tool, to analyze the semantic segmentation of complex natural
structures (Pavoni et al., 2019). This tool can be used to val-
idate the network predictions, or to correct the human labeling
inconsistency, feeding back into the network a cleaner and en-
hanced dataset for a possible re-training step. The improvements
obtained by introducing these methods in the network training
and execution are outlined in section 4.

2. METHODS

Coral reefs are populated by a huge amount of species, and since
we are working with RGB images, learning to classify them co-
incide with learning some peculiar features in their morphology
and color. However, the task of identifying this features by pho-
tographs, both for human users and for supervised learning meth-
ods, is complicated not only by the intraspecific mutability of
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marine organisms, but also by environmental factors, by perspec-
tive issues or by the flaws of underwater images. The same coral
colony, framed from a different view angle or distance may ap-
pear totally different. Underwater photos are affected by color
and sharpness changes (due, respectively, to the water absorp-
tion of some wavelenghts and to the turbidity), by distortions and
by chromatic aberrations (caused by the interaction of the cam-
era lens with the port of the camera housing and with the water
medium). From a machine learning perspective, the use of ortho-
mosaic maps reduce the amount of factors to learn by removing
some of the described inconsistencies.

Ortho-mosaics maps are rectified, have a constant pixel size, and
always present an azimuthal viewpoint, framing all the speci-
mens with a coherent view direction. Additionally, color vari-
ations across photos are smoothed out by the blending process,
and chromatic aberration is mostly removed. These factors re-
duce the non-biological variability of the corals images, help-
ing the network to learn what really differentiates them from a
biological-only perspective.
Ortho-mosaics incorporate information of the actual metric scale,
depth and the geographical coordinates. The output of the net-
works can be easily used for computing specimen areas, abun-
dance and coverage of the species. From the perspective of the
coral segmentation task, the physical size of morphological fea-
tures, as well as the depth of the coral colonies, are a discriminant
factor in classification.
Thanks to geo-referencing, identified objects can be relocated in
a three dimensional context preserving the spatial distribution of
the specimen as an additional and valuable information support-
ing monitoring activity.
As we will show in the next, working with maps also allows us to
exploit the scale and the spatial distribution of the population to
solve issues commonly found in preparing training datasets, such
as the partition and the class imbalance.
Finally, inspired by the polygonal annotation made by (Palma
et al., 2017) for the calculation of biometric indicators, we used
the manual polygonal labeling as an annotation solution for a
supervised learning dataset. In this context, with respect to the
point-wise photographic annotation, the use of ortho-photo mo-
saic seabed maps leads to faster labeling time, since drawing an
approximate polygon around a specimen is faster than annotate
hundreds of points on several images. Additionally, the polygo-
nal annotation allows the use of a segmentation network instead
of a patch-based classification one, providing a pixel-wise classi-
fication.

While solving many issues, ortho-photo mosaics may introduce
different problems. Small registration errors of the input images
may cause local blurring or ghosting in the final map, that have
to be somehow recognized and removed from the input dataset.
The stitching and projection process causes local image warping
close to geometric discontinuities (e.g. the borders of the more
protruding corals), we overcome this problems by masking these
areas to exclude them from the loss computation.

2.1 Biologically-inspired dataset partition

Typically, to train a network in a reliable way, the available input
data is split into three datasets: one for the actual training, one for
the validation (used to tune the network’s hyper-parameters) and
one for the testing of the network performance (to assess the gen-
eralization capability of the trained network). In order to properly
work, these three datasets must be representative of the whole
data. A simple random partition works well in datasets which are

Figure 1. Coral class distribution. Courtesy of Scripps
Institution of Oceanography.

intrinsically uniform, such as the ones for the automatic recogni-
tion of pedestrian and cars. However, in our case, we are dealing
with a continuous space (the reef map), where the organisms fol-
low a non-uniform population distribution (Edwards et al., 2017).
For these reasons, instead of subdividing the data into random
non-overlapping parts, we chose three sub-areas of the monitored
seabed by using ecology metrics describing the spatial patterns of
benthic communities.
Among all the landscape ecology metric commonly used (and im-
plemented in many popular software such as FRAGSTAT) we se-
lect three that describe the colonies distribution and are invariant
to the shuffle of the tiles. The Patch Size Coefficient of Variation:

PSCV =
100.0 · std(Coral’s areas on the Patch)
mean(Coral’s areas on the Landscape)

,

which measures the standard deviation of the size of specimens as
a percentage of the mean size all over the dataset. It is commonly
used to describe the landscape area variability. Patch Richness
and Patch Coverage are related, respectively, to the number and
density of specimens. Obviously, other metrics can be integrated
in this method: for example, at the moment we are not consider-
ing metrics related to the perimeters because our polygon labeling
is not that much detailed.

The selection criteria proceeds by choosing on the map a couple
of non overlapping windows (our Patches) of the approximately
dimensions of about the 15% of the entire surveyed area. Met-
rics are computed on each window and on the remaining area; a
weighted sum of the calculated values is assigned to each of the
three regions as a similarity score (S). This process is iterated an
arbitrary number of times (∼ 10, 000), and then the triplet with
the best values of S is chosen as validation, test and training area
respectively.
In order to combine the metrics in a weighted sum in an homo-
geneous way, we express them in percentage w.r.t the statistics
of the labeled population. The weight used have been set em-
pirically after some tests. Values of S close to 0.0 means that
the three areas have very similar statistical characteristics, great
values that the area chosen are very different w.r.t the population.

This strategy is trivial when applied on a single class, but still pro-
duces a better balanced partition with respect to a random choice.
When the number of classes to segment increases, this method
will give an even stronger advantage, as a manual selection would
be impractical and a random process would not be viable.
The image on the figure 1 is a labeled ortho-projection of a three-
dimensional reef reconstruction carried out by the Scripps Insti-
tution of Oceanography (100 Islands Challenge Team, 2019); this
clearly shows how difficult it might be to manually select areas
displaying an adequate class representation. For such complex
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Figure 2. (Right) Bounding box of a coral in the ortho-mosaic
map. (Left) Cropping Windows for the oversampling in data
space; the points indicate the centers of such windows. This

coral will be replicated 9 times in the final dataset.

cases, the two windows might be divided into smaller areas with
separate scores, and then re-combined to reach a properly bal-
anced set.

2.2 Corals Oversampling

The dataset used for the tests, as many other datasets of this type,
only contains a small number of representatives for the species
under monitoring, compared to the extension of the surveyed
area. This causes a significant problem of class imbalance when
training the network. To solve this issue, we propose a simple
oversampling strategy in data-space, based on the actual area cov-
erage of the specimens.

We subdivide each annotated coral into a set of overlapping sub-
parts: the number of parts is proportional to the size the coral,
while their arrangement follows the shape of the specimen. The
bounding box of each coral is regularly sampled, using as a step
the average size of the smaller specimens: a cutting window is
applied on each of these sampled points. The size of the cutting
window is determined by the size of the network training input
and by the maximum translation applied during the data augmen-
tation. Each cropping window give us a new input image tile for
the input dataset. An example of the cropped tiles of a coral is
shown in Fig. 2.
This sampling produces a set of tiles that follow the size and
shape of the specimens, making possible to feed the network with
all the coral borders, and to further apply a random-displacement
and/or rotation step of augmentation at training time, further in-
creasing the coral percentage.

This strategy is motivated by the presence of a very large num-
ber of small corals (which are therefore well represented in the
dataset), and only a few of large ones. Since we are working with
natural, growing structure, the idea is to give the same importance
to small and large corals into the training and validation sets.

Classic feature-space oversampling are difficult to apply in this
specific case, because the pre-trained CNNs typically employed
for features extraction are trained on dataset that does not con-
tain this type of visual data. Additionally, standard augmentation
alone would not be able to take into account the spatial continuity
of the larger individuals and not guarantee to cover all the corals
border. Working with ortho-mosaic makes this processing step
possible, as the ground sampling distance is known, and larger
specimen are not scattered across multiple photos but are repre-
sented by a single area on the map.

Figure 3 shows a dataset sample, largest coral appears several
time in different position into the cropped area.

Figure 3. An excerpt of the dataset after the coral oversampling.
(Top) RGB images. (Bottom) Corresponding labels.

2.3 Re-assembling the output of the CNN

Ideally, most of the CNN are translation-invariant because are
based on convolutional filters and max pooling layers. However,
the padding operation in the convolutional filters introduces small
but significant differences. In remote sensing applications, the
size of the ortho-photo map is usually too large to be processed
entirely with a single pass for memory constraints. In these cases,
the segmentation is applied on an overlapping sliding window to
ensure the class consistency, in particular on the image borders.
Since this approach produces more than one per-pixel classifi-
cation score, a method to re-assemble the segmented map is re-
quired.

The standard method to obtain the final scores is to simply av-
erage the overlapping results (Liu et al., 2017, Audebert et al.,
2017). Here, we propose to employ a method already used in
multi-view stereo matching (Ma et al., 2017); using the Bayesian
Fusion to aggregate the scores that belong to the same pixel.

Defining SN = {s1, s2, . . . , sN} a set of classification scores
for a given pixel, generated by the sliding window in different
positions, according to the Bayes rule we can write:

p(y|SN ) =
p(SN |y, SN−1)p(y|SN−1)

p(SN )
(1)

where y is the output of the network for that pixel. By assuming
that the scores are i.i.d, it is possible to write:

p(y|SN ) = µp(y)

N∏
i=1

p(si|y) (2)

where µ is a constant. At this point, the final Bayesian aggrega-
tion becomes:

p(y = 0|SN ) = p(y = 0)

N∏
i=1

p(si|y)
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p(y = 1|SN ) = p(y = 1)

N∏
i=1

p(si|y) (3)

Note that p(y = 0|SN ) and p(y = 1|SN ) should be normalized
to obtain the probability that the pixel belongs to the species of
interest or not.

An interesting aspect of this formulation is that it includes the a
priori probabilities of the presence of the species of interest: i.e.
if we know in advance that, in the surveyed area, the coverage of
the species is not more than the X% of the seabed, it is possible
to take into account this information, and produce more reliable
scores for the pixels with an uncertain prediction (probabilities
close to 0.5).

3. VALIDATION OF THE SEGMENTATION

The human error in labeling specimens adds uncertainty both at
the training phase and at the testing of the network. This lack of
consistency depends on the operator’s experience in distinguish-
ing exactly those types of marine organisms but also on the repet-
itiveness of the task. In (Beijbom et al., 2015), authors show
that the expert introduce an intra-annotator error of about the
10− 11%. With the aim to reduce such source of errors we pro-
posed an interactive validation tool (implemented in PyQt) that
allows the user to confirm, reject or copy an existing annotation
with a single click.

The tool interface is shown in figure 4. In the Comparison Panel,
the two main windows, allow the user to analogize the original
human annotation (on the left) with the network predictions (on
the right). The Navigation Panel, in the top-right, enable to reg-
ister the actions performed within the map.
This tool can be used in two different ways. It is possible to work
on the classification output of the network applied to an unseen
area, in order to efficiently correct erroneous predictions, calcu-
lating at the same time the adjusted percentage of abundance and
coverage of the species. However, it is also possible to use it to
check the classification output of the network when applied on
the entire input dataset: in this case, it allows to quickly correct
the errors in the input annotations, by comparing the results with
the original labels. At this point, a more correct labeling might
be exported and used to re-train the network.

Figure 4. The semantic segmentation validation tool.

4. RESULTS

We test our strategies on a 150× 50 meters wide ortho-mosaic of
the barrier reef already investigated in (Palma et al., 2017), con-
taining various coral species, as well as rocks and sand regions,
labeled by a single biologist (see Fig. 5). One pixel of the ortho-
photo map covers around 1.14mm.

Figure 5. The Mozambique geo-referenced ortho-mosaic with
the corresponding polygonal labels. On right, some examples of

annotated corals.

The ortho-mosaic, generated with Agisoft PhotoScan, was built
from color-corrected images. For this purpose, we employed a
combination of the CLAHE algorithm (Zuiderveld, 1994) in the
Lab color space with a successive small auto adjustment of the
RGB components. This global color adjustment works very well
in our case, the mean value of the images extracted from the
ortho-mosaic for the training is always close to middle gray.

We only have a single labeled coral class, the Soft Coral Dig-
itate, which shows a large intraspecific morphological variance
(see Fig. 5) and covers approximately just the 6.4% of the seabed.
The ’other’ class contains elements that are poor in features, such
as sand, but also other corals classes morphologically similar to
the monitored class, which are thus excellent candidates to be
false positives. Our labels are loosely-fitting polygons surround-
ings the corals, marked on a separate layer using QGIS, not fully
coherent with their edges (see Fig. 5). However, this annotation
technique is very fast and probably the most suitable in relation
to the smooth appearance of our data.

4.1 Network and training parameters

We do our experiments using a standard pre-trained CNN ar-
chitecture for semantic segmentation tasks, the Bayesian Seg-
Net (Kendall et al., 2015). Dataset tiles are pre-processed by
subtracting the mean value, no further normalization are required
thanks to the previous color adjustment. The fine-tuning of the
network is obtained using an initial learning rate of 5 ·10−5. This
learning rate is reduced by a factor 5 every 50 epochs, for a total
of 150 epochs. The optimizer is Adam with a small weights L2

regularization (0.0005). Higher values of the regularization tends
to oversmooth the coral borders.

Each input images is a tile of the ortho-map of 448 × 448 pix-
els (two times the input size of the pre-trained SegNet). We used
an image of such size to permit large translation during the data
augmentation. In particular, each input tile is randomly flipped
horizontally and/or vertically, translated in a range of ±50 pix-
els, and rotated in a range of ±10 degrees. The augmented im-
age is cropped centrally to obtain the input size of the network
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Figure 6. A dataset tile (Left), the probability map (Center),
cross-entropy mask (Right)

(224 × 224). We decided for these augmentation parameters
after some empirical tests. The batch size used is 32.

The architecture follows the typology of the input labeling. The
Bayesian Segnet, returns homogeneous regions predictions, i.e.
blobs, that are suitable to approximate the polygonal annotation.
However, coral colonies borders are generally jagged: more re-
cent architectures, such as DeepLabV3+ (Chen et al., 2018), could
be used to obtain a more precise per-pixel labeling.

Strategies to deal with the inaccurate labeling of the polyg-
onal annotations. Polygonal annotation of corals is more ac-
curate then the one based on points, but some labeling prob-
lems still remain. Coral contours are often too irregular to be
annotated with a simple polygon, and on high-resolution ortho-
mosaics, texture artifacts may appear in correspondence of depth
discontinuities. To deal with this problems, we tested two differ-
ent strategies to deal with the uncertainty around corals borders.

In the first strategy, probability maps are calculated by individu-
ally rasterizing each label, and applying a gaussian filter with a
kernel of 20 pixels (σ = 5 pixels) to smooth out its borders. The
idea is to treat the labels as probability maps, with probability to
have coral equals to 1.0 when inside the corals, but with a de-
creasing ramp to 0.0 across the area of the border (see Fig. 6). In
this case a binary cross-entropy loss is used.

In the second strategy, the rasterized labels are thresholded to
carve out a thin mask covering the area across the border such
that the thickness of the mask is proportional to the size of the
coral (see Fig. 6). This time we decided to exclude the borders
from the loss calculation. The rationale is try to learn the inner
region of specimens, i.e. the “inner patterns” of the corals. This
time we chose a cross-entropy loss function because we are deal-
ing with binary maps. The adaptive masking is necessary to pre-
vent loosing too much useful data on small corals. In our dataset,
we set the minimum thickness to 7 pixels and a maximum one of
about 15-16 pixels.

According to our tests we can state that the second solution is
inefficient. The network is not able to segment the coral borders
properly; the learned “inner patterns” does not guarantee better
precision w.r.t. the whole polygonal labeling. Conversely, the
solution based on treating labels as probability maps and adding
an uncertain field around the borders is able to reduce the FPR to
about 0.8-1.0%.
This result, combined with the Bayesian Fusion (see Table 5),
gives the best performance in terms of False Positive Rate (FPR),
i.e. 2.5%, w.r.t the network with the best accuracy (0.960 vs
0.962) and the best F1-score (0.641 vs 0.650). This result is very
encouraging and worthwhile more investigation to better assess
its advantages.

In recent works, as in (Maninis et al., 2018), the uncertainty of the
sketch labels is solved by transforming them into heat maps, then

Figure 7. The Random Window dataset (on the left) and the
Selected Windows dataset (on the right). Orange and Olive color

indicate respectively the validation and the test Area.

Dataset
SCD Class Other Class
(predicted) (predicted)

Random Windows
SCD Class 0.511 0.489
Other class 0.027 0.973

Selected Windows
SCD Class 0.585 0.415
Other class 0.029 0.971

Random Windows SCD Class 0.872 0.128
+ Weighted Other Class 0.146 0.854

Selected Windows SCD Class 0.881 0.119
+ Weighted Other class 0.104 0.896

Table 1. Confusion matrices for the biologically-inspired
selection and random selection.

added in an additional information channel to train the network.
The Bayesian Segnet that we used for our tests was pre-trained
with three channels, but we reserve to try this approach with a
multi-channel network because it seems very promising.

4.2 Biologically-inspired dataset partition

We used our area selection method, based on the spatial analysis
of the populations, to identify the best training, validation and test
area. These areas are shown in Figure 7. The obtained S scores
are 5.1, 5.5 and 5.8 for the test, validation and training dataset
respectively. This means that the descriptive statistics of these
areas are all quite close to one another, as we wanted.

From now on, we will refer to the dataset obtained by splitting the
tiles into training, validation and test sets using the areas selected
with our method as Selected Windows. Similarly, we will refer
with Random Windows to the dataset in which the tiles are split
using randomly selected areas. In this case, the scores are a bit
higher (around 20.0), i.e. the random areas are still quite similar
but not be as good as the ones chosen with our method.
Tables 1 and 2 summarize the obtained results. The term ‘weighted’
means that, to compensate the class imbalance, we also intro-
duced a weighted cross entropy loss with the weights set as the
inverse of the class frequency.

As performance metrics, we consider the overall accuracy and
the F1-score, that measures the test accuracy more efficiently in
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Dataset Accuracy F1-Score
Random Windows 0.949 0.511
Selected Windows 0.944 0.591
Random Windows + Weighted 0.856 0.388
Selected Windows + Weighted 0.895 0.535

Table 2. Comparison of accuracy and F1-Score between the
biologically-inspired selection and random selection.

uneven class distribution. To better assess the amount of coral
correctly classified w.r.t the Other class, we also report the corre-
sponding confusion matrices. Note that due to the strong imbal-
ance of the classes, a small classification error on the Other class
greatly increases the amount of incorrectly classified pixels.
According to the metrics used the network trained using the Se-
lected Windows is able to classify correctly more SCD (58.5%
vs 51.1% of the Random Windows) with basically the same FPR.
As a matter of fact, it has the best F1-Score. The number of
tiles used for training with the Random Windows is greater than
the Selected Windows (906 vs 820), however, the biologically-
inspired selection still outperforms the random selection.
This result is significant, also considering that we are working on
a relatively regular colonies distribution: the Mozambique dataset
portrays a flat reef, without major slopes, located centrally inside
the barrier and not subject to external currents. Tests conducted
on other sets of Random windows with comparable scoring give
similar qualitative results. The performances greatly degrades
when the Windows have much higher values of S, i.e. > 40.
Regarding the use of the weighted cross-entropy loss, the imbal-
ance of our test case is so severe (the number of pixels of the Soft
Coral Digitate are about 6.4% of the entire ortho-map) that this
standard technique is unable to produce good results (compare
the F1− Score in table 2). This further motivates the use of our
oversampling strategy to reduce the imbalance problem.

4.3 Corals Oversampling

As already stated, our dataset is heavily unbalanced (6.4% of
coral pixels according to the provided labeling information). Our
simple oversampling method (see Section 2.2) is able to feed the
network with an amount of coral pixels between the 35% and
40% of the training dataset, making it balanced and increasing
the performance considerably.

Tables 3 and 4 report the results obtained on the Random Win-
dows and the Selected Windows dataset after our data balancing
step. The oversampling step during the corals cropping tiles is
about 132 pixels, which corresponds to cover the area with a step
of 16 cm in physical space. The Dense Oversampling test used a
step of 66 pixels, producing a higher number of cropped tiles for
the large corals. Note that this solution increases the True Pos-
itive Rate (TPR) and the accuracy significantly, outperforming
the class weighting. The best accuracy reach 94.5% with an F1-
score of 0.674. Intuitively, a severe oversampling also introduces
redundant data that does not improve the performance anymore;
this can be seen by looking at results of the the dense oversam-
pling test.
Unlike doing a random augmentation, with this data oversam-
pling approach we are sure to cover the area of each SCD in-
stance.

4.4 Bayesian Fusion vs Standard Fusion

As described in Section 2.3, the classification of a large map
generated by using a sliding window approach may cause prob-
lems like inconsistent classification at tiles borders. The standard

Dataset
SCD Class Other Class
(predicted) (predicted)

Random Windows SCD Class 0.793 0.207
+ Oversampling Other class 0.064 0.926

Selected Windows SCD Class 0.809 0.191
+ Oversampling Other class 0.044 0.956

Selected Windows SCD Class 0.826 0.174
+ Dense Overs. Other class 0.048 0.952

Table 3. Comparison between selected and random areas.

Dataset Accuracy F1-Score
Random W. + Oversampling 0.929 0.537
Selected W. + Oversampling 0.945 0.674
Selected W. + Dense Oversampling 0.943 0.670

Table 4. Performance of the proposed oversampling approach.

method to reduce such inconsistencies is to average the scores on
a set of overlapping window. Typical overlap values used are 50%
or 75%. In the following, we compare the averaging of the scores
(after the Softmax layer) with our Bayesian Fusion approach.

Figure 8 shows an example of output probabilities produced for a
single sliding window. As clearly visible, the proposed Bayesian
Fusion can produce scores that show less uncertainty with respect
to those produced by simply averaging the input. This reduces
the presence of ambiguous range values, i.e. around 0.4-0.6, and
helps to remove the smaller wrongly-classified SCD. The perfor-
mance evaluated against the ground truth of the scores aggregated
using the Bayesian Fusion are slightly better than the ones of the
scores aggregated with the simple average (see Table 5). Note
that the overlap of 75% does reduce the performance, most prob-
ably due to the weak labeling at the corals’ edge, that corresponds
to the zone of high uncertainty. The role of the prior probabilities
can be easily understood by taking a look at the confusion ma-
trix reported in Table 6. Since we know that the presence of the
SCD has a low probability w.r.t the Other class, the effect of the
Bayesian fusion is to make the coral classification more strict, but
at the same time the FPR is greatly reduced.

4.5 Using the validation tool

We compared two successive annotations performed in QGIS by
the same biologist after a few months. The biologist needed ap-
proximately 25 hours to verify and correct the previous annota-
tion using QGIS. Employing the validation tool for executing the
same task, the biologist took only 9 hours (about 9.2 seconds per
instance).
Figure 10 shows in light blue the polygons annotated consistently,
in dark blue the false negatives (labels missing in the first ses-
sion), and in red the false positives (labels incorrectly classified
in the first session). More accurate results about the validation
tool performance are described in (Pavoni et al., 2019).

Method Overlap Accuracy F1-Score
Average 50% 0.958 0.640
Bayesian 50% 0.962 0.650
Average 75% 0.957 0.641
Bayesian 75% 0.959 0.644

Table 5. Performance of the proposed Bayesian Fusion approach
vs the usual Averaging method. Prior probabilities are set 0.2 for

the SCD class and 0.8 for the “other” class.
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Figure 8. (From Left to Right) Input image. Manually annotated labels. Classification scores without aggregation. Average scores.
Bayesian Fusion.

Method
SCD Class Other Class
(predicted) (predicted)

Average
SCD Class 0.808 0.192
Other class 0.036 0.964

Bayesian1
SCD Class 0.772 0.228
Other class 0.029 0.971

Bayesian2
SCD Class 0.718 0.282
Other class 0.027 0.973

Table 6. Comparison between Averaging and Bayesian Fusion.
All methods use 50% overlap. Note that Bayesian1 corresponds

to the prior probabilities set to 0.2 and 0.8 respectively, while
Bayesian2 corresponds to 0.1 and 0.9 (in this last case we have

accuracy=0.960 and F1-score=0.639).

This time, we used the tool to validate the predictions with our
best performance network, Selected Windows + Oversampling +
Bayesian (50%), over the Test area. The biologist needed approx-
imately one hour to complete the task, with the following results:

• 73 new instances, about the 15% of the Test area coral pix-
els, were detected. Since coral instances are easily identified
when suggested by an automatic segmentation, this might
justify the development of an assisted input tool.

• 40 small (about 10%) specimens predicted have not been
validated because considered “uncertain”, confirming the com-
plexity of the task.

• The FPR, that was about 2.9% in the confusion matrix, de-
creased to 1.8% after the biologist validation.

• The TPR increased, in the same manner, from to 77.2% to
81%.

The new accuracy of the network, according with these values,
became 0.967.

4.6 Discussion and Qualitative Comparison

We report here a qualitative comparison with the work by King
et al. (King et al., 2018) where the authors analyze several FCNN
architectures in the task of semantic segmentation of coral reefs.
In this field, making analogies with the performance of other su-
pervised techniques is complicated by the lack of standard bench-
mark datasets. The input data are very similar to ours since the
different classes have been annotated directly onto an ortho-photo
map using a proprietary tool, but the SegNet has not been tested in
the comparison. The most promising network tested in (King et
al., 2018), DeepLab v2, gives an accuracy of about 0.677 in clas-
sifying ten classes. We reached a maximum accuracy of 0.950 in
classifying the Soft Coral Digitate class.

Figure 9. (Above) A close-up of the polygon labeled
ortho-mosaic. (Below) The corresponding semantic

segmentation obtained by our network on the Test area.

In general, we can state that the overall performance of our net-
work is in line or better than the current state of the art: an exam-
ple of a segmentation result is shown in (see Fig. 9). We point out
that other similar solutions, without the described improvement
strategies, requires larger dataset and more information to obtain
similar quantitative performance, for example, the use of fluores-
cence data in addition to the RGB data by Alonso et al. (Alonso
et al., 2017).

Regarding the proposed methods, the biologically-inspired dataset
partition has demonstrated to work properly. We think it can be
even more efficient with a higher number of classes and it can be
improved choosing more specific metrics for the specimen under
evaluation.
According to the results, the oversampling strategies based on
size- and shape-driven cropping of the specimen has been very ef-
fective to overcome the lack of data often characterizing this type
of study. The Bayesian Fusion has been able to obtain slightly im-
prove the performance w.r.t the standard averaging method. We
underline that this strategy in general, and it can be applied also
in other monitoring applications based on ortho-photo maps.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a set of methods for the improvement
of semantic segmentation of benthic communities using ortho-
mosaic maps. The proposed strategies are automatic and ex-
ploit the characteristics of metricity and continuity of ortho-photo
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Figure 10. Human annotation errors. After a second annotation
session, some of the original labels were found to be false

positive (red) or false negative (dark blue).

maps. The results of these solutions are encouraging, despite the
low quality of the input at our disposal and despite the presence
of incorrect annotations.
The next step will be to test these methods on other datasets, con-
taining more classes and different information layers. We are cur-
rently working on speeding up the human labeling step in order to
obtain labels that better follows specimens border without com-
promising the advantages in terms of speed of the polygonal an-
notation. More accurate labeling would justify the choice of a
finer-grain segmentation network. One of the greatest advantages
of working with ortho-mosaics coming from 3D reconstruction
of the seabed is the opportunity to adopt a multi-modal approach,
combining the depth from the DEM maps with the RGB value
from the textures. This would make also the evaluation criterion
more robust; different species thrive at different depth ranges.

Life beneath the surface is characterized by a marvelous variety
of animal and plant species. According to our experience, ev-
ery team of biologists deals and needs to identify a very specific
class of organisms. A customizable detection tool, that includes
all the steps from the annotation to the segmentation and to the
validation of the results (with a streamlined interface), is the final
purpose of our research activity.
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