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ABSTRACT: 

 

The need for a continuous evaluation of the state of preservation of civil infrastructures during their lifetime is increasingly requiring 

advanced monitoring technologies. The improvement of spatial and temporal resolution of the measurements is now one of the most 

significant achievement, especially for large infrastructures. Monitoring actions are necessary to maintain safety conditions by 

controlling the evolution of deformation patterns or detecting significant instabilities. Remote sensing technique such as Differential 

Interferometry by Synthetic Aperture Radar (DInSAR) allows identifying environmental vulnerability and potential damages on 

large road infrastructures thus contributing to plan and optimize maintenance actions. DInSAR data allow to highlight instability 

processes and to quantify mean deformation velocities and displacement time series. This information can be analysed considering 

geotechnical and structural characteristics and adopted to evaluate possible safety condition improvement and damage mitigation. 

Using proximal remote sensing techniques, such as Light Detection And Ranging (LiDAR), it is possible to analyse the pavement 

conditions on 3D models derived from a dense point cloud acquired by Mobile Laser Scanner (MLS). By combining the DInSAR 

and LiDAR datasets a great improvement is expected in the capability to promptly identifying critical situations and understanding 

potential risks affecting extended road infrastructures. The principal aim of this paper is to provide a general overview of the most 

innovative remote sensing techniques for infrastructure safety condition assessments. Furthermore, a methodological approach to 

define a reliable procedure for data processing and integration is applied on a test area located in the municipality of Rome. 

 

 

1. INTRODUCTION 

Monitoring large infrastructure networks and urban areas is a 

dominant socio-economic issues for the safety of the population 

(Arangio et al., 2014; Lan et al., 2012). Structures are 

threatened by the age of constructions and the evolution of 

natural and man-made ground deformation processes (Arangio 

et al., 2014). Traditional techniques provide measurements on a 

limited number of control points that are not usually enough to 

describe the overall deformation pattern. To guarantee a 

systematic and comprehensive control of structural stability 

over large areas, remote sensing technique (Laser Scanning) and 

satellite-based techniques can be effectively adopted (Marsella 

and Scaioni, 2018; Tapete et al., 2013).  

The space technology used in this work is based on advanced 

DInSAR approaches (Ferretti et al., 2011; Ferretti et al., 2000; 

Lanari et al., 2004; Werner et al., 2003), that consists on the 

exploitation of SAR acquisition sequences collected over large 

time spans, allows providing useful information on both the 

spatial and the temporal patterns of the detected displacements 

through the generation of time series, with centimetre to 

millimetre accuracy (Bonano et al., 2013; Casu et al., 2006). 

The DInSAR technology is an adequate alternative solution that 

can be fully assimilated within the ground-based monitoring. 

Monitoring civil infrastructure with InSAR is relatively new 

and currently not exploited to full advantage. The sheer amount 

of available data is acquired very frequently and with high-

precision, at very low costs. These aspects makes it an attractive 

source of information (Chang et al., 2018). DInSAR technique 

is an extension of the InSAR technique and allows to measure 

sub-centimetric ground displacement, with an millimetric 

accuracy, using the phase difference between to SAR images 

acquires in different times over the same scene (Crosetto et al., 

2011). In particular, the variation of the interferometric phase 

can be represents from the sum of different quantities (Pepe and 

Calò, 2017), the interferometric phase contribution pertinent to 

the underlying topography has to be removed to measure only 

the interferometric phase term associated with the displacement. 

SAR is an active imaging sensor which can be mounted on 

board an aircraft or satellite, it uses microwaves therefore it has 

cloud-penetrating capabilities and it can be used efficiently in 

any meteorological condition with a full day-and-night 

operational capability (Chan and Koo, 2008). The SAR image 

contains a measurement of the amplitude of the radiation 

backscattered toward the radar by the objects (targets), 

amplitude depends on the roughness and the chemical 

composition of the targets on the surface. SAR technology 

mostly improved over the last decades (Gernhardt et al., 2010; 

Milillo et al., 2018), developing mainly methodologies based on 

the detection and monitoring of several geophysical phenomena 

(Alpers et al., 1981; Bürgmann et al., 2000; Massonnet and 

Feigl, 1998), such as the study of the dynamic of Earth’s crust 

and the monitoring of the surface movements.  

DInSAR deformation time series have been largely exploited in 

a wide variety of geophysical contexts, such as seismic, 

volcanic and mass movement scenarios, with a twofold goal: to 

map and monitor the detected displacements (Bovenga et al., 

2013; Hilley et al., 2004; Lanari et al., 2010; Sansosti et al., 

2010; Tizzani et al., 2009; Trasatti et al., 2008). 

Besides, such remote sensing techniques have also 

demonstrated the capability to provide valuable information on 

the displacements affecting single buildings. 

Structural and infrastructural health monitoring with DInSAR 

technique it is becoming one of the most powerful and 

economical means (Hooper, 2010). DInSAR observations from 

satellites are becoming more and more reliable for wide area 
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and long-term deformation monitoring. The main contribution 

of this technique is the exploitation of a large number of 

observed point displacements, distributed along the whole 

structure. 

The first applications in the infrastructural field date back more 

than two decades ago. Ying and Qinfen (1995) presented a 

region-based method for the recognition of roads and bridges in 

fully polarimetric SAR images. Hough transform to find 

potential bridge fences and to recognize roads was used. 

Morphological filtering was used to suppress speckle in SAR 

images. Soergel et al. (2008) have extracted key features of the 

bridge's geometry from the complementary data sources, to 

determine the water level, smooth the noisy InSAR DEM 

(Digital Elevation Model) data on water surfaces, in order to 

generate an improved 3-D visualization of the scene.  

Terranova et al. (2015) presented a DinSAR analysis and review 

of ERS and Radarsat data on the city of Napoli (Italy). These 

data was processed using the Persistent Scatterers 

Interferometric synthetic aperture radar (PSInSAR) technique. 

They have been identified five main areas of subsidence 

affecting residential districts and strategic infrastructures. 

Rail transport is an enabler of economic progress, used to 

mobilise goods as well as people. Therefore, railway tracks 

monitoring is of fundamental importance to ensure the track 

quality in both the construction phase and the regular 

maintenance stage (Chen et al., 2018). DInSAR technique 

allowed the detection of previously unknown settlement in 

several stretches of two major railway lines of NE Spain 

(Castañeda del Álamo et al., 2015). The area affected by 

subsidence was detected through the analysis of archived data 

of the ENVISAT and ALOS SAR missions. The results showed 

that DInSAR methods allow deformation of railways to be 

identified and monitored, that may otherwise compromise both 

serviceability and safety. 

Qin et al. (2018) have investigated long-term subsidence 

mapping over the entire transportation network of Shanghai 

(more than 10,000 km), demonstrating that SAR data can 

provide useful information for management and maintenance. 

The elevated roads, ground highways and underground subways 

were analysed. 

Ruiz-Armenteros et al. (2018) showed the potential SAR data 

for monitoring deformation of one earth-fill dam. The 

researchers said that deformation detected might be assumable 

for this kind of dams. 

Thanks to the development of high resolution SAR sensors 

many permanent scatterers can be found in one individual 

infrastructure in order to properly discover various types of 

deformation movements. Furthermore, a shorter revisit times 

guarantee a long series of SAR data so to account for a seasonal 

expansion due to changes in water level and/or temperature 

(Bakon et al., 2014). 

Temperature variation is just as important in the analysis of 

long-term structural behaviour of civil infrastructures. Thermal 

dilation mapping and characterization was analysed using 

DinSAR tecnique (Qin et al., 2018). The results were verified in 

terms of the estimated linear thermal dilation coefficient. The 

analysis was based on two main steps: a pre-analysis was 

adopted to obtain the thermal transmission direction, then the 

regression analyses were performed to estimate the thermal 

dilation model. 

Akin to RADAR technology, LiDAR acquire details by 

illuminating an target using light from the near-infrared region 

(about 1.0 μm) and it is based on two principles: Time-Of-

Flight (TOF) and Phase Shift (PS). TOF sensors are based on 

the measure of the travel time between the transmission of the 

signal and its reflection. The PS sensors are based on the 

measurement of the angular offset between the emitted and the 

reflected signal.  

Laser scanner technique is based on LiDAR technology and 

nowadays it is very used for deformation monitoring of different 

applications:  architecture, civil engineering, industry and 

archaeology (Schulz, 2008). The laser scanner technique allows 

a fast collection of enormous volumes of highly dense, 

irregularly distributed, accurate geo referenced data, in the form 

of three dimensional (3D) point clouds. The resultant point 

cloud is then post-processed to extract roadside feature data 

including pavement and roadsides in order to gather data for 

asset management, as-built documentation, and maintenance 

operations (Guan et al., 2016). In Highway and especially in 

airport the evaluation of road pavement performance is essential 

for effective maintenance design engineering (Barbarella et al., 

2018; Barbarella et al., 2017). The research is oriented towards 

the study of survey methods in order to obtain increased safety, 

higher data collection speed, higher accuracy data, and 

minimising traffic interference (Ragnoli et al., 2018; Yen et al., 

2011). 

The 3D laser scanner technology has high potential to collect 

reliable road profiles, moreover it is possible to visualize the 

pavement roughness covering the entire pavement (Chang et al., 

2006). Terrestrial Laser Scanning (TLS) point clouds were often 

used to build roughness maps of the pavement surface through 

quarter-car model simulation over a 3D mesh grid (Alhasan et 

al., 2017). Especially interesting are Mobile Laser Scanner 

(MLS) systems, they allow for the acquisition of point cloud by 

means of one or more scanners that are mounted on a mobile 

platform (vehicles, boats, trains) (Guan et al., 2016; Williams et 

al., 2013). This technique reduces costs and acquisition times 

compared to traditional techniques. The data collected were 

used for a number of geometric analyses including curve 

layouts, lane marking extraction, slope analysis, drainage 

properties, bridges height, lane width and automatic 

classification of urban ground elements (Balado et al., 2018; 

Gargoum et al., 2018; Prochazka et al., 2018; Yadav et al., 

2018). In addition, MLS data were used to evaluate pavement 

condition (Kumar and Angelats, 2017) as rutting, ride comfort, 

texture, and automated distress detection. 

Recently, novel strategies combining advantages of existing 

fusion techniques were proposed. Some results show that 

analysis of combined InSAR and LIDAR data can provide an 

improvement in DEMs (Gamba et al., 2003). Moreover, it is 

possible to exploit a LiDAR DEM to improve to extent the 2D 

and 3D representation of buildings extracted by phase 

unwrapping from InSAR measurements. The researchers also 

proposed a simple way to exploit LiDAR data in the area of 

interest, especially when the whole area is not covered (Gamba 

et al., 2006). Anghel et al. (2016) showing that the estimated 

deformations using the SAR data were in good agreement with 

available in-situ data provided through laser scanner surveys 

and embedded measuring systems. 

Currently there are a great amount of data in the ESA archive 

derived from ERS - ENVISAT SAR missions that must be 

exploited. These data allow to reconstruct the historical 

displacement of a structure in the last 20 years. Furthermore, the 

operative SAR mission such as Sentinel 1 and Cosmo Sky-med 

(for high resolution information) allow to develop a long time 

monitoring. 

In this paper we analyse 3D data acquired from multi-temporal 

Laser Scanner surveys in order to compare the results with 

displacements obtained through DinSAR analysis. 
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2. METHODS 

2.1 DInSAR data collection and analysis 

Satellite remote sensing is a technique that allows the 

generation of high-resolution images, by processing the 

magnitude and the phase of a reflected signal on the ground and 

sent by the antenna. By exploiting the echo of the signal, it is 

possible to obtain the effects of an extremely large antenna 

(with a wave of the order of kilometer) synthesizing it in a few 

meters (Bonano et al., 2012; Manunta et al., 2008; Marsella et 

al., 2015; Scifoni et al., 2016; Zeni et al., 2011). 

An interferogram can be obtained from the difference between 

sequences of acquisitions and it provides information on the 

displacements of the observed surface according to the phase.  

This technique has the potential to detect millimetric target 

displacements along the Line-Of-Sight (LOS) direction, 

allowing to measure mainly the variations in the altimetric 

component.  

The results of a multi-temporal analysis using a stack of 

interferograms can be organized in a database and embedded 

within a GIS environment for visualization and analysis. For 

each measurement point, the database can contain: 

 The position on the ground, that means the geographic 

coordinates; 

 The average annual displacement speed (measured in the 

sensor view direction), expressed in mm / year; 

 The historical displacement series, that is a series of 

values that represents, acquisition by acquisition, the 

evolution of displacement of the measurement points, 

expressed in mm and measured in the sensor view 

direction; 

 A quality parameter (coherence), normalized between 0 

and 1: the closer it gets to 1, the more the measurement 

point has optimal characteristics for the analysis. 

In this way, it is possible to represent measured points and the 

related information on aerial or satellite orthophotos or vector 

maps to proceed to additional analysis and to integrate them 

with other monitoring data, such as those derived from 

structural and geotechnical investigations. 

To analyse the behaviour of the infrastructure or detect potential 

damages it is useful to apply an interpolation where the 

information shifts from punctual and discrete to spread and 

continuous. A geostatistical analysis can be performed to obtain 

an assessment of the displacement spatial variability in order to 

obtain a more reliable estimation of the magnitude of the 

settlements from interpolated data. In this way, it is possible to 

obtain continuous information that allows, through a coloured 

scale, to show the overall trend in a certain area. By 

interpolating the cumulative displacements of the DInSAR data 

(Scifoni et al., 2016), it is possible to determine the cumulative 

yields along sections to highlight settlements or irregular 

shapes.  

 

2.2 LiDAR data collection and analysis 

The LiDAR technology has high potential to collect data usable 

to build 3D models of the road surface. The survey on the test 

site was carried out with both a MLS and a TLS in order to 

compare the results.  

Whereas the mobile systems (MLS) provide a point cloud 

directly georeferenced in a coordinate system (in Italy 

UTM/ETRF00), the stationary TLS measurement require a post-

processing. In better details, the TLS acquires the spherical 

coordinates of the object points referred to the centre of the 

instrument. Therefore, all the scans must be co-registered and 

aligned, then the global point cloud must be georeferenced. 

Afterwards, both point clouds derived from the two laser 

systems has been processed in order to extract the road surface. 

The first step aimed to edit the laser data in order to extract only 

the point cloud belonging to the road surface. The method we 

have followed is based on the M-estimator SAmple Consensus 

(MSAC) algorithm, which is a robust variant of the Random 

Sample Consensus (RANSAC) algorithm, an iterative 

method to estimate parameters of a mathematical model from a 

set of observed data that contains outliers (Torr and Zisserman, 

1996). Point cloud filtering into ground and non-ground points 

was carried out implementing an algorithm in Matlab, based on 

the building of a 3D grid. A sphere with a given radius and 

center in each grid node was built. The points inside the sphere 

were fitted on the best-fit plane using the MSAC algorithm. 

Moreover, since a rectangular grid DEM is not suitable to 

model a road surface since its paths is curvilinear and its length 

is significant, an algorithm able to generate a grid DEM with 

curvilinear abscissa (corresponding to the central road axis) was 

implemented. For the interpolation, the Inverse Distance 

Weighting (IDW) method was used (Yang et al., 2004). The 

grid step has been related to both density and geometry of point 

patterns (Hengl, 2006). Such a DEM consists of a rectangular 

matrix of heights in which the rows represent the cross-sections 

and the columns the longitudinal profiles.  

 

2.3 Correlation 

In order to make a comparison between DiNSAR and LiDAR, 

for both datasets the cumulative displacements were computed 

and then the existence of correlation between them has been 

evaluated. 

As for LiDAR, since the grid interval and its origin is the same 

for all the DEMs built with data surveyed over time, the 

cumulative displacements have been computed as matrix 

differences of the height values along the rows (cross sections). 

For the comparisons with DInSAR, we took into account a 

cross-section every 50cm, so to cover a size that is twice the 

pixel of the DinSAR image (about 3 m). 

As for DinSAR, a polynomial curve was fitted to the set of 

cumulative displacements to obtain a continuous function. 

Starting from the equation of the curve, the displacements in 

correspondence with the nodes of the cross sections derived 

from LiDAR DEMs have been determined. 

Finally, to assess if the data by DinSAR and LiDAR are 

correlated, the Pearson correlation coefficient has been 

computed; it gives a measure of the linear correlation between 

two variables : 
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where:   

n is the sample size; 

xi, yi are the individual sample points indexed with i 
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 (the sample mean); and analogously for y  
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The coefficient is the ratio of the covariance between the two 

variables to the product of their standard deviations. Pearson’s 

correlation coefficient is a statistical measure of the strength of 

a linear relationship between paired observations. It assumes a 

value between +1 and −1 and the closer the value is to 1 or –1, 

the stronger the linear correlation. We can describe the strength 

of the correlation using the guide that Evans (1996) suggests for 

the absolute value of rXY: up to 0.59 the correlation is 

‘moderate’, between 0.60 and 0.79 is ‘strong’, between 0.8 and 

1 the correlation is defined ‘very strong’. 

3. RESULTS 

3.1 Data set 

The analysis was carried out on a stretch of road of southern 

Rome, where a DInSAR Cosmo-SkyMed dataset was available 

for the period between July 2014 and February 2017. 

Figure 1 shows the test area; DInSAR data are available in the 

area enclosed within the yellow rectangle (panel a). Panel b) 

shows the scatter plot of the targets whereas in panel c) the 

displacement map is shown. Panel d) shows the cumulative 

displacements computed in correspondence of the section AA’. 

 

 

Figure 1. Test area 

 

Two TLS instruments, a Ilris 36D by Optech and a Riegl VZ400 

by Riegl were used to acquire the scans. Both instruments (TOF 

type) are characterized by long range, good accuracy 

(approximately 5mm@50m) and high-speed acquisition. A few 

of well spread spherical targets, made of high-reflectance 

polymer material with 15 cm diameter, were used both to co-

register the TLS scans and georeference the aligned point cloud. 

The coordinates of the target centers were derived from a GNSS 

(Global Navigation Satellite System) survey. A reference station 

(master) was materialized near the test area and connected 

through static baselines with three permanent stations (PS) 

within up to about 10 km. These PS (MOSE, INGR and ROAN) 

are belonging to the national geodetic CORS (Continuously 

Operating Reference Stations), framed in the Italian geodetic 

and cartographic System UTM/ETRF00. Target coordinates 

were measured connecting the target points with the master 

station (about 100m apart) through fast-static baselines. 

The CloudCompare v.9 software was used to co-register the 

point clouds and align them to obtain a global point cloud. 

Then, it has been georeferenced with a six-parameters similarity 

transformation using the software package PolyWorks v.14 by 

InnovMetric. The maximum density of the point cloud was 

about 35000 points/m2, the minimum density was about 500 

point/m2. 

MLS data were acquired by a Riegl VMX-450 laser 

scanner mounted on the roof of a vehicle driven along the 

stretch of road. The roof-carrier mounted measuring head 

integrates two RIEGL VQ-450 laser scanners, which are 

symmetrically configured on the left and right sides, pointing 

toward the rear of the vehicle at an angle heading of 

approximately 145°, as well as inertial measurement and GNSS 

equipment, housed under an aerodynamically-shaped protective 

cover. Such a configuration is called ‘Butterfly’ or ‘X’ pattern. 

The main characteristics of the MLS system are: line scan speed 

up to 400 lines / sec (1.1 million points per second), precision = 

5mm, accuracy = 8mm. The vehicle was traveling at a speed of 

about 50km/h. The point density is about 8000 point/m2.  

Figure 2 shows the layout of the thirteen cross-sections 

extracted from the DEM used for Pearson’s coefficient 

computation.  

 

Figure 2. Cross sections extracted from LiDAR DEMs  

 

3.2 Integrate analysis 

Figure 3 shows the fourth degree polynomial curve fitted to the 

set of DinSAR cumulative displacements. The function fitted 

the data very well. High order polynomials can be highly 

oscillatory but with fourth order polynomials, the curve is more 

likely to fall near the midpoint. The goodness of fit was 

measured with the R2 coefficient of determination, very close to 

1. 

 

 

Figure 3. Fitted cumulated DInSAR displacements (31 months) 

for cross-section C in Figure 2 
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Figure 4 shows the scatter diagrams of Pearson correlation 

coefficient computed for each considered cross section line. 

The Pearson's correlation coefficient for these variables, in most 

cases, is greater than 0.80, showing a very high positive 

correlation; the LiDAR displacements increase as the values of 

DInSAR displacements increase.  

Nonetheless, this high correlation value does not mean that the 

displacements agree; the coefficient (r) measures the strength of 

the correlation between two variables, not the agreement 

between them.  

 

 

Figure 4. Scatter plots and correlation coefficients between the displacements observed with DinSAR and LiDAR techniques 
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The agreement is verified only if the points in Figure 4 lie along 

the regression line (red line in figure), but this will not happen 

because the resolutions and accuracy of the two techniques are 

different. 

It is mandatory to analyse first of all the scatterplot, i.e. the 

point distribution in correlation diagrams, to verify if a linear 

relationship exists. Even if the correlation coefficient value is 

high, indication of a strong correlation, not necessarily the 

correlation is linear. 

By observing the trend of the regression line, the displacements 

obtained with the DInSAR technique are underestimated. 

Finally, the TLS displacements show better agreement with the 

DInSAR ones. This is probably due to the many different 

sensors used in MLS for directly georeferencing data (i.e. 

GNSS, IMU, DMI). GNSS systems are used in LiDAR to 

compute the trajectory of the sensor so it is important to keep in 

consideration the most common related positioning errors. 

Other sources of errors are mainly related to the inertial 

measurement unit (IMU) system.A number of tests showed that 

the accuracy of MLS as for height component (at 95% 

confidence level) ranges between 2.9 and 3.1cm (Puente et al., 

2013). These values are in agreement with the differences 

obtained with the two LiDAR techniques. The correlations with 

LSM displacements seem stronger, the data are less dispersed; 

this is mainly due to the lower resolution and density than the 

TLS data. 

 

4. CONCLUSIONS 

The paper provides an overview of two relative new satellite 

and ground based remote sensing techniques useful for 

assessing infrastructure safety condition. 

DInSAR has been successfully used for generating large-scale 

surface deformation maps with a great accuracy whereas LiDAR 

is useful to collect data with adequate accuracy and high 

resolution for mapping and inventory purposes.  In particular, 

LiDAR has been used to assess pavement geometric 

characteristics, becoming an excellent source of data for 

pavement assessment and maintenance, also because the 

surveyors are able to collect data safely with minimal 

interruptions to traffic flow.  

It follows on that a synergistic use of remote sensing 

technologies would be advantageous for monitoring large linear 

infrastructure since a combination of the two methods allows to 

collect information at different temporal and spatial scale.  

In order to verify the coherence of the data, a correlation 

analysis was performed on a test area. The results demonstrated 

a meaningful relationship between the cumulated displacements  

computed with data coming from the two techniques. TLS 

displacements show a better agreement with the corresponding 

coming from DInSAR than MLS ones. 

In order to improve safety infrastructure, the next step is to 

study new operating procedures for a reliable integration of 

different remote sensed data, together with the assessment of 

accuracy of the study results. 
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