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ABSTRACT:

Weathering, aging, infiltration, solar radiation and several other factors cause the deterioration of buildings and infrastructures and
hence the need for periodical maintenance and restoration. The need for maintenance has been traditionally determined based on visual
inspections of qualified operators. Since this process is obviously time consuming and quite expensive, especially when the considered
building is quite large and high, then a number of recent studies have been recently published proposing remote sensing tools in order
to ease the monitoring process. Among the possible spatial data acquisition sensors, terrestrial laser scanning has been considered in
several of the existing studies, mostly because of its high reliability, to cope with cracks and defect detection up to the millimeter level
of resolution, which is the typical accuracy of the current generation of professional laser scanners. This paper considers the problem
of detecting small defects on the façade of a University building. Similar to other previous studies, in this work defect detection is
accomplished by considering distances with respect to a planar surface locally fitted on the building façade. Then, statistical filtering
and machine learning tools have been implemented in order to cope with damage detection of the brick surfaces at sub-millimeter level.

1. INTRODUCTION

Aging, humidity, infiltration, solar radiation and other physical,
chemical and biological factors cause the need for monitoring
building structures and their periodical restoration (Giacomucci
et al., 2011, Hällström et al., 2009, Sextos et al., 2018). Moni-
toring the status of building façades is a task typically done by a
human operator (Bauer et al., 2014), which has to carefully in-
spect them in order to determine areas that require restoration or
maintenance.

Despite careful human inspection ensures very good results when
dealing with easily visible parts of the façade (e.g. close to the
ground), it may be unreliable, subjective (or expensive) for areas
on the top of the façade, which are typically hard to be clearly
checked by the operator. In practice, a fast and reliable assess-
ment of the damaged areas on a relatively large façade may be
not so easy for a human operator.

The above considerations motivate the use of alternative, mostly
automated, remote sensing tools for checking damaged areas on
a building façade. To be more specific, this work considers the
problem of determining damaged bricks on a building of the Uni-
versity of Padua (Fig. 1). Given the significant amount of dam-
aged bricks on such façade it is very important to determine a
reliable estimate of the number of those to be restored/substituted
in order to limit the current maintenance costs while ensuring a
satisfying result.

The rationale of this work is that of using typical geomatics in-
struments and tools, such as terrestrial laser scanning and spatial
statistical filtering, in order to develop an easy to use and quite
fast method to determine damaged bricks on a building façade
(Fig. 1 and 2).

Given the different aspect of damaged bricks with respect to reg-
ular ones (Fig. 2), a viable way to detect damaged bricks can
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be that of using images exploiting the recently developed neu-
ral networks recognition techniques (e.g. deep learning). Image
acquisition from UAV (in order to use close-view images) can
be particularly well suited in combination with such techniques
((Galarreta et al., 2015, Alicandro et al., 2018)) or to ease the
visual inspection (Angeli et al., 2018). Photogrammetric tech-
niques have also been considered, also in combination with ther-
mography, for structural investigations (Costantino and Angelini,
2012, Masiero et al., 2015) and in order to assess and characterize
detachments on façades (Maierhofer et al., 2015).

Figure 1. University building façade considered in this work.

Figure 2. Close view of bricks on the façade.
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Despite image based analysis can lead to interesting results, it
may fail in correctly distinguishing slightly damaged bricks from
dirty ones, because a chromatic alteration of brick appearance is
associated to both such cases. A similar consideration applies
also to the usage of intensities of laser scanning measurements,
which can also be considered for structure monitoring (Armesto-
González et al., 2010, Hemmleb et al., 2006).

Motivated by this consideration, in this work terrestrial laser scan-
ning (TLS) is used to produce a very accurate description of the
façade. Then, brick damage detection is done based on a geomet-
ric analysis of the acquired information.

Actually, TLS have already been considered in several works for
damage and cracks detection and structural analysis of infras-
tructures and building façades (Almac et al., 2016, Tucci et al.,
2016, Guarnieri et al., 2017b, Suchocki and Błaszczak-Bk, 2019,
Guarnieri et al., 2017a). Similarly to most of such previous works
on damage detection with TLS, the basic principle of geometric
damage detection is that of checking for variations with respect to
a locally fitted (typically planar) surface (Teza et al., 2009, Kim
et al., 2014, Bosché and Guenet, 2014, Wang et al., 2016, Al-
Neshawy et al., 2009). However, defects and damages considered
in previous works typically were at millimeter level, whereas in
this work the depth difference between a damaged brick surface
and one in good conditions can be at sub-millimeter level. Since
the variations/damages of interest in this work can be smaller than
the typical sensor accuracy, the acquired data should be properly
processed in order to enhance the quality of their geometric in-
formation.

The paper is organized as follows: an overview of the proposed
workflow is presented in Section 2.. Then, details about the pro-
cessing procedure are provided in Sections 3. and 4.. Some re-
sults are shown in Section 5. and, finally, discussion and conclud-
ing remarks are reported in Section 6..

2. PROCEDURE OVERVIEW

The proposed procedure is based on the analysis of high resolu-
tion TLS scans of a building façade. Scans have been acquired
by using a Leica ScanStation C10, whose nominal position and
distance accuracies are (at least) 6 mm and 4 mm for 1–50 m
ranges. The scanner was positions were choosen according to the
following criteria:

• ensure a sufficiently small range measurement error,

• ensure incident angles quite close to perpendicular to the
façade surface,

• reduce the number of required scans.

According to the above criteria, the scanner was positioned at ap-
proximately 27 m from the façade (which is approximately 16 m
high) and acquisitions was limited to the portion of the façade
just in front of the scanner.

Brick damage detection on each area of the façade is done by
considering just the scan with the best combination of closeness-
inclination angle, consequently the registration between different
scans is only done for avoiding to repetitively analyze the same
area: the use of standard registration techniques, for instance by
using targets, allows to obtain a sufficient level of registration ac-
curacy between different scans, hence the procedure description
provided in the following will focus just on the analysis of a scan.

Each brick is detected and segmented in the point cloud corre-
sponding to the currently considered scan, as described in Sec-
tion 3.. In this work, brick segmentation is based on the analy-
sis of the measured laser intensities and on the prior information
available on the brick shapes.

Then, statistical smoothing is applied to each brick point cloud in
order to reduce the measurement noise and obtain reliable infor-
mation on the brick geometry (Section 4.).

Finally, certain suitable statistics are extracted from each brick
and used as input for a properly trained machine learning classi-
fier that is used to detect damaged bricks.

3. BRICK SEGMENTATION

Given the high level of regularity of the brick disposition on the
façade of interest, it is quite clear that the brick segmentation
procedure can take advantage from such regularity.

First, brick areas of the façade can be roughly determined by set-
ting a proper threshold on the measured laser intensity. Then,
the planar surface which fits best the considered brick area on
the façade is computed and exploited in order to change the TLS
point cloud reference system: x and y axes are set on the detected
plane, with x and y axes corresponding to the horizontal and ver-
tical direction, respectively. z axis is set orthogonal to façade sur-
face, pointing outside of the wall (e.g. towards the laser scanner,
approximately, as shown in Fig. 3).

Figure 3. Reference system.

Then, similarly to (Sithole, 2008), a rough brick segmentation
can be obtained by taking into account of the laser intensities and
of the regular brick pattern, as shown Fig. 4.

Finally, a more precise single brick segmentation is obtained by
detecting the best rectilinear contour lines (each line shall be ei-
ther parallel or orthogonal with each other one of the same brick)
according to the nominal brick sizes: actually, in order to ensure
some flexibility to the developed method, the brick sizes are re-
quired to be within a maximum error threshold with respect to
the nominal values (the maximum threshold is set to 0.5 cm in
the experimental results shown in this paper).

4. STATISTICAL FILTERING OF BRICK POINT
CLOUDS

Since the goal of this work is that of being able to detect even
small damages and detachments on bricks, the considered pro-
cedure shall be able to detect sub-millimeter changes along the
z-direction of each brick (most of the small damages are at such
level).
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(a) (b)

Figure 4. (a) Laser intensities (a) and (b) rough brick segmenta-
tion.

First, assume to consider a brick in good conditions (e.g. Fig. 5(a))
and to locally fit a planar surface to its point cloud. Then, com-
pute the distribution of the point-to-plane distances, as shown in
Fig. 6(a). Since the considered brick is good conditions, the pla-
nar surface should well describe the real geometry of the brick,
hence the distribution shown in Fig. 5(a) can be considered as
quite representative of the a posteriori laser scanning measure-
ment error (standard deviation of 1.7 mm for the distribution in
Fig. 5(a)), or, more precisely, it can be used to assess the measure-
ment error statistical characteristics along the direction orthogo-
nal to the brick surface, which actually is the direction our main
interest in order to discriminate damaged bricks.

Then, the above procedure is repeated for the damaged brick
shown in Fig. 5(b), obtaining the error distribution in Fig. 6(b)
((standard deviation of 2.2 mm).

(a)

(b)

Figure 5. Example of brick in good conditions (a) and a damaged
one (b).

As shown in Fig. 6, roughness/geometric variations in the two
considered studies are quite hardly visible by comparing the two
point-to-plane distance distributions: despite a slight difference
in the standard deviation, the two distributions are quite simi-
lar. Given such similarity, it is quite apparent that in both the
cases the (approximately Gaussian) shape of such distributions
is mostly caused by the laser scanner measurement noise: actu-
ally, in most of the considered bricks, laser scanning measure-
ment noise is larger than the typical “depth” of the damages to be
detected.

(a)

(b)

Figure 6. Histograms of point-to-plane distances for the two
bricks shown in Fig. 5.

4.1 Measurement error and spatial filtering

The simplest measurement error model that can be formulated
is that obtained by modeling the measurements as affected by
a zero-mean independent and identically distributed noise, with
standard deviation σ.

According to such model, if nmeasurement samples are available
on the same point their average can be used in order to reduce the
uncertainty on the signal value to σ/

√
n.

Since σ ≈ 2 mm and the goal is that of distinguishing depths at
sub-millimeter level, then n should be chosen in such a way to
ensure for instance σ√

n
≈ 0.2 mm, hence n ≈ 100.

In practice, collecting such a large number of TLS measurement
samples (approximately) on the same position entails a lot of ac-
quisition time, hence it is impracticable way. Actually, spatial
sample averaging can be used instead of time sample averaging
to cope with the acquisition time issue.

Obviously, since spatial averaging reduces the spatial resolution
of the filtered signal a high density of points shall be available
in order to ensure a sufficient spatial resolution of the obtained
result.

Furthermore, the considered error model only describes only ap-
proximately the real error. Consider for instance the case of the
brick in Fig. 5(a), and assume to filter the z values averaging the
measured values in a 1 cm square neighborhood (which corre-
sponds in the considered case to an average number of considered
points n = 165): the resulting distribution, shown in Fig. 7(a)
has standard deviation 0.025 mm. Since such computation has
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been done on a brick in good conditions the obtained error on
the average estimates shall be due to the measurement error: the
difference between the theoretical value of the standard deviation
of the average and the real one shall indicate the presence of cor-
relation on such noise, which can be estimated and exploited to
improve the spatial filtering, leading to a Kriging–like approach.

(a)

(b)

Figure 7. Histogram of point-to-plane distances for damaged
brick shown in Fig. 5(b).

In order to check the effectiveness of the spatial filtering proce-
dure for the detection of small damages on the bricks, Fig. 7(b)
shows the error distribution of the filtered results obtained on the
brick shown in Fig. 5(b). Differently from Fig. 7(a), it is clear
that in this case most of the variation along the z axis is due to the
damage: it is actually apparent that the distribution in Fig. 7(b) is
multi-modal, where the two modes are associated to the central
(in good conditions) and to the left and right (damaged) areas of
the brick in Fig. 5(b).

4.2 Outlier rejection

Outliers laser measurements and the presence of thin objects,
such as cables, in front of a brick may have a large impact on
the extraction of reliable statistics about such brick. A simple
outlier rejection step is implemented in order to reduce the issues
related to such kind of samples.

The distribution of the filtered y components of a brick in good
conditions are assumed to be centrally distributed, and, in par-
ticular, approximately Normally distributed. The median abso-
lute deviation is used as a robust estimator of the standard de-
viation of such distribution, properly scaled by a multiplicative
factor ≈ 1.48.

Then, measurement samples at distances from the fitting plane
larger than three times the estimated standard deviation are con-
sidered as outliers and discarded from the analysis procedure.

4.3 Brick classification

Several statistics have been considered on the filtered z in order to
be used as inputs for a support vector machine (SVM) classifier,
which has been trained on 100 bricks.

Actually, best results have been obtained by using the following
as inputs for the classifier:

• the roughness index (the standard deviation on the z),

• the fraction between the roughness before and after the fil-
tering procedure.

5. RESULTS

The proposed procedure has been applied on a set of 523 bricks
on the top part of the building façade, with the laser scanner po-
sitioned on the ground, approximately 27 m far from the façade.
Most of the test area is shown in Fig. 8. TLS acquisitions have
been done with a high point density, 120–130 points/cm2.

Figure 8. Test area.

Fig. 9 shows the roughness index of the filtered point cloud com-
paring the roughness of the bricks in good conditions (blue) with
respect to the damaged ones (red).

Figure 9. Comparison of roughness index distributions for bricks
in good conditions (blue) and damaged ones (red).

Fig. 10 shows the misclassified bricks (in red): 9 bricks were
misclassified (1.7% error).
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Figure 10. Misclassified bricks (red).

Fig. 10 shows an example of misclassified damaged brick: de-
spite the brick is damaged, its surface is quite close to planar,
making it hard to be distinguished with respect to one in good
conditions.

Figure 11. Example of misclassified brick.

6. CONCLUSIONS

The proposed procedure, based on spatial filtering in order to re-
duce the TLS random measurement error and then on machine
learning (SVM) classification to detect damaged bricks, allowed
to obtain sub-millimeter accuracy in the description of the z co-
ordinate (i.e. depth of the damage, if any) of the brick 3D points.

It is worth to notice that, since only points within a single brick
are simultaneously analyzed in the detection procedure, actually
TLS systematic error has a minor effect. Nevertheless, such ef-
fect is visible on the factor between the roughness index before
and after spatial filtering: since such factor is smaller then ex-
pected by theory when considering independent samples, some
correlation between errors on the same brick is probably present,
and, if properly modeled, might be exploited in order to further
improve the system performance. This aspect will be considered
in our future works.

The proposed procedure allowed to correctly classify 98.3% of
the bricks, where most of the errors were related to damaged
bricks with almost planar surfaces, as shown in Fig. 11.

Despite the proposed procedure is basically exploiting only the
3D information of the acquired dataset, the 3D geometry can be
combined with the measured laser intensity in order to develop
an approach exploiting all the information provided by the TLS
measurements. The introduction of more artificial intelligence
recognition tools (Simonyan and Zisserman, 2014, Pierdicca et
al., 2018), such as those based on convolutional neural networks,
will also be considered in our future research work in order to
improve the system performance.
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