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ABSTRACT: 

This paper describes a new framework for classification of hyperspectral images, based on both spectral and spatial information. The 

spatial information is obtained by an enhanced Marker-based Hierarchical Segmentation (MHS) algorithm. The hyperspectral data is 

first fed into the Multi-Layer Perceptron (MLP) neural network classification algorithm. Then, the MHS algorithm is applied in order 

to increase the accuracy of less-accurately classified land-cover types. In the proposed approach, the markers are extracted from the 

classification maps obtained by MLP and Support Vector Machines (SVM) classifiers. Experimental results on Washington DC Mall 

hyperspectral dataset, demonstrate the superiority of proposed approach compared to the MLP and the original MHS algorithms. 
 

 

1. INTRODUCTION 

Hyperspectral imagery has been widely investigated for land-

cover classification due to its broad coverage of wavelength and 

high spectral sampling rate. Among the many studies that have 

been published on this topic, two main categories of techniques 

have been established: the spectral (i.e., pixel-based) techniques 

and the spectral-spatial (i.e., object-based) techniques. The 

pixel-based classification methods are often unable to 

accurately differentiate between some classes with high spectral 

similarity. This is mainly because they employ only the spectral 

information in order to identify different land-cover types. 

Consequently, methods that can exploit the spatial information 

are essential for more accurate classification results (Carleer and 

Wolff, 2006; Shackelford and Davis, 2003). Many researchers 

have demonstrated that the use of spectral-spatial information 

improves the classification results, compared to the use of 

spectral data alone, in hyperspectral imagery (Argüello and 

Heras, 2015; Blaschke et al., 2014; Fauvel et al., 2012; Huang 

and Zhang, 2011; Negri et al., 2014; Paneque-Gálvez et al., 

2013; Tarabalka et al., 2010). In the early studies on these 

methods, the spectral information from the neighborhoods is 

extracted by either a fixed size window (Camps-Valls et al., 

2006) or morphological profiles (Fauvel et al., 2008), and used 

for classifying and labeling of image pixels.  

 

Segmentation techniques are powerful means for defining the 

spatial dependencies among the pixels and for finding the 

homogeneous regions in an image (Gonzalez and Woods, 

2002). Among the various methods of segmentation, the 

hierarchical segmentation method is state-of-the-art for 

hyperspectral image analysis (Tilton, 2003). It successfully 

integrates the spatial and spectral information in a two-step 

procedure. In the first step, the homogenous and distinct areas 

are segmented at their maximum details, and then, by grouping 

the spectrally similar but spatially disjointed regions, larger and 

more uniform objects are created. An alternative way in order to 

improve the accuracy of segmentation is performing a marker-

based technique (Gonzalez and Woods, 2002; Soille, 2003). In 

this approach for each spatial object of the image, one or several 

pixels are selected as seed or marker. The selected markers then 

grow and create a unique region in the segmentation map. 

Marker-based segmentation considerably decreases the over-

segmentation, and as a result, leads to more reliable accuracies 

(Soille, 2003).  

 

In (Tarabalka et al., 2011) an efficient approach was proposed 

for spectral-spatial classification using the Marker-based 

Hierarchical Segmentation (MHS) grown from automatically 

selected markers. It uses a pixel-wise SVM classification, in 

order to select pixels with the highest probability estimate to 

each class, as markers. In this framework, a connected 

components labeling is applied on the classification map. Then, 

if a region is large enough, its marker is determined as the P% 

of pixels within this region with the highest probability 

estimates. Otherwise, it should lead to a marker only if it is very 

reliable. A potential marker is formed by pixels with estimated 

probability higher than a defined threshold. The disadvantage of 

this approach is that the selection of the markers strongly 

depends on the performances of the selected pixel-wise 

classifier.  

 

In this paper, a modified spectral-spatial classification approach 

is proposed for improving the spectral-spatial classification of 

hyperspectral images. In the proposed approach, the MLP 

neural network pixel-based algorithm is, first, used to classify 

the hyperspectral images. Afterwards, for classes with low 

accuracy, the enhanced MHS spectral-spatial algorithm is used 

to improve their accuracies. In the enhanced MHS algorithm, 

for selecting markers, the outputs of SVM and MLP classifiers 

are combined using the estimated class probability for each 

pixel. That is, each pixel is labeled to its corresponding class 

with maximum probability estimation of two classifiers. Then, 

the most reliable labeled pixels are selected as the markers. This 

paper is organized as follows. Section 2 introduces our proposed 

methodology. The data sets, the experimental results, and 

discussions presented in Section 3. Conclusions drawn from the 

study are presented in Section 4. 
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2. THE PROPOSED ALGORITHM 

In the proposed framework, the hyperspectral image is first 

classified using MLP neural network algorithm. Then, the error 

rate for each class is computed as: 

 

                              Er = 1 – PA                                (1) 

 

Where PA is class-specific producer's accuracy. In the 

classification procedure, the high error rate of certain classes is 

not only an index of low accuracy between the set of classes, 

but also depends on the population of each class. Therefore, a 

classification measure, named    can be defined for each class i 

as follows: 

 

                     
          

                         
                         (2)   

 

Where    and    are, respectively, the error rate and the 

population size for class i, and N is the number of classes. In 

this study, class i has low accuracy if        .  The above 

value has been estimated by trial and error. The flowchart of the 

proposed framework is presented in Figure 1. 

 

In proposed algorithm, the labeling of each pixel is first decided 

using the                algorithm.                is used 

in order to classify the image into two categories: a class with 

    maximum value and the rest of classes. If the answer is 

negative, the pixel label can be found using the 

              algorithm.                is used to 

improve the class with    value less than class of 

              algorithm. This decision making process is 

continued using other Enhanced MHS algorithms until the 

answer is negative for the pixel label which is determined by 

MLP algorithm.  

 

In               (i = 1,…, m) classification used in this 

study, the outputs of SVM and MLP classifiers are combined 

using the estimated class probability for each pixel. Standard 

SVM classifications do not provide probability estimations for 

the individual classes. In order to get these probabilities, a pair-

wise coupling of binary probability estimations can be applied. 

In this study, the probability estimations for the SVM are 

obtained using the LIBSVM library. The classification 

probabilities for each pixel x is given by 

 

                 |                                (3) 

 

Where,    is the class label and K is the number of classes. For 

this purpose, pair-wise class probabilities           |   

          are first estimated, and the probabilities in (3) are 

computed as described in (Wu et al., 2004). Then, a probability 

map is constructed by assigning the maximum probability 

estimation                   to each pixel. Finally, to 

combine the SVM and the MLP classification maps, after 

providing probability maps of both classifiers, each pixel is 

labeled to its corresponding class of classifiers which that 

classifier has maximum probability estimation. Lastly, the most 

reliable labeled pixels are selected as markers. For this purpose, 

one needs to have three parameters M, P and  . M defines the 

size of a region (i.e. large or small). Indeed, M represents the 

number of pixels of each region. P defines the percentage of 

pixels within the large region to be used as markers. The last 

parameter   is a threshold of probability, which defines the 

potential markers for a small region. 

 

 

Figure 1.  Schema of the proposed framework. 
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3. EXPERIMENTAL RESULTS AND DISCUSSIONS 

3.1. Hyperspectral Data  

To evaluate the proposed approach, the Washington DC Mall 

hyperspectral dataset was selected. It was acquired with the 

HYDICE sensor over the Washington DC Mall. The 

Washington DC Mall dataset covers a spectral range of 0.4 to 

2.4 μm. The scene has spatial dimensions of 307 columns and 

1208 rows, and a ground pixel size of 1.5 m. The band number 

was reduced from 210 to 191 spectral bands by removing water 

absorption bands. The reference data includes seven major 

classes: Shadows, Trees, Grass, Water, Roads, Roofs and Trails. 

For each of the classes, we randomly chose around 10% of the 

labeled samples for training and used the other 90% for testing. 

False color image of this dataset is presented in Figure 2. 

 

   

Figure 2.  RGB color composite image of Washington DC Mall 

dataset 

 

 3.2. Experimental results 

In this study, a MLP classifier with three hidden layers 

including 5, 6, and 8 neurons is used. The evolution of the MLP 

performance is done using 500 iterations. In the MLP 

classification, as mentioned in section 2, class i has low 

accuracy if        .  Figure 3 shows the sensitivity analysis of 

 . As it is obvious, the greatest changes in the classification 

accuracy of proposed method, i.e. nearly 80% are when    
    .  

 

 

Figure 3. The sensitivity analysis of parameter  . 

 

In addition, the enhanced Marker-based Hierarchical 

Segmentation (MHS) method was applied in order to increase 

the accuracy of less-accurately classified land-cover types. For 

the SVM classifier, the Gaussian radial basis function (RBF), as 

kernel, is used (Camps-Valls and Bruzzone, 2005). The RBF 

kernel’s parameters, i.e. C and  , are chosen by a five-fold cross 

validation. They are C = 128 and         . To create a map of 

markers, after combining the outputs of SVM and MLP 

classifiers using the estimated class probability for each pixel, 

labelling of connected components is performed using the eight-

neighbourhood connectivity. For each connected component, if 

it contains more than 40 pixels, 9% of its pixels with the highest 

estimated probability are selected as the marker for this 

component. Otherwise, the region marker is formed by the 

pixels with estimated probability higher than a threshold  . The 

threshold   is equal to the lowest probability within the highest 

6% of the probabilities for the whole image. Figure 4 shows the 

dependency of the proposed approach accuracy on the chosen 

parameters M, P and  . In these experiments, for a given 

parameter, the two others were considered to be fixed; then, the 

proposed approach was performed for classification. 

 

 
Figure 4. The sensitivity analysis of parameters M, P and   

 

In order to compare the results of the proposed framework, we 

have implemented independently MLP, original-MHS and 

enhanced-MHS algorithms. The accuracies of the classification 

maps are generally assessed by computing the confusion matrix 

using the reference data. Based on this matrix, several criteria 

are used for the quantitative evaluation of the algorithms. These 

measures are: i) the overall accuracy (OA), which is the 

percentage of correctly classified pixels, ii) the Kappa 

coefficient of agreement (), which is the percentage of 

agreement corrected by the amount of agreement that can be 

expected due to chance alone, and iii) the class-specific 

producer’s accuracy, which is the percentage of correctly 

classified samples for a given class.  

 

Figure 5 shows the classification maps obtained by different 

methods and reference data. We can see from Figure 5 that by 

incorporating the spatial information, the proposed algorithm 

leads to much smoother classification maps when compared 

with the maps obtained by other methods (see Figure 5(d)). In 

addition, the enhanced-MHS is far less noisy in compared to the 

MLP and original-MHS. 
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(a) (b) 

  
(c) (d) 

 

 
 
 

 

(e)  

Figure 5. (a) MLP Classification map, (b) original-MHS classification map, (c) enhanced-MHS Classification map, (d) proposed 

Classification map, (e) Reference data. 

 

Table 1 lists the classification accuracy rates obtained on the 

Washington DC Mall dataset. We can see that Trees, Grass, 

Road and Trail classes have a proposed parameter (  ) greater 

than 0.7, i.e. they have a low accuracy among the existing 

classes. For this dataset, the importance of including the spatial 

information is also evident, as it leads to an increase in 

accuracy. The OA obtained is higher, by about 7%, 2% and 1%, 

respectively, than the accuracies of MLP, original-MHS and 

enhanced-MHS. 

 

 MLP    original-

MHS 

enhanced-

MHS 

Proposed 

algorithm  

OA (%) 84.2 - 88.5 90.5 91.2 

 (%) 80.8 - 85.8 87.9 89.0 

Shadow 79.1 0.25 85.9 89.4 89.4 

Trees 89.0 0.87 93.7 94.3 95.5 

Grass 89.4 1 89.0 90.4 93.3 

Water 74.1 0.25 91.9 91.5 90.4 

Road 87.2 0.99 88.5 90.3 95.0 

Roofs 71.2 0.09 89.1 93.4 89.6 

Trail 90.2 0.75 90.2 91.5 93.1 

Table 1. The classification accuracies obtained on the 

Washington DC Mall dataset. 

 

As Table 1 demonstrates, all of the class-specific producer's 

accuracies are considerably increased by the proposed approach 

when compared to MLP algorithm. Also, the enhanced-MHS 

algorithm in all classes except class Water is more accurate than 

the original-MHS algorithm. This decrease in accuracy can be 

due to the high dispersion and the low concentration of Water 

class in the image. 

 

The table 2 compares the performance time of the used 

algorithms. As can be seen, the implementation of the proposed 

algorithm doesn't take more time than both original-MHS and 

enhanced-MHS algorithms. 

 

Algorithms Time (seconds) 

MLP 40 

original-MHS 150 

enhanced-MHS 161 

Proposed algorithm 181 

Table 2. The performance time of the used algorithms. 

 

4. CONCLUSION  

In this paper, a framework for the spectral-spatial classification 

of hyperspectral images has been proposed. In the proposed 

framework, the hyperspectral image is, first, classified using the 

MLP algorithm. Afterwards, the enhanced MHS spectral-spatial 

algorithm is used to improve the accuracy of low accuracy 

classes. In this algorithm, the markers are selected using the 

maps obtained from the combination of SVM and MLP 

classifications. The results demonstrate that the proposed 

algorithm generally a) improves the classification accuracy rates 

when compared to the classic MLP algorithm and the original 

MHS method, and b) provides classification maps with 

homogeneous regions. It is thus evident that spatial information 

for classification is very important.  

 

The proposed approach has a drawback similar to almost all 

spectral-spatial techniques: it produces a smooth classification 

map in comparison to the pixel-wise classifications. Therefore, 

it risks impairing results near the borders between regions, 

where mixed pixels are often encountered. Spectral unmixing 

techniques can be used for accurate analysis of border regions. 
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