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ABSTRACT:

Reflection symmetry detection for 2D shapes is a well-known task in Computer Vision, but there is a limited number of efficient and
effective methods for its solution. Our previously proposed approach based on pair-wise comparison of sub-sequences of skeleton
primitives finds the axis of symmetry within few seconds. In order to evaluate the value of symmetry relative to the found axis we
use the Jaccard similarity measure. It is applied to the pixels subsets of a shape which are split by the axis. Often an axis found by
the skeleton comparison method diverges more or less from the ground-truth axis found by the method of exhaustive search among
all the potential candidates. That is why the algorithms that allow adjusting the axis found by the fast skeleton method are proposed.
They are based on the idea of searching the axis which is located near the seed skeleton axis and has greater Jaccard similarity
measure. The experimental study on the “Flavia” and “’Butterflies” datasets shows that proposed algorithms find the ground-truth
axis (or the axis which has slightly less Jaccard similarity value than the ground-truth axis) in near real time. It is considerably

faster than any of the optimized brute-force methods.

1. INTRODUCTION

When analyzing binary shapes we will see that some objects,
both of artificial and natural origin, possess reflection (axial)
symmetry. It is obvious that real-world images can rarely be
absolute reflection-symmetric. Thus, it is valuable to detect
approximate reflection symmetry and evaluate the symmetry
measure of a shape (see Figure 1, the axes and the symmetry
measures were evaluated on the basis of Jaccard similarity).
Symmetry assessment can be used in many computer vision
applications such as the analysis of plants growing conditions
or tumor detection in medical imaging.

The task of symmetry detection and symmetry measure
evaluation for 2D shapes is well-known, but there is a
limited number of effective and efficient methods for its
solution based on: 1) Fourier series expansion of parametric
contour representation (Van Otterloo, 1988), 2) contour
representation by turning function (Sheynin et al., 1999),
3) contour representation by critical points and computation
of similarity measure for two sub-contours via vectors
of geodesic distances (Yang et al., 2008), 4) model of
Electrical Charge Distribution on the Shape (ECDS) (Li et
al., 2014), 5) Boundary-Skeleton Function (BSF) (Niu et al.,
2015), 6) pair-wise comparison of sub-sequences of skeleton
primitives (Kushnir et al., 2016). Most of these methods
are based on known algorithms evaluating dissimilarity (or
similarity) of shapes and described in Section 2.

All the efficient methods of symmetry detection are
approximate; therefore, the axis of symmetry found by
them can be adjusted. The idea of symmetry axis adjustment
constitutes the novelty of the proposed work. In this paper
we are going to adjust the results of the fast method based
on pair-wise comparison of sub-sequences of skeleton
primitives (Kushnir et al., 2016). The adjustment algorithms
utilize the exhaustive search algorithm principles for the
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Figure 1. Examples of images with higher (top) or lower
(bottom) value of symmetry measure evaluated on the
basis of Jaccard similarity

reflection symmetry axis detection (Kushnir et al., 2016) that
are represented in Section 3.

The developed methods are described in Section 4 and were
experimentally studied on the known “Flavia” dataset (Wu et
al., 2007) and the dataset of butterflies images; the experimental
results are shown in Section 5. The paper concludes with some
discussions on the results and further work.

2. RELATED WORK

There is a number of methods for fast approximate search of
reflection symmetry axis and the symmetry value for binary
images in the literature. Most of them are based on the certain
algorithms of shape matching and (dis)similarity measure
evaluation.  Nevertheless, those algorithms are modified
because they are applied not to different shapes but to the two
parts of a shape. A shape is divided into two parts by a line,
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similarity of two parts is referred to as their mirror similarity
with respect to that line. The line which divides a shape into
two most similar parts is taken as a desired symmetry axis.

Proposed in (Van Otterloo, 1988) method of reflection
symmetry detection is based on parametric contour
representation.  Several variants of information-preserving
parametric contour representation are provided. The
normalized to 27 arc length, or perimeter of polygonal
contour, is used as a parameter. Fourier series expansion is
applied to the representation. Achieved Fourier coefficients of
different contours can be compared by calculating their mutual
distance. Based on such a method, pair-wise dissimilarity
measure of shapes or approximate asymmetry measure of a
shape could be calculated.

The approach for reflection symmetry detection suggested
in (Sheynin et al., 1999) is based on the method of polygonal
shapes comparison proposed in (Arkin et al., 1991), where the
shape contour is normalized to a unity and represented by a
turning function. A turning function is a periodic parametric
contour representation. The drawback of such representation
is high sensitivity to noise in the boundary.  Therefore
preliminary smoothing of the boundary might be useful when
this representation is used for comparing shapes. The scaling,
translation, and rotation invariant dissimilarity metric for any
two turning functions is introduced. Based on this metric the
similarity measure for two shapes is obtained. This measure
could be used in symmetry measure calculation because it will
be the maximum of all possible similarity measures between the
contour of the shape and the same contour reflected relatively to
all possible lines. The line which gives the maximum similarity
will be the axis of the symmetry.

According to the approach stated in (Yang et al., 2008) a
figure contour is represented as a set of critical points (Latecki
, Lakdmper, 1999). This set captures all the information
required for detecting the dissimilarities of contours. The
set is computed using Discrete Curve Evolution (DCE)
method (Latecki , Lakdmper, 1999). Then the set is divided into
two parts. The parts that minimize the dissimilarity value, i.e.,
maximize self-similarity, are used to define the main similarity
axis, which corresponds to the main axis of reflection symmetry
for many shapes. Proposed dissimilarity measure is motivated
by inner distance (or geodesic distance) introduced in (Ling ,
Jacobs, 2007). The advantage of geodesic distance is that it is
insensitive to the articulation of parts. This property could be
very important for computing approximate reflection symmetry
measures.

The inner distance is also used in (Li et al., 2014), where
the Electrical Charge Distribution on the Shape (ECDS)
is calculated on its basis to find the axis of symmetry.
The ECDS is invariant to isometric transformation, so the
symmetry detection method can deal with extrinsic and intrinsic
symmetry. Then, the reflection symmetry detection problem in
the shape space is transformed to a horizontal lines (i.e. rows
with all zeros) detection problem in a local similarity matrix
which is formed from differences between corresponding
electrical charges of the shape relative to all potential symmetry
axes. The horizontal lines of different lengths in a similarity
matrix indicate global and local reflection symmetry parts of
shapes.

It is worth noting that all above-mentioned methods
of reflection symmetry detection are based on contour

representation of a shape. The two following methods are
based on both the skeleton (Blum, 1967) and the boundary
representation of a shape.

The outline of the method proposed in (Niu et al., 2015)
is following: firstly, the skeleton of the input 2D shape is
computed and a number of equidistant points from the shape
boundary is sampled. Then, a 1D function is constructed to
describe a 2D shape. This function is called Boundary-Skeleton
Function (BSF); it is defined as the minimal inner-distances
between the boundary sample points and the skeleton. Since
the inner-distances are intrinsic properties of a shape, the BSF
is isometric invariant and robust to boundary noise. Then,
the local extrema of the BSF are computed; they partition the
function into a number of curved segments. Each segment is
characterized by a feature vector that captures local features
of the BSF. Finally, reflection symmetry in a shape is detected
upon matching the curved segments of the function. However,
the experimental study in (Niu et al., 2015) was made on a
small number of simple artificial shapes; it is not clear how the
method performs on natural approximately symmetrical objects
with occlusions, protrusions, and so on.

The method of symmetry axis searching proposed in (Kushnir
et al., 2016) uses the procedure of pair-wise skeletons
comparison where skeletons of binary images are encoded
by chains of primitives (Kushnir , Seredin, 2014, Kushnir ,
Seredin, 2015). To get a chain of primitives, a skeleton has
to be traversed counterclockwise. Each primitive represents a
traversed skeleton edge and has at least two normalized values
— the length of the skeleton edge and the angle between the
current and next edges. Rescaling of the length is done by
the diameter of the minimum circle circumscribed about the
skeleton. The angle is normalized by 2.

To obtain more complex and precise shape representation it
is proposed to incorporate a vector of Legendre coefficients
p = {po,...,pn} as the third component in a primitive.
Legendre coefficients encode the radial skeleton function of
each skeleton edge (Kushnir , Seredin, 2014). This function
determines the width, or contour, of a shape along the skeleton
edges. So, each primitive becomes a three-component vector
w = {l,a,p}. The chain representation of the skeleton is
invariant under translation, rotation, and scaling. For two
primitive chains the optimal alignment could be calculated and
dissimilarity measure can be evaluated for the corresponded
images as described in (Kushnir , Seredin, 2015).

For the reflection symmetry detection task a skeleton has to be
divided into two parts — the “left” and the “right” sub-skeletons.
The left part has to be traversed counterclockwise and the
right one — in clockwise direction. As a result, the “left” and
the “right” primitive sub-chains are obtained; they could be
compared by the shape matching procedure based on pair-wise
alignment of primitive chains (Kushnir , Seredin, 2014, Kushnir
, Seredin, 2015). Thus, the most similar parts of a skeleton
among all possible ones correspond to the most similar parts
of a shape which are considered reflection symmetric parts.
The start and the end points of a skeleton division into “left”
and “right” parts can be regarded as points belonging to the
symmetry axis of a shape.

3. THE SYMMETRY FUNCTION OF A SHAPE

The exact symmetry estimation algorithm based on pair-wise
exhaustive search of shape outer contour points was proposed
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in (Kushnir et al., 2016) and used to evaluate ground-truth
symmetry axis. Lines are drawn through the all possible pairs of
points, each line is considered a potential symmetry axis which
divides a shape into two parts; each part is represented as a
set of pixels. The similarity between two sets is evaluated by
using the Jaccard measure (for binary sets it is also known as
Tanimoto):

pr(B) = oo gy (1

where B = binary image

B, =reflection of the binary image B

with respect to a line

S(B) = set of pixels belonging to the image B,

the brightness of which is equal to 1.

The line which divides a shape into two most similar sets (the
value of Jaccard measure for them is maximum) is considered
to be the sought-for symmetry axis of a shape. As the algorithm
of exhaustive search is very time consuming, its two accelerated
versions have been proposed — the optimization taking into
account semi-perimeter of a shape, and the optimization with
respect to the center of mass of a shape (Kushnir et al., 2016).

Let us now introduce the concept of a symmetry function as a
function of two arguments that takes a pair of contour points
and computes the Jaccard measure relative to the straight line
drawn through these points. This measure will be the symmetry
measure of the shape evaluated relative to the straight line
drawn through specified points on the axis. Figure 2 illustrates
the fact that the symmetry function has many local extrema,
which leads to impossibility of using gradient methods to
identify the symmetry axis (axes) of a shape.

Figure 2. Examples of binary images and corresponding
surfaces formed by the values of Jaccard measure
calculated for all N - (N — 1)/2 pairs of contour points

4. ADJUSTMENT OF REFLECTION SYMMETRY
AXIS FOUND BY THE FAST NUMERIC METHOD
BASED ON THE SKELETON REPRESENTATION

It is obvious that the methods mentioned in Section 2
are based on numeric procedures and obtain approximate
solutions. Here we investigate the possibility of adjusting the
symmetry axis found by the fast skeleton method (Kushnir
et al., 2016). Preliminary study has shown that the axis
found by the skeleton comparison algorithm usually gives a
smaller value of symmetry measure in comparison to the axis
obtained by exhaustive search algorithm, which always gives
the maximum value of the symmetry measure for the same
image. Nevertheless, the skeleton axis is located in a way that it
crosses the shape contour in an e-neighborhood of each one of
the intersection points of the exact ground-truth symmetry axis
with this shape contour. Thus, the proposed approach is that we
adjust axis found by the skeleton method, i.e. find a line in its
neighborhood, which gives a value of symmetry measure larger
than the value of symmetry measure corresponding to adjusted
axis. This way, we will improve the accuracy of the skeleton
method within a reasonable time.

We shall call the adjusted skeleton axis seed axis; and any
candidate axis in searching process is probe one. The symmetry
axis necessarily crosses the object contour, so we consider
only the boundary points of the shape to get probe axes. The
image boundary image is represented by a sequence of points
numbered from 0 to N — 1.

4.1 The First Version of the Axis Adjustment Algorithm

1. The seed axis is defined by two points p; and p2 of shape
contour intersection with the symmetry axis found by the
skeleton method.

2. Specify two contour points that bound pre-defined
e-neighborhood of the first point along the contour: a =
p1 — e, b = p1 + . These two points (a and b) limit
the finite set of some contour points [a;b]. Specify two
contour points that bound pre-defined e-neighborhood of
the second point along the contour: ¢ = ps —e,d = pa2+e.
These two points (c and d) limit the finite set of some
contour points [c; d].

3. On the segments [a;b] and [c;d] select two sets of
equidistant points @ = {¢; = a + h - 4,9 = 0,..,n},
S={si=c+h-i,i=0,..,n}, where n is the number
of parts which segments are broken into, & is the stride of
partition, which is calculated as an integer part of 271—5

4. Tterate through all pairs of the points belonging to sets @
and S obtained in step 3. This iteration defines | = |Q] -
|S| probe straight lines. Calculate the symmetry measure
relative to each obtained probe line, i.e. axis; store one of
them for which the maximum value of symmetry measure
is obtained.

5. If the stride h is bigger than 1, two contour points p}
and p5, belonging to the straight line which gives the
maximum value of symmetry measure, are passed to step
2: p1 := P}, p2 1= ph, € := h, otherwise go to step 6.

6. If any of the points a, b, ¢, d belongs to the obtained line,
this line is declared the seed one and its points pj and p5
are passed to step 2, otherwise this line is a sought-for
symmetry axis.

The basic concepts of the algorithm are illustrated in Figure 3.
It is worth noticing that the proposed algorithm always finds the
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axis, which gives the symmetry measure that is not less than the
measure obtained by the skeleton method.

Figure 3. An example of selecting the equidistant points
set according to the first variant of the algorithm (red axis
is the axis obtained by the skeleton method; yellow dotted

line is one of the probe axes)

4.2 The Second Version of the Axis Adjustment Algorithm

It is well known that the symmetry axis must pass through the
center of mass of the absolutely symmetric shape. We used this
fact to optimize the first variant of the adjustment algorithm. As
a rule, the axis of the approximately symmetric shape does not
pass exactly through the center of mass, but in its neighborhood,
which we will consider a circle with center coinciding with
the center of mass of the shape. The radius R of this circle
is calculated as kg - D, where D is the distance from the center
of mass to the outermost contour point, kg is the coefficient of
proximity to the center of mass. If we have a priori knowledge
about the good quality of the seed axis, it will be enough to
examine only those probe axes that locate within the radius R
from the center of mass specified through the parameter kr.
Only them cross the circle with radius R centered at the center
of mass. Some of the straight lines will be excluded from the
searching process, the measure of symmetry for them will not
be calculated, and thus, execution time of the method will be
reduced.

4.3 The Third Version of the Axis Adjustment Algorithm

The main peculiarity of the third version is the initial selection
of adjustment areas, which is performed in a following way.
The seed axis is defined by two intersections with the contour
points p1 and po. Tangents to a circle with radius R and center
at the center of mass are traced from these points as shown
in Figure 4. Two pairs of tangents limit two finite sets of
contour points [a;b] and [c;d]. The adjustment process will
be implemented on these sets similar to what was done in the
second version of the algorithm.

This method provides a flexible choice of both the search
intervals on the shape contour, and the length of this interval
by setting the value of the only parameter kr.

Remark 1.

Segments [a; b] and [c; d] can be of different sizes. So the strides
of selection of equidistant points could vary. This implies that
the algorithm completes its execution only when the stride on
both the first and the second segment is equal to 1.

Figure 4. Construction of tangents to the circle from the
points p; and po

Remark 2.

If the seed axis does not intersect the circle with center of mass
and radius R; and the point p, lies outside the interval [a;b],
the interval is expanded to the point p1. Similarly, if the point
p2 lies outside the interval [c; d], the interval is expanded to the
point po.

5. EXPERIMENTAL STUDY

The developed methods were experimentally studied on two
image datasets. The first one is the known “Flavia” image
dataset (Wu et al., 2007) consisting of 32 classes of images.
We have selected 5 classes for our experiments; their numbers
are: 4, 8, 18, 30, and 32, each class contains from 52
to 72 images with resolution of 800 by 600 pixels. The
second dataset is “Butterflies” image dataset (accessible at
http://1da.tsu.tula.ru/papers/Butterflies.zip). It contains 30
images with resolution of 400 by 600 pixels which were found
on public Internet resources. All images selected for our
experiments were binarized.

5.1 Quality and Speed Assessment of the Proposed
Algorithms

In our experiments the value n was equal to 10, and the
parameters € and kr were varied. In Table 1 the following
estimations for each class of images are presented: the
root-mean-square deviation (RMSD) between the symmetry
measure after adjustment and the ground-truth symmetry
measure; the maximum deviation and the number of deviations
in a class that are three times as much as the RMSD; the average
processing time (considering only adjustment time, without
searching of a seed axis) per image in seconds. Best results
for each row are marked with red bold. Study was performed
on a PC with Intel Core CPU i7-7500U @ 2.7 GHz, 16 GB
RAM.

In Figure 5 we demonstrate some samples of adjustment — in
the top row the skeleton and the red seed axis obtained by
the skeleton method are shown for each image; in the bottom
row the red seed axis and the yellow axis obtained by the
proposed adjustment method are shown. For all sample images
the adjusted axis coincides with the ground-truth one.

Figure 5 also illustrates the necessity of adjustment procedure
applying to the results of approximate methods of reflection
symmetry detection, particularly, for the skeleton comparison
method — the skeleton symmetry axis is located more or less far
from the ground-truth axis in most cases (see also experimental
results in (Kushnir et al., 2016)).
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Algorithm 1 Algorithm 2 Algorithm 3
Class Image 1 1
Estimations soly o1y lu £=qV =gV B =003 k=005 k=01

Num of Objects 4 8 16 k=003  kp=005 k,=003 k=005
RMSD 0.0042 0.0085 0.0193 0.0042 0.0042 0.0085 0.0085 0.0072 0.0073 0.0074
. Max Deviation 0.0320 0.0504 0.0960 0.0320 0.0320 0.0504 0.0504 0.0479 0.0479 0.0479
Num Devs > 3*RMSD 2 1 3 2 2 1 1 1 1 1
72 Av Proc Time, sec 3.2276 2.3030 2.2471 1.5211 1.8112 1.1371 1.2934 1.6017 1.8836 2.0138
RMSD 0.0101 0.0270 0.0518| 0.0101 0.0101 0.0270 0.0270] 0.0594 0.0601  0.0462
’ Max Deviation 0.0526 0.1491 0.2044| 0.0526 0.0526 0.1491 0.1491] 0.2054 0.1934 0.1517
Num Devs > 3*RMSD 3 2 1 3 3 2 2 2 2 2
64 Av Proc Time, sec 3.2674 3.1302 2,1120 1.5300 1.8326 1.8464 2,1034 2.1430 2.0375 1.9784
RMSD 0.0064 0.0833 0.0843 0.0079 0.0003 0.0834 0.0833 0.0756 0.0870 0.0838
‘ Max Deviation 0.0501 0.2811 0.2938 0.0622 0.0024 0.2811 0.2811 0.2994 0.2971 0.2814
Num Devs > 3*RMSD 1 1 1 1 1 1 1 1 2 1
62 Av Proc Time, sec 3.7387 3.1473 2.3914| 1.8453 2.1532 1.8626 2.1613| 2.0833 2.3138 2.2730
RMSD 0.0001 0 0.0002| 0.000149 0.000149 0 0 0.0014 0.0016 0.0049
‘ Max Deviation 0.0011 0 0.0014] 0.001115 0.0011 0 0 0.0101 0.0111 0.0204
Num Devs > 3*RMSD 1 0 1 1 1 0 0 1 1 3
56 Av Proc Time, sec 3.3203 3.2588 2.1767 1.9745 2.2563 2.3145 2.4679 2.0257 1.8598 2.6447
RMSD 0.0112 0.0153 0.0267 0.0065 0.0116 0.0156 0.0153 0.0287 0.0272 0.0250
* Max Deviation 0.0681 0.0839 0.1402 0.0431 0.0694 0.0839 0.0839 0.1425 0.1426 0.1402
Num Devs > 3*RMSD 2 2 2 1 2 2 2 1 2 2
52 Av Proc Time, sec 3.2096 3.2450 2.1430 1.3484 1.6793 1.7026 2.0719 1.9527 1.9864 1.9265
RMSD 0.0224 0.0331 0.0301 0.0224 0.0224 0.0331 0.0331 0.0221 0.0230 0.0534
+ Max Deviation 0.1078 0.1385 0.1385 0.1078 0.1078 0.1385 0.1385 0.0877 0.0847 0.2583
Num Devs > 3*RMSD 1 1 1 1 1 1 1 2 2 1
30 Av Proc Time, sec 1.2639 1.1599 0.8866 0.5805 0.7126 0.7190 0.8211 0.8256 0.9351 1.1062

Table 1. Experimental results on quality and speed of adjustment algorithms

second algorithm on “Butterflies” dataset. For 4 out of 30
images adjusted axis does not coincide with ground-truth one
(marked by red-filled cells) but very close to it (see Figure 6).
An inexact final decision depends on bad seed axis or too
complicated contour configuration in the search area (feelers

of butterflies).
7 18
l | I |
27

30
Figure 6. Images from “Butterflies” database for which
adjusted axis does not coincide with ground-truth one
(green — ground-truth axis, red — seed axis, yellow —
adjusted axis)

Figure 5. Examples of axis adjustment: in the top row the
axis obtained by the skeleton method (red) is shown; in

the bottom row — the adjusted axis (yellow). In all cases,
the adjusted axis coincides with the ground-truth axis

As has been already mentioned, the idea of symmetry axis
adjustment draws up the novelty of this paper. It seems there
haven’t been any works about adjustment of a symmetry axis
found by a numerical approximate method before. Thus, we
can not compare our experimental results to the ones of some
similar methods.

As seen from Table 1, the first and the second algorithms are
outperform the third one in quality, and the second and the third
algorithms outperform the first one in speed. So, we could
recommend the second algorithm as a compromise solution.
The combination of parameters kg = 0.03 and € = 0.25N fits
our experimental data rather well. But it can not be regarded as
a general recommendation.

Symmetry Measure columns in Table 2 show quality of the
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Exhaustive search run on

Images from "Butterflies" dataset

_g a supercomputer with  The second version of symmetry axis adjustment algorithm run on the PC Intel Xeon CPU ES606 @ 2.13GHz, 2 proc., 12 GB RAM
E 128 processors
% Number of threads Speedup Speedup Speedup Speedup
E Time, sec S;;:::}T S;,I’::S’::? 1 2 4 6 8 with 2 with 4 Wwith 6 with 8
Time,sec  Time,sec  Time,sec Time,sec Time, sec threads threads threads threads
1 30971 099261 | 0892612 | 1.022 0.614 0.427 0380 0374 1.664 2396 2.693 2.734
2 65.037 096693 | 0966925 | 0936 0.906 0572 0.564 0.481 1.089 1.725 1.749 2.050
3 68.085 095936 | 0959358 | 0968 0611 0.443 0.402 0389 1.585 2.186 2.409 2488
4 89.683 096145 | 0961445 | 1.135 0.638 0.527 0.487 0.420 1.779 2.154 2328 2.703
5 109258 093813 | 0938128 | 0.900 0.833 0513 0.526 0.406 1.081 1.757 1711 2217
6 32483 091954 | 0919538 | 0928 0521 0514 0456 0.400 1781 1.807 2.038 2322
7 g7511 097720 [HUHSRSGN 1.101 0.857 0535 0.534 0.440 1285 2.057 2.063 2.502
8 39104 097422 | 0974223 | 0926 0.702 0.444 0379 0365 1320 2.087 2444 2539
9 02513 097392 | 0973919 | 1.197 0932 0582 0.493 0.497 1284 2.056 2430 2410
10 89631 096366 | 0963635 | 1215 0.614 0.562 0529 0.507 1978 2.164 2.295 2396
11 48389 097482 | 0974824 | 0938 0.713 0.439 0.433 0361 1316 2.137 2.165 2.599
12 44628 098205 | 0982045 | 1.037 0.596 0393 0393 0361 1.740 2.638 2.639 2.874
13 44164 097843 | 0978426 | 0.723 0576 0359 0320 0346 1255 2.010 2259 2.086
14 44304 099472 | 0994724 | 0.823 0.576 0387 0358 0319 1429 2.129 2.300 2.583
15 37845 099488 | 0994879 | 1.097 0.743 0.503 0.479 0385 1477 2.180 2289 2.848
16 44033 099071 | 0.99071 0942 0612 0.423 0371 0423 1.540 2224 2.536 2227
17 51240 093112 | 0831115 | 1220 0.944 0.467 0.488 0.420 1292 2,610 2499 2.906
18 1579 096275 |JISHGRGN 0.166 0309 0223 0219 0.186 1.508 2.094 2126 2.507
19 53.056 098370 | 0983696 | 0.733 0530 0373 0341 0.283 1382 1.968 2.150 2.587
20 53482 098353 | 0983527 | 0.861 0.546 0.435 0366 0381 1.576 1.978 2356 2262
21 45232 098524 | 0985241 | 0.838 0.477 0385 0368 0310 1.756 2179 2275 2.702
2 39397 097278 | 0972782 | 0.730 0.449 0360 0362 0300 1.628 2.030 2.016 2435
23 55073 097966 | 0979664 | 1.464 0.784 0.547 0.449 0.441 1.867 2.678 3.264 3321
24 78613 096995 | 0969945 | 1.047 0.910 0.561 0519 0.488 1.150 1.867 2.016 2.146
25 111578 097885 | 0978847 | 1.060 0.661 0.599 0472 0.488 1.602 1.769 2245 2171
26 71026 096240 | 0.9624 0.954 0.858 0.584 0.484 0.565 1112 1.633 1.969 1.687
27 99501  09573c |NUNSHNEN 0913 0.860 0.546 0.520 0.413 1.061 1672 1.754 2211
28 22762 098313 | 0983131 | 0842 0471 0363 0381 0351 1.786 2321 2211 2397
29 27500 097376 | 0973763 | 0.906 0.580 0394 0.283 0301 1.563 2301 3.200 3.009
30 53386 094767 |[NUGHNSENN  1.1s5 0.960 0.579 0522 0.481 1235 2.047 2271 2.464
Average:  60.235 0972 0.679 0.468 0.429 0396 1471 2.095 2200 2479

Table 2. Experimental results on performance speedus

5.2 Performance Speedup with Parallelization

Our further efforts were made to study the possibility of
speeding up the adjustment procedure in order to utilize
it in real time. Three versions of adjustment algorithm
have some resources of internal parallelism, connected with
search of all probe lines in a neighborhood and calculation
the corresponding values of the symmetry measure. These
operations are independent and can be performed concurrently
for different probe lines (Fedotova et al., 2017).

We have parallelized the second version of adjustment
algorithm for a conventional personal multi-core computer
using OpenMP (Quinn, 2003) as the parallel programming
technology. It is designed for shared memory systems and
provides convenient tools for manipulating threads within a
single application.

The parallel realization was tested on a PC with 2 real
processors: Intel Xeon CPU E5606 @ 2.13 GHz, 2 processors,
12 GB RAM. The program was run on 30 images from
“Butterflies” dataset with the seed symmetry axes calculated
by skeleton comparison procedure (Kushnir , Seredin, 2015,
Kushnir et al., 2016). Table 2 demonstrates ground-truth
values of symmetry measures obtained by exhaustive search

brute-force algorithm, processing time of each image for
exhaustive search algorithm implemented on supercomputer
”Lomonosov” (Sadovnichy et al., 2013), values of symmetry
measures obtained by adjustment algorithm, processing time of
each image for sequential and parallel versions, and achieved
speedup.  Adjustment algorithm with parameters kr =
0.03, e = 0.25N was tested on 2, 4, 6 and 8 threads.
Thus, involvement of parallel computations leads to additional
increase in productivity and reducing the processing time to
hundreds of milliseconds.

6. DISCUSSION AND CONCLUSION

The proposed method allows adjusting the symmetry axis of a
binary image, found by the pair-wise comparison of skeleton
primitives sub-sequences that encode the shape skeleton. The
experimental results show that adjusted axis either coincides
with the ground-truth one or its deviation from the ground-truth
axis is extremely small in most cases. The proposed algorithm
failed to achieve good-enough solution for some images that
can be explained by the wrong seed axis location. Moreover,
the results on “Butterflies” dataset show that if the processed
images have high value of the reflection symmetry measure
(more than 0.95), the appropriate solution has to be found
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because the skeleton method gives a very good seed axis for
such images.

There are some images, for which the axis found by the
pair-wise comparison of skeleton primitives sub-chains is
significantly different from the axis found by the exhaustive
search (see Figure 7, the axis obtained by exhaustive search is
marked by the green dashed line). However, from the expert’s
point of view, the position of the axis obtained by exhaustive
search does not seem reasonable. But the axis found by the
skeleton method, is located where it is expected. This fact needs
to be examined in details in order to develop more sophisticated
methods for calculating ground-truth reflection symmetry axis,
combining the Jaccard measure with the contour approaches.

Figure 7. Examples of images for which the axis of
symmetry found by the exhaustive search (green dashed
line) is significantly different from the axis found by the
skeletons comparison method (red line) and the adjusted

axis (yellow line)

In comparison with the results obtained earlier by using
optimized methods of exhaustive search, we have managed
to speed up the procedure significantly. In (Kushnir et al.,
2016) the average processing time of optimized exhaustive
search methods was about 300-500 seconds per image; and
the processing time for skeleton comparison method was about
1-1.5 seconds per image. The proposed adjustment methods
developed with parallelization takes hundreds of milliseconds
to find the ground-truth (or close to it) symmetry axis. Thus,
the total time of symmetry axis search, taken by the skeleton
comparison method and then the adjustment method, allows
reducing the processing time to 1.5-2 seconds per image.
Further efforts will be made to speed up the procedure to dozens
of milliseconds in order to utilize it in real time.
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