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ABSTRACT:

The article is dedicated to the development of neural networks that process data of a special kind — a medial representation of the shape,
which is considered as a special case of an undirected graph. Methods for solving problems that complicate the processing of data of this
type by traditional neural networks — different length of input data, heterogeneity of its structure, unordered constituent elements — are
proposed. Skeletal counterparts of standard operations used in convolutional neural networks are formulated. Experiments on character
recognition for various fonts, on classification of handwritten digits and data compression using the autoencoder-style architecture are
carried out.

1. INTRODUCTION

The rapid increase in popularity of deep learning methods caus-
ing a quick development of this area started a few years ago with
a series of successes in image recognition tasks. Images are usu-
ally represented as matrices of points, so they can be considered
an example of organized, standardized data. Later, deep learn-
ing methods also achieved serious progress in tasks with more
complex data which can be represented as an arbitrary length se-
quences: speech recognition, handwriting recognition, machine
translation etc. This was caused by the recurrent neural networks
development and usage of specific architectures well suited for
these tasks.

Proposed architectures process only structured (by temporal or
spatial position) data. However, the problem of processing data
less suited for neural networks is still relatively unexplored. A
typical example of this type of data are graphs, and in general
data of this type often appears in computational geometry: point
clouds, polygonal meshes, triangulations, skeletal and boundary
representations. The predicament is that the objects to be pro-
cessed are not ordered and can have an arbitrary size and link
structure. A detailed research of this problem and possible ap-
proaches to its solution can be found in (Bronstein et al., 2017).

The point of this work is to apply neural network based approach
to a special kind of graphs, the skeletons which represent a shape
of a binary figure in the form of a certain “carcass”-type basis.
Though the skeleton is a special case of an undirected graph,
it has some properties (in particular, its geometric nature and
sparseness) that can be used with the additional benefit.

Skeletal representations are used in neural network based meth-
ods in a very specific context, usually in the tasks of action and
gesture recognition (Du et al., 2015) (Li et al., 2017) where skele-
tons are acquired via sensor devices (e.g. Kinect). These skele-
tons are intended exclusively for human pose representation and
are strictly structured with a fixed number of joints representing
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specific body parts (head, limbs etc). The authors do not know
of any examples where skeletons representing an arbitrary form
would be used as an input data. This paper is an attempt to begin
research in this area.

2. SKELETON PROCESSING WITH NEURAL
NETWORK

2.1 Basic Concepts

Skeleton of a binary shape is a set of centers of all maximally
inscribed circles of this shape.

Radial function is a function that matches each point of the skele-
ton to its inscribed circle radius.

Skeleton and radial function together constitute the medial shape

representation.

Pruning or a regularization of the skeleton is a process of removal
of branches that don’t significantly contribute to the shape.

As a model of the shape of objects in the image, we will use
polygonal figures. In this case a skeleton can be conidered as
a geometric graph where edges are segments of straight lines
and parabolas. That representation is acquired when the skele-
ton is built from the Voronoi diagram of linear edge segments
(Mestetskiy, 2010). For this task we will represent a skeleton as
S = (V,E) where each node v 2 V is a triplet (x, y, r) of co-
ordinates and radial function value and each edge e 2 E is an
unordered pair of nodes.

We will use the extraction of polygonal contours, skeletonization
and pruning algorithms for a binary image described in (Mestet-
skiy, 2009).

2.2 Node Ordering

Our initial goal is being able to process skeletons as an input for
a neural network. We see two obstacles on the way there: 1)
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skeletons have variable dimension due to having variable edges
and notes number and 2) skeleton elements (nodes and edges)
have no “natural” order. (Niepert et al., 2016) proposes a solution
for this problem: skeleton nodes need to be ordered according to
their betweenness centrality value. For tne node v this value is
defined in the following way:

g(v) =
X

s6=v 6=t

�st(v)
�st

,

where �st is a number of shortest paths from the node s to the
nodet, and �st(v) is a number of such paths passing through v.
Therefore, nodes that have more neighbours than the others and
are far enough from terminal nodes will end up in the beginning
of the list while isolated and terminal nodes will be in the end
of the list. As an additional metric we will use the closeness
centrality, h(v), and if both metrics end up equal we will compare
the distances (dik) from candidate nodes to nodes already in the
list.

Algorithm 1 Skeleton node ordering
Given: set of nodes {vi}ni=1

for i 2 1, . . . , n do
Fi = [g(vi), h(vi)]

I = [1, . . . , n]
L = [ ]
while I 6= [ ] do

Sort the list I by Fi in lexicographical order
k = pop(I)
Add k to the end of L
for i 2 I do

Add dik to the end of Fi

Note that the ordering process may be unnecessary if the last layer
will apply a symmetric pooling operation to the entire feature
map, e.g. max pooling or average pooling.

2.3 Skeleton Unification

(a) (b)

(c) (d)

Figure 1. Fixed length skeleton construction.
a) Image b) medial representation c) skeleton d) unified skeleton.

Let’s refer to (Niepert et al., 2016) again: to leave the specific
number of nodes n in the graph we can take first n nodes from

the list produced on the previous step while keeping their order
if there are no less than n nodes, and if there are less we can
complete the list with dummy isolated nodes which will have all
feature values equal to zeros. Although that’s a decent solution
for arbitrary graphs, in the case of a skeleton it will distort its
geometrical shape: if there are too many nodes the endings of
the branches will be cut. The idea is to use a unified skeleton
that will keep she shape of the original skeleton while having all
edges have approximately similar length.

Algorithm 2 Skeleton unification
Given: skeleton S, node number n, minimum relative length
".

If there is more than one connected component in the skele-
ton, make the skeleton connected using additional edges of
minimum length.

Split the skeleton into branches, i.e. lines ending in nodes
with degrees of 1 and 3 and not having any such nodes in be-
tween. Mark the number of branches as ne and the number if
their ends as nv .
if nv > n then

For nv�n shortest branches merge the ends into one point
in the middle of the branch
else

Determine the length of each branch li, total skeleton
length L and average length l = L

ne+n�nv

For branches shorter than "l merge ends
Recalculate ne and nv

for i 2 1, . . . , ne do
ni = d li

l e � 1

Calculate the values ni = d li
l e�1 that determine the num-

ber of vertices that will be added to each branch:
while nv +

Pne
i=1 ni � n do

Choose the node with minimum li
ni�1 and reduce ni

by 1

Add ni nodes on each branch uniformly

The data preparation process is illustrated in fig. 1.

This procedure will require determining the coordinates of a point
that cuts off the fraction of t 2 [0, 1] from the edge length when
moving from one end to another. This is done trivially for lin-
ear and hyperbolic edges, which are segments of straight lines,
but causes difficulties for parabolic ones, which are segments of
parabolas. Let the parabola equation has the form x2 = 2py in
the local coordinate system. Then the length of the part of the
parabola concluded between the abscissas x1 and x2, x1  x2 is
calculated as follows:

L(x1, x2) =
x2

p
x2
2 + p2 � x1

p
x2
1 + p2

2p
+
p
2
ln

�����
x2 +

p
x2
2 + p2

x1 +
p

x2
1 + p2

����� .

Note that the function x2 = L�1(l) for a fixed x1 is not ex-
pressed in terms of elementary ones, so the required point can-
not be found analytically. Since parabolic edges are usually
quite short and can be successfully approximated by linear ones,
we find the approximation of the required point: a point lying
on a parabola for which the segment connecting the point and
the focus of the parabola is located to the OY axis at angle
(1� t)↵1 + t↵2, where ↵1 and ↵2 are the corresponding angles
for x1 and x2.
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2.4 Convolutional Layer

Image convolution operation is a linear combination of pixel fea-
tures from the chosen pixel neighbourhood. Similarly, we can
form a neighbourhood for each node from r closest nodes in the
graph and if there are less than r accessble nodes we can complete
the neighbourhood using dummy nodes with feature values equal
to zeros. To remove the random part from this we use additional
criteria:

1. List of the lengths of the shortest paths to nodes already se-
lected for the neighbourhood;

2. Betweenness centrality;

3. Closeness centrality.

The general outline is similar to the skeleton node ordering pro-
cedure.

The graph neighbourhood convolution can be formally defined
in the following way. Let F 2 Rn⇥m is the features matrix,
P 2 Nn⇥r

0 — neighbourhood elements indices matrix. Then
E(F, P ) 2 Rn⇥r⇥m and

eijk =

(
fpijk, if pij � 0

0, if pij = 0

Now if W 2 Rr⇥m⇥q , the convolution C(E,W ) 2 Rn⇥q result
is defined as:

cij =
X

1tr,1sm

eitswtsj .

(a) (b)

(c) (d)

Figure 2. Node ordering (a) and length 11 neighbourhood
construction for selected nodes (b,c,d). The color changes from

red to blue according to the position in the list.

Neighbourhood construction examples and node ordering result
are represented in fig. 2.

2.5 Downsampling Layer

The goal of the downsampling layer is to lower data dimension.
We will split the graph nodes into groups in such a way that sub-
graphs composed of the nodes in each group would be continu-
ous. A method can be proposed that splits nodes into pairs and
removes a pair of a terminal node and its adjacent node from the
graph if the degree of the latter does not exceed 2. If this is im-
possible, a number of heuristic rules is used to resolve collisions.
This procedure produces a new graph where pairs are considered
adjacent if there is at least one edge which connects nodes from
different pairs. After repeating this procedure k times we can
split the graph nodes set into groups of 2k (fig. 3).

Figure 3. Merging nodes into pairs and graph simplification by
replacing a pair of nodes with a single new one

Now we can define the architecture of a “skeletal” network with
the same concepts that are used for conventional convolutional
networks.

3. AUTOENCODER DATA PREPARATION

To use the autoencoder we need a slightly different data format.
If we input the result of the pre-convolution indexation E(F, P ),
the data would repeat numerous times because the node can ap-
pear in the neighbourhoods of several other nodes. Also, this
notation loses the adjacency information because the neighbour-
hood doesn’t consist only of adjacent nodes. We propose the fol-
lowing approach: nodes are ordered (as for the convolutional net-
work), then an adjacency matrix is constructed and then, to avoid
data redundancy, values that are positioned above the main diag-
onal of this matrix are appended to the node features. This way
for the unified skeleton with n nodes its description serving as an
input for the autoencoder would consist of 3n + n(n�1)

2 values:
3n feature values and n(n�1)

2 nodes adjacency indicators. The
functional to be optimized is defined according to formula ??.

F (Y, bY ) = MSE(Y 0, bY 0) + �H(Y 00, bY 00) =

=
1
3n

3nX

i=1

(yi � byi)2 � �
2

n(n� 1)
⇥

⇥
3n+n(n�1)/2X

i=3n+1

(yi ln byi + (1� yi) ln(1� byi)), (1)

i.e. bY 00 will evaluate the probability of corresponding nodes be-
ing connected by an edge.

4. ARCHITECTURE WITHOUT UNIFICATION

An alternative way to use convolutional neural networks for pro-
cessing skeletons is to use a graph convolutional architecture that
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does not require graph unification. For comparison, the algorithm
was implemented based on the architecture described in (Kipf
and Welling, 2016). The network in this architecture is fully-
convolutional and consists of a sequence of layers described by
the formula:

H(l) = �
⇣
eD� 1

2 eA eD� 1
2H(l�1)W (l)

⌘
.

Here l is the layer number, H(l) 2 RN⇥D are the activation
values for the layer l, eA = A+ IN is the adjacency matrix of the
graph with added loops at each node: A is the adjacency matrix,
and IN is the identity matrix of size N . eDii =

P
j
eAij , W (l) is

the trained matrix of weights of the layer l, and � is an activation
function. On each layer, the output of the previous layer (on the
first layer, the matrix of attributes of the original graph is used)
is multiplied on the left by the symmetric Kirchhoff normalized
matrix for the given graph, and on the right — on the matrix of
the layer weights.

Since such an operation spreads information only through the im-
mediate neighbors of a graph node, a dummy node is added to the
graph, which is connected to all the others. Also, the label of the
graph in the classification is determined by the output of the last
convolutional layer for this node.

5. EXPERIMENTS

Experiments were condicted on the popular MNIST base of
handwritten digits. The images were first binarized with Otsu’s
method, then their skeletons were calculated which were later
pruned with the pruning parameter of 1 pixel. Unified skeletons
consisted of 32 nodes. The network architecture comprised the
following layers:

1. Convolutional layer of the size 7 ⇥ 3 ⇥ 16 (neighbourhood
size 7, 3 features — x, y, r and 16 filters) + ReLU activation
function (f(x) = x+ = max(0, x)).

2. Convolutional layer of the size 9⇥ 7⇥ 32 + ReLU.

3. Fully connected layer of the size 256 + ReLU.

4. Convolutional layer with output feature dimensionality 10.

5. Softmax layer (�(z)i = eziP
k=K

1
ezk ) to determine the result-

ing class label.

The dropout regularization was performed after each convolu-
tional layer, neurons were dropped with 50% probability. The
Adam (adaptive moment estimation) method (Kingma and Ba,
2015) was used for optimization, batch size was equal to 100 ob-
jects, starting learning rate was equal to 0.001 and was halved
exponentially every 20000 iterations. The total number of itera-
tions was 100000.

The classification accuracy was equal to 98.36%. It is some-
what lower than the result that the most effective graph neural
networks ChebNet (Defferrard et al., 2016) and MoNet (Monti et
al., 2017) show when each graph node corresponds to an image
pixel (table 1). However, it should be noted that in that case all
graphs have similar size and structure, so the network architec-
ture is close to the conventional convolutional neural networks

like (LeCun et al., 1998). Structure non-uniformity only appears
when superpixels are extracted from the image, and the skeleton
edges can be thought of as a special way to describe these su-
perpixels. Therefore, for arbitrary graphs the proposed method
exceeds existing analogues. We also note the compactness of the
skeletal description: each graph only has 32 nodes with 3 fea-
tures; with this description length as a requirement our method’s
advantages will become even more prominent. Also, it should
be noted that in most cases errors were caused by flaws in the
skeleton topology (cycles breaking, extra branches appearing) as
a result of a flawed segmentation that can be caused by several
pixels changing intensity, however, this is not critical if objects
with similar defects are present in the training sequence. We also
have to admit that the downsampling layer doesn’t increase the
quality with similar architecture.

Method LeNet5 ChebNet MoNet
(LeCun, 1998) (Deferrand, 2016) (Monti, 2017)

Full grid 99.33% 99.14% 99.19%
1
4 grid 98.59% 97.70% 98.16%

300 superpixels � 88.05% 97.30%
150 superpixels � 80.94% 96.75%
75 superpixels � 75.62% 91.11%

Table 1. Classification performance for various input formats

Figure 4. Autoencoder results. Source images (1st and 4th
rows), their skeletons (2nd and 5th rows) and skeletons
reconstructed with the autoencoder (3rd and 6th rows).

The autoencoder was trained layer by layer using the method
described in (Hinton and Salakhutdinov, 2006). Layer sizes se-
quence was [592, 800, 400, 200, 30], then the same sequence in
backwards order. Sigmoidal activation functions were used ex-
cept the middle layer and the part of the last layer representing
the features, the identical function was used there. The parame-
ter � in optimized functional 1 was set to 10. The skeleton re-
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construction examples demonstrated in fig. 4 show that the al-
gorithm determines the node positions well but sometimes makes
mistakes in the graph itself by adding extra edges or removing ex-
isting ones like with the number 8 skeleton. The edges with the
corresponding last layer element value more than 0.5 are shown
here.

In the final experiment for architecture of this type we composed
the dataset from the ParaType company fonts collection (Yakupov
et al., 2015). The font collection consisted of 2543 samples in-
cluding not only conventional fonts but also decorative and de-
signer fonts where symbols could take quite unorthodox shapes.
For each font 26 capital Latin symbols were rasterized with the
scale chosen so that the capital H would be 100 pixels tall. Then
the skeletons were constructed for each of these images and their
bounding box center was moved to the origin point. Images from
every fifth font in alphabetical order were considered test images,
others were used for training. The skeletal network architec-
ture was mostly similar to the one described earlier, but due to
larger variance of skeletal fragments and larger classes count the
amount of convolutional layers filters was increased from 16 and
32 to 24 and 48 respectively. This network achieved the classifi-
cation accuracy of 98.21%.

Figure 5. Atypical fonts examples

As an alternative we trained the convolutional network that op-
erated directly on images. The symbol images were scaled to
32 ⇥ 32 size. The network also consisted of two convolutional
layers with ReLU and max-pooling with dropout operation, and
two fully connected layers. Convolutional layers sizes were set
to 5⇥5, their filter number to 32 and 64, max-pooling used 2⇥2
fragments. The first fully connected layer had 1024 neurons. This
network achieved the result of 97.96%. It’s interesting to note
that despite the small size of source images the network showed
a tendency for overfitting: classification accuracy on the training
set was close to 100%. This effect persisted for similar architec-
ture networks designed for larger source image sizes. The skeletal
network had a much less significant gap between the training and
testing sets. This is caused by the nonstandart shape fonts where
symbols have unique skeletons which the network turns up to be
unable to learn. Some examples of such fonts are shown in fig. 5.
Thus, most errors are caused by the same “difficult” fonts.

For an alternative architecture without graph unification, the net-
work consisted of the following layers:

1. Two convolutional layers with the dimension of attributes at
output 32 + ReLU.

2. Four convolutional layers with dimension 64 + ReLU.

3. A convolutional layer with dimension 10.

4. Softmax function layer for determining the final class label.

Despite the more complex architecture, the classification accu-
racy was only 90%. This indicates that the chosen approach,
which was successfully used in (Kipf and Welling, 2016) for the
task of classifying scientific papers, is difficult to transfer to the
task of classifying images. This is probably due to the graph
convolution operator, as a result of which the information on the
relative position of the nodes may be lost. Another source of dif-
ficulties is the lack of a couterpart of a fully connected layer for
such data, which entails a complication of the architecture.

6. CONCLUSION

In this paper we presented a deep learning method using the graph
convolution approach for the image classification task. We pro-
posed an approach allowing us to use the medial representation,
which is an arbitrary structured graph, for classification problem
solution. The proposed approach, based on the preprocessing and
regularization of the medial representation, achieved on MNIST
dataset quality comparable to conventional neutal network algo-
rithms, and on synthetic images set from the wide fonts collec-
tion its result slightly exceeded the neural network analog which
treated the image as a matrix of pixels.
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