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ABSTRACT:

In this paper we solve the problem of finding the symmetry axis of the object in a digital binary image. A new axial symmetry
criterion is formulated for a connected discrete object. The problem of determining the symmetry measure and finding the symmetry
axes arises in a variety of applications. In discrete images, exact symmetry is possible only in special cases. The disadvantage of the
existing methods solving this problem is the high computational complexity. To improve computational efficiency, it is proposed to
use the so-called Fourier descriptor. A new method for estimating the asymmetry of a discrete silhouette is proposed. The described
algorithm for calculating the measure of asymmetry and determining the axis of symmetry is quadratic by the number of contour
points. Methods for reducing the volume of calculations using a convex hull and taking into account the values of the modules of
Fourier coefficients are proposed. Computational experiments are conducted with silhouettes of aircraft extracted from earth remote
sensing images. The reliability of the described solution is established.

1. INTRODUCTION

The symmetry axis is a straight line dividing the object into
two symmetrical parts. In this paper, we solve the problem
of finding the symmetry axis of an object on a digital binary
image, and also formulate a new axial symmetry criterion
of a connected discrete object. The problem of determining
the symmetry measure and finding symmetry the axes occurs
in a variety of applications, for example, there is a problem
of detecting tumors in a digital image in medicine, which is
characterized by the presence of the axis of symmetry (1). In
discrete images, exact symmetry is possible only in special
cases. We introduce a new symmetry measure of discrete
objects based on the use of the so-called Fourier descriptor
of the contour (9). A method for determining the symmetry
based on the Fourier descriptor was proposed earlier in (11), the
difference of our method consists in a new symmetry measure
numerical evaluation, which proved itself well in experiments
with noisy images.

The existing methods solving this problem have high
computational complexity. A naive boundary points pairs
search with a comparison to some extent of the similarity of
the two figure halves to find the symmetry axis has a cubic
complexity by the number of boundary points. There are known
more efficient algorithms to solve the problem. There are two
classes of algorithms. The methods in the first class based
on the comparison of the two halves of the image (contour,
skeleton view). For example, there are (7), (8), (10), (4).
The second class are methods of grayscale image analysis, for
example, with the use of integral transforms. There are (3),
(5). An algorithm for refining the axis of symmetry for binary
discrete images is presented in (1).

Section 2 describes the complete problem statement. Section 3
contains a mathematical justification and a complete description
of the created method and the algorithm that implements it.
Section 4 describes computational experiments that confirm the
correctness, operability and efficiency of the algorithm.

2. PROBLEM STATEMENT

The input data is a binary image containing silhouettes of the
figures. The task is to determine the existence of the symmetry
axis of these objects. If the symmetry axis exists, it will
additionally be required to describe it with the coordinates of
the point lying on the axis and the tilt angle to the x-axis.

As an input, there is a binary matrix M , where the element mij

is an indicator that the pixel number (i, j) belongs to the object.

3. SOLUTION

Let the original object be a single-connected region, then
consider the silhouette digital contour as a sequence of points
on the complex plane: U = {ul}N−1

l=0 . This sequence
consists of all the boundary pixels of the silhouette in the
4-neighborhood. It describes a closed curve connected in
the 8-neighborhood. The contour construction methods are
described in (6). We perform a discrete Fourier transform for U
:

fl =

N−1∑
k=0

uk · exp(−i ·
2π

N
· l · k) =

= u0 +

N−1∑
k=1

uk · exp(−i ·
2π

N
· l · k), l = 0, N − 1.

We will call the sequence of the obtained coefficients {fl}N−1
l=0

the Fourier descriptor of the contour U .

3.1 The Fourier descriptor of a mirror symmetrical object

Statement 1. Let U = {ul}N−1
l=0 – symmetrical contour,

the symmetry axis coincides with the x-axis, the point u0

is on the symmetry axis. Then for the Fourier descriptor
F = {fl}N−1

l=0 of the contour U the following conditions are
executed: Im(fl) = 0, l = 0, N − 1.
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Proof. Let x∗ be a complex conjugation of x. For convenience,
we introduce the notation uN ≡ u0. For x-axis symmetrical
contour U : Im(u0) = 0, ul = u∗N−l, l = 1, N − 1. We
introduce a new contour Û :

Û = {u∗N−l}N−1
l=0 , l = 0, N − 1.

For the Fourier descriptor of Û which is F̂ = {f̂l}N−1
l=0 the

equations f̂l = f∗l , l = 0, N − 1 are executed:

f̂l =

N−1∑
k=0

u∗N−k · exp(−i ·
2π

N
· l · k) =

= u∗0 +

N−1∑
m=1

u∗m · exp(−i ·
2π

N
· l · (N −m)) =

= u∗0 +

N−1∑
m=1

u∗m · exp(−i ·
2π

N
· l ·N) · exp(i · 2π

N
· l ·m) =

= u∗0 +

N−1∑
m=1

u∗m · 1 · exp(i ·
2π

N
· l ·m) =

= u∗0 +

N−1∑
m=1

u∗m · exp(−i ·
2π

N
· l ·m)∗ =

= u∗0 +

N−1∑
m=1

(u·mexp(−i ·
2π

N
· l ·m))∗ =

= u∗0 + (

N−1∑
m=1

u·mexp(−i ·
2π

N
· l ·m))∗ =

= u∗0 + (fl − u0)∗ = f∗l , l = 0, N − 1.

In the case of a symmetrical contour U = Û is executed, then
fl = f̂l, fl = f̂∗l , l = 0, N − 1. So Im(fl) = Im(f̂l) = 0,
l = 0, N − 1.

The proof of the following lemmas can be found in the book
(9):
Lemma 1. The shift of the contour U to a fixed vector ∆u
changes only the value f0.

Lemma 2. TurningU by a given angleα around the point 0+0i
multiplies all the coefficients fl by the constant exp(iα).

Lemma 3. Let Up = {u(l+p)modN}N−1
l=0 is cyclic shift

result of the contour points U = {ul}N−1
l=0 by p positions,

p ∈ 0, N − 1. Let F = {fl}N−1
l=0 is the Fourier descriptor

of a contour U , F p = {fpl }
N−1
l=0 is the Fourier descriptor of a

contour Up.
Then fpl = fl · exp(i · 2πN · l · p), l = 0, N − 1.

Using the described facts about the behaviour of the Fourier
descriptor in elementary contour transformations, we can
generalize the statement 1 to an arbitrary symmetrical contour:
Statement 2. Let the contour U = {ul}N−1

l=0 is symmetrical:
there is a contour point up lying on the symmetry axis. Let
the title angle of symmetry axis to x-axis is equal to α,
F = {fl}N−1

l=0 is the Fourier descriptor of a contour U .
Then the following equalities hold for all l = 1, N − 1:
Im[fl · exp(i · 2πN · l · (N − p)) · exp(−iα)] = 0.

Proof. Let’s shift the contour by ∆u = −up and rotate by
the angle −α. Next, we perform a cyclic shift of the obtained

contour points by N − p positions. Now the starting point of
the contour is up lying on the symmetry axis coinciding with
the x-axis. The resulting contour Ũ satisfies the conditions of
statement 1. After performing inverse transformations of the
Fourier descriptor according to the rules from lemmas 1, 2, 3
we obtain the necessary equations.

In practice, in the case of noisy images, the equalities from the
statement 2 are only approximate.

We introduce a value measuring the asymmetry of the contour
with respect to axis passing through the vertex up and having a
tilt angle α:

t(α, p) =

N−1∑
l=1

[Im(fl · exp(i ·
2π

N
· l · (N − p)) · exp(−iα))]2

This value is the norm square of the Fourier coefficients
imaginary parts deviation from zero after rotation by an angle
−α choosing up as the origin and the contour starting point.
If α is an approximate angle of the symmetry axis passing
through the point up, then after rotation the axis of symmetry
will coincide with the x-axis and t(α, p) ≈ 0.

3.2 A tilt angle computation

We will minimize t(α, p) by α at a fixed value of p to obtain
the optimal tilt angle of the symmetry axis passing through the
point up.

We calculate the optimal value of α for given p, fl,
l = 1, N − 1.

t(α, p)→ min
α∈[0,π)

(1)

Let’s denote fpl = fl · exp(i · 2πN · l · (N − p)), l = 0, N − 1 are
the Fourier coefficients after the contour start point shift. Let
also exp(−iα) = x+ i · y, fpl = al + i · bl, l = 1, N − 1. Here
x = cosα and y = − sinα.

fpl · exp(−iα) = (al + i · bl) · (x+ i · y) =

= (x · al − y · bl) + i · (x · bl + y · al)

t(α, p) =

N−1∑
l=1

(x · bl + y · al)2 =

= x2 ·
N−1∑
l=1

b2l + 2xy ·
N−1∑
l=1

(al · bl) + y2 ·
N−1∑
l=1

a2l

Denote k1 =
∑N−1
l=1 b2l , k2 = 2 ·

∑N−1
l=1 (al · bl),

k3 =
∑N−1
l=1 a2l . Then (1) can be rewritten as follows:

k1 cos2 α− k2 cosα · sinα+ k3 sin2 α→ min
α∈[0,π]

The optimized function is continuously differentiable by α, it is
easy to find the local minima of this function:

∂

∂α
t(α, p) = −k1 · sin 2α− k2 · cos 2α+ k3 · sin 2α = 0

k2 · cos 2α = (k1 − k3) · sin 2α
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In [0, π] the equation has two roots:

α1 =

{
π
4
, k1 = k3

1
2
(arctan( k2

k1−k3
) mod π), k1 6= k3

,

α2 = α1 +
π

2
.

The minimum can also be reached at the segment edges: α3 =
0, α4 = π. The optimized function has a period equal to π, so
it is enough to consider only α3. The solution finally takes the
form:

k = arg min
i∈{1,2,3}

t(αi, p), α
p = αk. (2)

3.3 Algorithm

To find the symmetry axis, we perform the described procedure
of finding the optimal angle for each contour point, and also
calculate the standard deviation of the coefficients from the
found optimal axis for all possible p:

Q(p) =

√∑N−1
l=1 Im(fpl · exp(−iαp))2

N − 1

The closer Q(p) is to zero, the more the found line is similar
to the symmetry axis. Choose P = arg min

p∈0,N−1

Q(p). The most

suitable symmetry axis passes through the vertex uP . The value
Q(P ) = Q makes sense of the figure asymmetry measure. We
will assume the figure to be symmetrical if the value of Q for
this figure does not exceed the empirically given threshold.

Input parameters: a sequence of complex numbers U , lengthN .
Output parameters: if the contour symmetry axis exists, the
output will consist of the coordinates (x, y) of the point on the
contour lying on one of the axes of symmetry, and the tilt angle
θ of the selected axis to the x-axis. If there is no symmetry axis,
return the special value x = −1, y = −1, θ = 0.

Algorithm 1 Symmetry
Require: U , N
Ensure: (x, y), θ

for l = 0 to N − 1 do
fl =

∑N−1
k=0 uk · exp(−i ·

2π
N
· l · k)

for p = 0 to N − 1 do
for l = 0 to N − 1 do
fpl = exp(i · 2π

N
· l · p) · fl

αp = arg min
α∈[0,π]

tp(α)

P = arg min
p=0..N−1

Q(p)

if Q(P ) ≤ Q then
return ((Re(uP ), Im(uP )), αP )

else
return ((−1,−1), 0)

The described algorithm 1 for calculating the measure of
asymmetry and determining the axis is quadratic by N .

3.4 Computational efficiency increasing methods

First, the figure symmetry axis should be the symmetry axis of
its convex hull, which can be calculated in subquadratic time.
So it is enough to check only a few contour points instead of a
complete search of p = 0, . . . , N−1. Namely, on the symmetry

axis can lie either a point that is the top of the convex hull, or
a point lying on a straight line passing through the mass center
(the arithmetic mean value of all the contour points) and the
middle of the edge of the convex hull. Since all values are
determined numerically, we also check a small neighborhood
of these points. An example given in Fig. 1.

Figure 1. Convex hull based points. Blue points are hull
vertices and points between middles of hull edges and

object center. Red points are their nearest neighbours. Q
is the asymmetry measure.

Second, examining the Fourier coefficients module distribution,
you may notice that an important contribution to the form
description contribute only a small number of coefficients,
namely those in which the modules are large enough (usually
the first and last harmonics are the most useful, the example
in Fig. 2, 3). To speed up the method, we assume αp and
Q(p) by a truncated set of Fourier coefficients. We sum only
by those indices l, on which the Fourier coefficient modulus
|fl| are higher the given threshold. The absolute values of the
Fourier coefficients, with the exception of f0, are invariant to
the transformations of the type shift, rotation and change of
the contour start point, so this operation is correct. In fact,
the procedure is equivalent to carrying out the circuit frequency
filtering for the symmetry axis approximate localization. We
losing some information about the original circuit. Finally, we
calculate the full set of coefficients in the small neighbourhood
of the found vertex P to determine the exact figure symmetry
measure.

Figure 2. A bird unsymmetrical contour. Q is the
asymmetry measure.
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Figure 3. Importance of Fourier coefficients based on
absolute values (the bird unsymmetrical contour, Fig. 2).

The fast Fourier transform is performed in subquadratic time,
thus the final asymptotics of the algorithm isO(NlogN+mk),
where m is the number of points to iterate by convex hull, k is
the number of Fourier coefficients to calculate truncated sums.
The described heuristics work at m ≈ 0.05N , k ≈ 0.3.

4. EXPERIMENTS

4.1 An ideal symmetry case

In the first experiment, a symmetrical object whose symmetry
axis is parallel to the x-axis, namely the symbol Σ, is chosen
as the initial image. The contour is constructed as a sequence
of boundary pixels. Further, the algorithm 1 is used to find the
value of the asymmetry measure, which is equal to 0 (Fig. 4).

Figure 4. A sigma symmetry axis. Q is the asymmetry
measure of object.

Next, rotate the original binary image by a known angle θ. For
the resulting image, repeat the same operations to construct the
contour U . Taking U as input to the algorithm, we find the
vertex uP , presumably lying on the symmetry axis. The tilt
angle αP is equal to the angle of rotation θ. So, the formula
(2) is confirmed by a computational experiment. The value of
Q(P ) is close to zero with the error of machine accuracy, which
justifies the use of the chosen asymmetry measure in further
experiments.

In the case of a symmetrical object (Fig. 5) the Q(p) graph has
two local minima close in value, one of which is global. These
are the values at two opposite points of the contour lying on
the symmetry axis. The figure 6, 7 shows an example of Q(p)
behaviour for an asymmetrical contour.

Figure 5. The asymmetry measure of the Σ contour from
different contour points.

Figure 6. An unsymmetrical camel contour. Q is the
asymmetry measure.

Figure 7. The assymetry measure of the camel contour
(Fig. 6) from different contour points.
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4.2 Real data

To assess the correctness and efficiency of the described
algorithm, computational experiments on real data has been
carried out. There are the aircraft binary images extracted from
the remote sensing of the Earth images (2). We want find the
lines that define the orientation of these objects. 2208 binary
images of about 120× 120 pixels in size has been studied. The
average image processing time is 0.1 seconds. The orientation
has been determined correctly in 98% of cases. Errors are
associated with the sampling error (low resolution images).
Examples are shown in Fig. 8, 9, 10.

Figure 8. The first column consists of images with the
symmetry axises of plane contours. Q is the asymmetry

measure. The second column contains the assymetry
measure of given contours from different contour points.

a) b)

c) d)

Figure 9. The symmetry axises of a) basic and c) noisy
plane contours. Q is the asymmetry measure. The
assymetry measure of b) the first and d) the second

contours from different contour points.

Figure 10. The first column consists of images with the
symmetry axises of plane contours. Q is the asymmetry

measure. The second column contains the assymetry
measure of given contours from different contour points.

5. CONCLUSION

A method for solving the problem of determining and searching
the parameters of the symmetry axis of a figure in a binary
image is developed. An efficient algorithm that implements the
created method is constructed. The reliability of the solution
is established by computational experiments. A new measure
of symmetry of the object is proposed. A new criterion for the
axial symmetry of the connected object on digital image has
been formulated.

This work was supported by the RFBR, grant 17-01-00917.
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