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ABSTRACT:

Nowadays methods based on deep neural networks show the best performance among image recognition and object detection algorithms.
Nevertheless, such methods require to have large databases of multispectral images of various objects to achieve state-of-the-art results.
Therefore the dataset generation is one of the major challenges for the successful training of a deep neural network. However, infrared
image datasets that are large enough for successful training of a deep neural network are not available in the public domain. Generation
of synthetic datasets using 3D models of various scenes is a time-consuming method that requires long computation time and is not
very realistic. This paper is focused on the development of the method for thermal image synthesis using a GAN (generative adversarial
network). The aim of the presented work is to expand and complement the existing datasets of real thermal images. Today, deep
convolutional networks are increasingly used for the goal of synthesizing various images. Recently a new generation of such algorithms
commonly called GAN has become a promising tool for synthesizing images of various spectral ranges. These networks show effective
results for image-to-image translations. While it is possible to generate a thermal texture for a single object, generation of environment
textures is extremely difficult due to the presence of a large number of objects with different emission sources.
The proposed method is based on a joint approach that uses 3D modeling and deep learning. Synthesis of background textures and
objects textures is performed using a generative-adversarial neural network and semantic and geometric information about objects
generated using 3D modeling. The developed approach significantly improves the realism of the synthetic images, especially in terms
of the quality of background textures.

1. INTRODUCTION

In modern computer vision systems (enhanced vision (Vygolov
et al., 2017) (Kniaz, 2014) system, autonomous driving (Kniaz,
2015)) the ability is most demanded to detect and recognize var-
ious objects with high probability in degraded visual conditions,
such as fog, rain, night. Infrared cameras solve the problem of
acquiring images in such conditions, however, the objects could
visually vary greatly due to weather conditions. Therefore, a ro-
bust algorithm is required for detecting and recognizing objects in
multispectral images. Deep convolutional neural networks have
proven to be a reliable algorithm for detecting and recognizing ob-
jects in images of the visible range. Also, the latest network archi-
tectures make it possible to use this algorithms on multiplespec-
tral images. However, the most important factor in the success
of DCNN (deep convolutional neural network) learning is large
multispectral datasets, which are very difficult to obtain using ex-
periments. Today, deep convolutional networks are increasingly
used for the goal of synthesizing various images. Recently a new
generation of such algorithms commonly called generative adver-
sarial network has become a promising tool for synthesizing im-
ages of various spectral ranges. These networks show effective
results for image-to-image translations. While it is possible to
generate a thermal texture for a single object using 3D modelling,
generation of environment textures for large scene is extremely
difficult due to the presence of a large number of objects with dif-
ferent emission sources. Also, 3Dmodelling is not of high quality
in terms of imitation of noise and distortion of real sensor. The
combination of deep learning and 3D modelling solves this prob-
lem. This paper is focused on the development of the method to

Figure 1. The pipeline of the GIS method

thermal image synthesis using a GAN and 3Dmodelling. The aim
of the presented work is to expand and complement the existing
datasets of real thermal images.

2. RELATEDWORK

First research considering neural networks for image generation
dates to 2013 (Zeiler and Fergus, 2013). Development of a new
type of neural networks known as generative adversarial networks,
made it possible to take a significant step forward in the field of
synthesizing various images (Goodfellow et al., 2014). GAN con-
sists of two deep convolutional neural networks: a Generator net-
work tries to synthesize an image that visually indistinguishable
from a given sample of images in the target domain. A discrimi-
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Figure 2. Basic idea of GAN

nator network tries to distinguish the “fake” images generated by
the Generator network from the real image in the target domain.
Generator and Discriminator networks are trained simultaneously.
Such approach can be considered as an adversary game of two
players (Figure 2)

The first goal that was performed using CNNs was the coloriza-
tion of monochrome images (Zhang et al., 2016). Later CNNs has
been used for simulating various artistic styles (Gatys et al., 2015)
and transfiguration some objects in the image to others (Zhu et al.,
2017). However, the realism and diversity of the results was in-
sufficient. GANs significantly increased the quality of image-to-
image translation (Isola et al., 2017). Recently GAN was applied
to transform images from one spectral range to another. In (Liu
et al., 2018) a method is proposed for converting near-infrared
images to visible images without using paired pixel-wise aligned
training dataset or rely on a colorful reference image(Figure 3).
Our last papers presented the method for transformation of visible
range images to infrared images (Kniaz et al., 2016). In (Kniaz
and Mizginov, 2018) we present a new training method, which
extends the traditional GAN training pipeline from the antagonis-
tic game of two players to the game of three players. The third
player represents an “expert” that provides the true negative sam-
ples to the discriminator network. In (Kniaz et al., 2018) two-step
approach of image-to-image translation was developed. Firstly,
we predict average object temperatures from an input color im-
age. Secondly, we predict the relative local temperature contrasts,
conditioned by a color image and thermal segmentation.

3. APPROACH

The proposed method is based on a joint approach that uses 3D
modeling and deep learning (Alhaija et al., 2018) (Figure 1). Syn-
thesis of background textures and objects textures is performed
using a generative-adversarial neural network and semantic and
geometric information about objects generated using 3D model-
ing. The developed approach significantly improves the realism
of the synthetic images, especially in terms of the quality of ob-
jects textures.

3.1 Method

The task of converting images from one spectral range to another
is ambiguous. If the translation of the infrared image into color is
reduced to the problem of colorization, then the inverse transfor-
mation is multimodal. In other words, several synthesized images,
the existence of which is physically possible in reality, can corre-
spond to the original input color image. Another problem with
GAN learning was that the thermal contrasts in the output image

Figure 3. Infrared to visible range image translation

were averaged over the entire object, losing the characteristic ther-
mal regions.

Based on the original method, we made the assumption that the
use of segmentation of characteristic thermal zones of objects will
increase the network’s ability to predict their location on the ob-
ject. Accordingly, this will lead to an increase in the visual qual-
ity of the generated images. It turned out that some such thermal
zones are almost unchanged in different weather conditions, dif-
ferent shooting conditions. As with semantic segmentation, ther-
mal segmentation included the marking of thermal zones with cer-
tain labels that correspond to the degree of heating.

Unlike the original method, we will not need a normal map for
each object, since the reflection of light does not play a signifi-
cant role in the synthesis of thermal images. To generate maps
of thermal zones of objects, as well as depth maps, we used real-
istic three-dimensional models created with the help of sophisti-
cated three-dimensional modeling tools, since marking out ther-
mal zones of objects on existing real images is a difficult task.

3.2 CNNs architecture

Our network is based on the pix2pix framework (Isola et al.,
2017). The pix2pix framework was designed to perform an ar-
bitrary image-to-image transformation. The framework consists
of two deep convolutional networks: a generator network is a
modified version of the U-Net (Ronneberger et al., 2015); a dis-
criminator network is based on PatchGANclassifier (Li andWand,
2016). The generator consists of 9 convolutional layers connected
in two ways. Firstly, the output of each layer is coupled with the
input of the next layer. Secondly, the output of the first layer is
concatenated with the input of the last layer (the output of layer 8).
Each level of the generator network has the dimension W×H×R,
whereW, H is the size of the attribute map (proportional to degree
2), R is its depth. The input images size is 512×512×7, where
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Figure 4. The proposed method for infrared image synthesis

the number of channels is determined by the label image, the ther-
mal segmentation image and the depth map image. Сonvolutional
layer consists of an input layer,intermediate layer and output layer.
Its dimension is half the previous one.Each layer processes the in-
put data with a filter with leaky ReLU nonlinearity. The output
layer of the final module is followed by a convolution applied
to the feature map and normalized to obtain the synthesized im-
age. In other words, the U-Net is similar to a convolutional auto-
encoder with feedforward connections between the convolutional
layers of the same depth. Such feed-forward connections increase
the generator’s performance for restoration of small details and in-
crease learning convergence. A discriminator network is based on
the PatchGAN classifier (Li and Wand, 2016). The architecture
consists of 6 fully connected layers having neurons with a leaky
ReLU. The discriminator output is a one-dimensional binary map,
where each value describes the discriminatory classification of a
patch as real or synthesized by a generator. The final architecture
of the generator network is presented in the Figure 4

3.3 Framework

The network was trained and tested using the PyTorch library
(Ketkar, 2017).This framework was in 2017. It is an open source
software designed to perform research on the design and training
of deep neural networks.

4. EXPERIMENTS

4.1 Input Image Dataset

Weevaluate the developedmethod using a specially designed dataset.
The images of cars were chosen as generated images. Perspective
shooting looks like in KITTY 360 dataset (Alhaija et al., 2017).
As input images we used the thermal contrasts map of objects,
the depth map, the masks of objects.The samples were generated

using the Blender 3D creation suite. It was prepared 6 three-
dimensional models of cars. Two models were provided by the
VoxelCity dataset (Knyaz et al., 2019). The heat contrasts map
was formed by segmentation of several characteristic areas of ve-
hicle heating while driving (hot motor, warm wheels, cold roof).
Real infrared images of cars were used as a ground truth for train-
ing the network. Background images were obtained using the
FLIR ONE PRO portable thermal imaging camera. The FLIR
ONE camera produces as a standard output thermal preview im-
ages that present temperature of captured objects as monochrome
(or pseudo-colors) images with a reference temperature scale bar.
Also the FLIRONE camera provides raw 16-bit data and the EXIF
information for acquired images. Values of the raw data represent
the object emission in the wavelengths 8–14 μ. The detailed tech-
nical specifications of the camera are presented in Table 1.

Parameter Value
Visible range resolution 1440x1080
Infrared resolution 160x120
Field of view 43x55

Temperature range -20…400 C
The spectral range 8 – 14 µm

Pixel size 12 µm

Table 1. FLIR One camera parameters.

The images were created in different places (city, park, country
road, motorway) and different conditions of weather including
snow, rain, fog. The images were scaled and cropped to square
pictures 512×512 pixels. We intentionally captured all objects in
similar conditions to provide uniform thermal contrast between
the background and the object. The dataset includes 5000 ther-
mal images, object masks, depth maps, thermal zone segmenta-
tions. Such approach provide semi unimodal distribution. Exam-
ples from the dataset are presented in Figure 5.
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(a) Depth (b) Mask (c) Thermal segmentation (d) Groud thruth

Figure 5. Examples of input images dataset

4.2 Training CNN

We train the generator G synthesized images that were similar in
appearance to real images. The goal of the network is to learn
the process of generating images using same information about
target objects. Unlike the original method, we train the network
to transform model images of objects directly into real ifrared im-
ages by adding real background images of the environment to the
input data. We use original pix2pix loss function. It provides
state-of-the-art results for arbitrary image to image transforms on
aligned image datasets. It uses conditional generator and condi-
tional discriminator coupled with L1 loss:

LL1(G) =Ex,y,z[||y −G(x, z)||], (1)

The final loss is given by:

LGAN3(G,D) =EX,Y[logD(X,Y)]+
EX,Z[log(1−D(X,G(X,Z))]],

(2)

where Z – is a random noise vector, that is used to avoid the de-
terministic output of the generator.

The network was trained using a NVIDIA RTX2080Ti captured
GPU and was 200 epochs.This dataset was divided into indepen-
dent training and test splits.

4.3 CNN evaluation

Weused the independent test dataset to evaluate the GAN. To eval-
uate the generalization ability of the trained generator network we
have performed generation of synthetic infrared images on sam-
ples of real background images. Some examples are presented in
Figure 6. We evaluated our results using Learned Perceptual Im-
age Patch Similarity (LPIPS) metric(Zhang et al., 2018). This
method is a measure of ”perceptual distance” which measures

how similar are two images in a way that coincides with human
judgment. Since the use of the mean square error (RMS) metric
to measure the difference between real infrared and synthesized
images does not provide complete information about the similar-
ity of synthesized and real images, we used the above method.The
LPIPSmetric estimates the distance between images, which ranges
from 0 to 1.The less the value, it makes the images the more sim-
ilar. For synthesized images shown in Figure 6, the following
values are obtained (Table 2)

Image Value
Image 1 0.309
Image 2 0.325
Image 3 0.195
Image 4 0.208
Image 5 0.256
Mean 0.258

Table 2. Average LPIPS.

5. CONCLUSION

A new method for generation synthetic thermal images using a
GAN was proposed. A training dataset was generated using the
FLIR ONE PRO infrared camera and the Blender 3D creation
suite. The size of the dataset is 5000 images. Also, The dataset
includes 8 manualy created low-poly models of cars. To evaluate
the proposed method the LPIPS metric was used. The evaluation
of the generated infrared textures proved that they are similar to
the ground truth model in both thermal emissivity and geometri-
cal shape. The developedmethod allows for synthesizing realistic
thermal images. The proposed approach can be used to supple-
ment the existing training datasets with real infrared images.
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