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ABSTRACT: 

 

In this article the new method for iris image features extraction based on phase congruency is proposed. Iris image key points are 

calculated using the convolutions with Hermite transform functions. At each key point the feature vector characterizing this key 

point is obtained based on the phase congruency method. Iris key point descriptor contains phase congruency values at points located 

on concentric circles around the key point. To compare the key points, Euclidean metric between the key points descriptors is 

calculated. The distance between the iris images is equal to the number of matched iris key points. The proposed method was tested 

using the images from CASIA−IrisV4−Interval database and the value of EER=0.226% was obtained. 

 

 

1. INTRODUCTION 

Iris recognition is one of the most powerful biometric 

technologies for human identification. Iris is used in different 

fields of access control and security due to its high reliability, 

accuracy and uniqueness. Traditional iris recognition systems 

use near-infrared sensors to acquire images of the iris but this 

restricts the iris image acquisition distance. Over the last several 

years, there have been numerous attempts to design and 

implement iris recognition systems that operate at longer 

distances but that yields some problem both in hardware and 

algorithmic perspectives. (Nguyen, 2017). Mobile biometrics 

represent now the new trends of authentication. The most 

appealing feature of mobile devices is the wide availability and 

the presence of reliable sensors for capturing biometric traits, 

e.g., cameras and accelerometers. Moreover, they more and 

more often store personal and sensitive data, that need to be 

protected. Doing this on the same device using biometrics to 

enforce security seems a natural solution. Thus the use of iris 

recognition for mobile devices is generally promising (De 

Marsico, 2017). Some methods use also both the iris and 

periocular information (Santos, 2015) to obtain more robust 

results. 

There are three main stages in iris recognition system: image 

preprocessing, feature extraction and feature matching. 

Different approaches for solution of iris recognition problem 

mostly differ in iris feature extraction and matching algorithms, 

although machine learning techniques are also widely used. (De 

Marsico, 2016, Ahuja, 2016). The first and the most famous iris 

recognition method was proposed by J. Daugman (Daugman, 

2004). In Daugman’s method 2-D Gabor wavelets are used to 

obtain the phase information of iris image. The phase is then 

encoded and the 256-byte "iris code" is obtained. Later it was 

shown (Hollingsworth, 2009) that some iris regions contain 

more information than others. Iris texture is also unstable to 

strong illumination changes where the non-linear distortions of 

iris features may occur. So the feature extraction methods based 

on iris key points look promising to be used in iris recognition 

(Alvarez-Betancourt, 2016, Sahu, 2018). The iris key points 

matching methods can use the information about iris texture in 

local areas of key points to obtain more robust results. 

The key points can be extracted by different algorithms. In 

particular, numerous SIFT-based (Lowe, 1999) schemes are 

presented (Rathgeb, 2018). SIFT descriptor can also be used to 

describe distinctive features for different types of key points 

(Alvarez-Betancourt, 2016). After key points extraction the 

density-based spatial clustering and key point reduction can be 

applied to reduce the time for iris recognition (Sahu, 2018). 

In this article we find the iris key points using Hermite 

transform functions and propose a new method for iris image 

features extraction based on phase congruency. Phase 

congruency can measure the significance of image features and 

it provides a measure that is independent of the overall 

magnitude of the signal. Phase congruency can be used for 

biometric image enhancement (Punsawad, 2009), for edge and 

corner detection (Kovesi, 2003) and in many other problems of 

image processing (Pavelyeva, 2018). 

The rest of this paper is arranged as follows: in Section 2 the iris 

key points extraction algorithm is described. The phase 

congruency method is discussed in Section 3, and it is shown 

how the phase congruency can measure the significance of 

image features. In section 4 the method of iris key point 

descriptors calculation is presented. The experimental results 

are shown in Section 5. Finally, Section 6 provides some 

conclusions. 

 

2. IRIS IMAGE PREPROCESSING AND KEY POINTS 

EXTRACTION 

In this research the iris images from CASIA−IrisV4−Interval 

database (CASIA, 2010) are used (Fig. 1). After iris localization 

the iris is normalized to a rectangular image and iris areas free 

of eyelashes, eyelids and glares are determined. The normalized 

iris image can have low contrast and non-uniform brightness 

caused by the position of light sources so the image 

enhancement algorithm is applied (Fig. 2). 

 

   
Figure 1. Examples of iris images from CASIA−IrisV4−Interval 

database 
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Figure 2. Iris image preprocessing 

 

Then the key points are calculated using the convolutions of 

normalized iris image with the Hermite transform functions 
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We convolve the normalized image with ),(0,2 yx , 

3 yx  : 

),(),(),( 0.20,2 yxyxIyxM  . 

Then we consider the points where the convolution values are 

more than one third of  ),(max 0,2
),(

yxM
yx

 with an additional 

assumption that the distance between the points shall be not less 

than 4 pixels (Fig. 3). We call the taken points as iris key points 

(Pavelyeva, 2013) and suppose that iris image can have no more 

than 75 key points. At each key point the feature vector 

characterizing this key point is calculated based on the phase 

congruency method. 

 

 

 
 

 
Figure 3. ),(0,2 yx  and the examples of iris key points 

extraction 

 

3. PHASE CONGRUENCY 

The one dimensional wavelet transform at point p  and scale s  

for the signal )(xf  is defined as 
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where )(xG  is the wavelet function, 
Rs  is the scale 

parameter, Rp  is the shift parameter, * denotes signal 

convolution. The wavelet transform rewrites the signal to the 

time-frequency representation.  

We denote the values of the wavelet transform magnitude and 

phase as )(pAs  and )(ps ; 
s

psFpF ),(Re)( , 


s

psFpH ),(Im)( , )()()( 22 pHpFpE  . It can be 

shown that the values of )(ps  have a small difference over all 

scales s  at feature points of the signal (Kovesi, 2003). In Fig. 4 

and Fig. 5 a one dimensional signal and its phase scalogram (the 

values of )(ps  for different scales s ) are presented (Kovesi, 

1996). If a signal has step edge, then we can observe a vertical 

line of constant grey value in the scalogram that means that the 

phase of wavelet transform does not change significantly over 

all scales at given point. In Fig. 4 and Fig. 5 the phase is 

mapped from 0-360 degrees to 0-255 gray levels for 

visualization. 

 
Figure 4. A one dimensional signal and its phase scalogram 

 

 
Figure 5. A one dimensional noisy signal and its phase 

scalogram 

 

The phase congruency at point p  is defined as 
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It can be seen that ]1,0[)( pPC . A geometric interpretation of 

phase congruency is shown in Fig 6. For a fixed point p  each 

convolution ),( psF  can be represented as a vector with the 

length equal to the magnitude )(pAs , and the angle equal to 

)(ps . If there is a feature at a given point p  of the image, the 

value of )(pPC  is close to 1, because at this point the phase 

values )(ps  will have a small difference at all scales s , and 

vectors ),( psF  will be practically collinear. Thus the phase 
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congruency can measure the significance of image features. 

Phase congruency provides a measure that is independent of the 

overall magnitude of the signal making it invariant to variations 

in image illumination and contrast (Kovesi, 2003). 

 
Figure 6. A geometric interpretation of phase congruency 

 

We use 2D Log-Gabor filters to calculate phase congruency. 

The Log-Gabor functions have Gaussian transfer functions at 

the logarithmic frequency scale while Gabor functions have 

Gaussian transfer functions at the linear frequency scale. Unlike 

Gabor filters, the Log-Gabor filters have zero DC component 

and there are no limitations in the maximum bandwidth that can 

be obtained from Log-Gabor functions (Fig. 7). The Log-Gabor 

functions are defined in the frequency domain (Field, 1987): 
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where 0  is the filter's centre frequency, 0  represents the 

orientation of the filter,   and   are the width parameters. 

To obtain constant shape ratio filters the term 0/  should be 

constant for varying  . For example, a 0/  value of 0.74 

will result in a filter bandwidth of approximately one octave, 

0.55 will result in two octaves, and 0.41 will produce three 

octaves (Xiao, 2004). The orientation multiplier is a Gaussian 

distance function according to the angle in polar coordinate. 

(Field, 1987). An analytic expression for the shape of the Log-

Gabor functions cannot be constructed in the spatial domain due 

to the singularity in the log function at the origin (Kovesi, 

1996). Log-Gabor filters can be constructed with arbitrary 

bandwidth and the bandwidth can be optimized to produce a 

filter with minimal spatial extent. 

 
Figure 7. Gabor and log Gabor functions viewed on linear and 

logarithmic frequency scales 

In two-dimensional case the phase congruency at point ),( qp  is 

defined as 
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where the two-dimensional wavelet transform ),,( qpsF  for an 

image with Log-Gabor function is calculated using the 

convolution theorem. The example of normalized iris image and 

its phase congruency map ),,( qpsF  is presented in Fig. 8. The 

phase congruency values are mapped from ]1,0[  to 0-255 gray 

levels for visualization. Here 4 scales and 6 orientations are 

used and the parameters 1.00  , 07.0 , 4.0  are 

taken. 

 

 
 

 
Figure 8. The normalized iris image and its phase congruency 

map 

 

4. IRIS KEY POINTS DESCRIPTORS 

At each iris key point feature vector contains phase congruency 

values at 24 points located on two concentric circles (radius r  

and r2 ) around the key point, where xr  , x  was used in 

iris key points extraction stage. This feature vector we call as 

iris key point descriptor. If ),( yx  are the key point coordinates 

then the points 24,...,2,1),,( iyx ii  have the following 

coordinates: 
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The taken points are shown in Fig. 9. For better visualization, in 

Fig. 10. only part of the image and only 8 key points are 

presented. 

 

 
Figure 9. Iris image key points (blue) and points around them 

(red) used to calculate key points descriptors 

 

 
Figure 10. Some iris image key points (blue crosses) and points 

around them used to calculate key points descriptors 

 

To compare the key points, Euclidean metric between the 

feature vectors is calculated. Points outside the image have zero 

values, and these points are not used in Euclidean metric. To 

obtain the final result we divide the derived distance to the 

number of the used values. Thus the distance between two 

comparable key points 1P .and 2P  with feature vectors 

),...,( 241 aaa   and ),...,( 241 bbb   is 

)(pE

)(pAs

Re ( )F s,p
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where  0|}24..1{  ii baiI , I  is the cardinality of I . 

If the distance between the key points of two iris images is less 

than a given threshold, then these key points are considered as 

belonging to the same iris texture area. We assume that the 

spatial shift between the comparable key points may correspond 

to the angle of eye rotation no more than 30 degrees. 

 

5. EXPERIMENTAL RESULTS 

The proposed method was tested with a part of 

CASIA−IrisV4−Interval database. In our research 6 orientations 

and 4 scales of Log-Gabor functions were taken. The examples 

of iris key points matching for two images of one eye are shown 

in Fig. 11. The red lines connect the matching key points. The 

example of iris key points matching for two images of different 

eyes is shown in Fig. 12. 

 

 
 

 
 

 
 

 
Figure 11. The examples of key points matching for two iris 

images of one eye. The red lines connect the matching key 

points 

 

 
Figure 12. The example of key points extraction and key points 

matching for two iris images of different eyes: 3 matched key 

points are detected 

 

The distance between the iris images is equal to the number of 

matched iris key points. The distribution of genuine and 

impostor scores is demonstrated in Fig. 13. The ROC-curve is 

shown in Fig. 14. The value of EER=0.226% was obtained.  

 

 
Figure 13. The distribution of genuine (green line) and impostor 

(red line) scores 

 

 
Figure 14. ROC-curve, EER = 0.226% 

 

6. CONCLUSIONS 

The new method for iris key points descriptors calculation is 

described in the article. The proposed method was tested using 

the images from CASIA−IrisV4−Interval database and the value 

of EER=0.226% was obtained. The key points are calculated 

based on Hermite transform. The key point descriptor consists 

of phase congruency values at points around taken key point. 

The proposed method of iris key points descriptors calculation 

using phase congruency looks promising to be used in iris 

recognition. 
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