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ABSTRACT: 
 
In this paper, we propose an approach to detect and recognize 3D one-handed gestures for human-machine interaction. The logical 
structure of the modules of the system for recording a gestural database is described. The logical structure of the database of 3D 
gestures is presented. Examples of frames showing gestures in the format of Full High Definition, in the map depth mode and in the 
infrared illustrated. Models of a deep convolutional network for detecting faces and hand shapes are described. The results of 
automatic detection of the area with the face and the shape of the hand are given. Identified the distinctive features of the gesture at a 
certain point in time. The process of recognizing 3D one-handed gestures is described. Due to its versatility, this method can be used 
in tasks of biometrics, computer vision, machine learning, automatic systems of face recognition, sign languages. 
 
 

1. INTRODUCTION 

In the modern information society, the task of increasing the 
level of automation and robotization of all human activities is 
one of the most important (Ryumin and Karpov, 2017). In this 
regard, scientists and leaders of developed, as well as 
developing countries, in collaboration with world-class research 
centers and companies, are paying attention to technologies for 
effective, natural and universal human interaction with 
computers and robots (Ivanko et al., 2018a).  
 
Currently, interactive information systems are used in the areas 
of social services, medicine, education, robotics, military 
industry, public service centers, as well as for interacting with 
people in various emergency situations (Toyota Global Site, 
2018). In addition, robots assistant, which are aimed at 
interacting with people to perform certain tasks, are becoming 
increasingly popular. In this case, many classic interfaces are 
not suitable enough. Instead, more intuitive and natural 
interfaces are necessary (gestural, speech, multimodal) (Ivanko 
et al., 2018b) etc.). For example, gestures can transmit simple 
commands to the robot. Gestures pass an unambiguous meaning 
and are effective at some distance from the robot, even in noisy 
environments when acoustic speech is ineffective. It is well-
known, that hearing-impaired people are limited in their ability 
to communicate with hearing people. Sign language interpreters 
are usually needed when contacting various instances, however, 
the number of free translators is often not enough to satisfy the 
demand for them. Therefore, for hearing impaired people, sign 
language recognition technologies, using which they can 
interact with assistive mobile information robots, are necessary 
(Guo and Yang, 2016). For example, scientists from the 
American Institute of Robotics at Carnegie Mellon University 
(CMU) are working on a system that can analyze body language 
and gestures right up to the position of the fingers. This study is 
presented at the Computer Vision and Pattern Recognition 
Conference (Cao et al., 2018). 
 
This paper presents an approach to automatic detection and 
recognition of both: static and dynamic 3D one-handed gestures 

in real time using an optical camera and a depth sensor (Kinect 
v2, 2019). 
 

2. DATASET 

For the purpose of training models and testing the approach, we 
used own database of 3D gestures of Russian sign language. 
The logical structure of the database of 3D gestures is presented 
in Figure 1. 
 

 
Figure 1. The logical structure of the database of 3D gestures of 

Russian sign language 
 
For each gesture shown by the demonstrator, the following 
information is stored in the database as separate files on the 
disk: 

- Video recordings of the gesture (color format, optical 
resolution 1920x1080 pixels (FullHD), for a depth map and 
an infrared mode — 512x424 pixels, frame rate — 30 
frames per second); 
- Data on the coordinates describing the position of the 
skeleton on the video; 
- Images selected frame by frame from the video required 
for labeling. 
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This database was collected using the developed automatic 3D 
video stream recording system with the Microsoft Kinect 2.0 
rangefinder sensor. The overall architecture of the developed 
system (MulGesRecDB) is presented in Figure 2 (Ryumin et al., 
2019). 
 

 
Figure 2. The logical structure of the modules of the 

MulGesRecDB system for recording a 3D gestural database 
 
The words (phrases) were displayed on the screen and 
demonstrated by Russian sign language signers for 5 times at 
least. That is meant for further training of the automatic sign 
language recognition system based on probabilistic neural 
network models. The Kinect 2.0 camera was mounted at an 
optimal distance of 1.5-2 meters from the demonstrator. The 
demonstrators were recorded on a light background which are 
presented in Figure 3a. A distinctive feature of the presented 
database is the recording of gestures in a three-dimensional 
format (3D), which makes it one of a kind resource of the 
Russian sign language. The 3D format was obtained due to the 
fact that the Kinect 2.0 camera has the ability to record not only 
video data in color format with a resolution of 1920x1080 
(FullHD), but also in the infrared (Figure 3b) and in the depth 
map mode (Figure 3c). The color designations on the depth map 
correspond to the ranges of the spectrum of visible light. In 
other words, the groups of dots most distant from the camera are 
colored red, and the closest ones are colored purple. The objects 
between these points are painted over with shades of green and 
yellow (Figure 3b).  
 
A total of 13 speakers were recorded. All demonstrators speak 
Russian sign language. In addition, before recording the 3D 
database, the entire dictionary of gestures developed by the 
authors was adjusted and standardized by specialists from the 
rehabilitation center for people with hearing problems. All 

gestures were accompanied by oral articulation, but no audio 
data was recorded. The total number of gesture phrases was 
2132. The main subject of the recorded database is devoted to 
food in the supermarket. In total, the database has 48 different 
one-handed gestures and 116 two-hand gestures. The method 
presented in this paper is aimed on automatically detecting and 
recognizing only 3D one-handed gestures. The static or 
dynamic orientation of a one-handed gesture in this case not 
considered.  
 

 
Figure 3. Examples of frames showing gestures in FullHD 

format (top row), in the depth map mode (middle row) and in 
the infrared range (bottom row) 

 
3. DESCRIPTION OF THE METHOD 

The input of the developed method is video data in a two-
dimensional (RGB camera) and three-dimensional (depth map) 
format downloaded from the video file or directly from the 
sensor Microsoft Kinect v2. The resolution of color video 
frames is 1920x1080 pixels (FullHD), the resolution of depth 
map is 512x424 pixels with a frequency of 30 frames per 
second. The color quality for two-dimensional data is 8 bits, and 
for three-dimensional is 16 bits. Synchronous stream processing 
of two-dimensional (2D) and three-dimensional video data (3D) 
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is carried out. On each frame, using a depth map and a software 
development kit (SDK) supplied with the Kinect v2 sensor, 
people are searched at a distance of 1.2 to 3.5 meters from the 
camera and 3D 25 reper-dots skeleton model is calculated for 
each person. Then, the 3D coordinates are converted to 2D and 
rectangular areas are formed with people on the 2D image 
(Figure 4a) and their 2D 25 reper-dots skeleton models (Figure 
4b). 
 

 
Figure 4. An example of calculating the 3D and 2D 25 reper-

dots model of the skeleton for each person 
 
Further, two models of the deep convolutional network are used 
to detect the face and hand shapes, presented in Figure 5. 
 

 
Figure 5. An example of face detecting area and hand-shaped 

area 
 
The face detector is based on the structure of Single Shot 
MultiBox Detector (SSD (Liu et al., 2016)) with reduced 
network model ResNet-10 (He et al., 2016). This detector is 
included in the Deep Neural Networks (dnn) module of 
computer vision library Open Source Computer Vision Library 
(OpenCV, 2019). The model was trained using images available 
from the web, but the source is not disclosed. OpenCV provides 
2 models for this face detector: 

1. Floating point 16-bit version of the original caffe 
implementation; 
2. 8-bit quantized version using Tensorflow. 

We use the caffe model. This detector has the following 
features: 

- Works in real time both on the central processing unit 
(CPU) and on the graphics processing unit (GPU); 
- Works for different face orientations – up, down, left, 
right, side-face etc; 
- Works even under substantial occlusion; 
- Detects faces across various scales (detects big as well 
as tiny faces). 

 
Hand shape detector based on SSD structure with MobileNetV2 
network model (Sandler et al., 2018). This detector was trained 
on a multimedia database of 3D gestures of the Russian sign 
language collected and labeled by the authors. The 
MobileNetV2 network architecture is presented in Figure 6. 
 

 
Figure 6. Overview of MobileNetV2 Architecture 

 
To highlight the area with a gesture, a LabelImg (LabelImg, 
2019) tool was used to graphically annotate images. 
Annotations saved as eXtensible Markup Language (XML) files 
in PASCAL Visual Object Classes (VOC (Everingham, et al., 
2010)) format, which is used in ImageNet (Krizhevsky et al., 
2012). In addition, it also supports YOLO (Redmon et al., 2016) 
format. For the detector training, the first 4 repetitions of the 
gesture with the coordinates of the necessary skeletal reper-dots 
were used. That is considered as train data, and the rest is used 
as test data. 
 

 
Figure 7. An example of calculating the distinctive 
characteristics of a gesture at a certain point in time 
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Then, coordinates of found faces and hand shapes are 
normalized. Based on the normalized coordinates, the 3D 
distance from the face to the hand is calculated. The area of the 
intersection of the hand and face coordinates is calculated as 
well (Figure 7). 
 
As a result, the distinctive features of a gesture at a certain point 
in time are following: 

- Normalized 3D distance from face to hand (gesture 
articulation zone); 
- Normalized face and hand crossing area; 
- Hand shape. 

 
Testing has proven that it is possible to process video sequences 
of 23 frames on average in 1 second. 
 
The final step of the method is to recognize one-handed gestures 
using the described features of the gesture and modern machine 
learning algorithms that are included in tools such as scikit-
learn (Scikit-learn, 2019), Tensorflow Object Detection API 
(Huang et al. 2017), Keras (Keras, 2019), which simplify the 
creation, training, and deployment of both static and dynamic 
object detection models in real time. In the current study, 
recurrent neural network (RNN) with long short-term memory 
(LSTM (Hochreiter, 1997)) is used. 
 
The features derived from 4 repetitions of the gesture of every 
demonstrator were used for training. The total number of 
training videos was 2496. LSTM was trained on the generated 
features of 15 frames sequences with 10 steps and the learning 
rate of 0.003. The neural network was trained using the Keras 
tool (Keras, 2019) with the RMSprop (Graves, 2014) 
optimization algorithm and asynchronous gradient descent. 
 
Calculation of the average speed of work of the proposed 
method is to recognize one-handed gestures was made on 
computers with different performances, whose parameters are 
presented in Table 1. 
 

Processor Random 
access 

memory, 
GB 

Type of 
hard disk 

Processing 
speed of 

frame, ms 

Intel Core 
i7- 8850H 
2,6 GHz 

16 SSD ≈80 

Intel Core 
i5- 4210H 
2,9 GHz 

16 SSD ≈165 

Table 1. The average processing speed of video frames using 
different computer systems 

 
The results of the experiments showed that the average 
recognition accuracy, calculated by the formula (1), is 0.63 
(63%): 
 
 𝑥" =

$%&$'&⋯&$)
*

 (1) 
 
where  n = number of gestures 
 𝑥* = gesture recognition accuracy 
 
These results were obtained on 48 different 3D one-hand 
gestures from the multimedia database collected by the authors. 
 

4. CONCLUSIONS AND FUTURE WORK 

Thus, a method for detection and recognition of one-handed 3D 
gestures in real time, based on modern computer vision 
algorithms and deep neural networks, has been proposed. Due 
to its versatility, this method can be used in tasks of biometrics, 
computer vision, machine learning, automatic face recognition 
and sign language recognition. 
 
In further research, we will use approaches based on 3D 
convolution and convolutional LSTM to recognize multimodal 
gestures. We also plan to expand the multimedia database with 
new demonstrators. 
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