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ABSTRACT:

Accumulating the motion information from a video sequence is one of the highly challenging and significant phase in Human Action
Recognition. To achieve this, several classical and compact representations are proposed by the research community with proven
applicability. In this paper, we propose a compact Depth Motion Map based representation methodology with hastey striding,
consisely accumulating the motion information. We extract Undecimated Dual Tree Complex Wavelet Transform features from the
proposed DMM, to form an efficient feature descriptor. We designate a Sequential Extreme Learning Machine for classifying the
human action secquences on benchmark datasets, MSR Action 3D dataset and DHA Dataset. We empirically prove the feasability
of our method under standard protocols, achieving proven results.

1. INTRODUCTION

In the field of machine vision, Human Action Recognition
(HAR) plays a significant role in many applications and hence it
has been one of the active research area for the last two decades.
HAR has wide applications and hence it is an inseparable part
of video surveillance, scene understanding, health monitoring,
fitness training, gait recognition and also human computer
interaction. Due to the extensive research works in the domain
of image/video processing, action recognition also attracted
the research community. Initially, motion sequences were
captured using traditional RGB video recording cameras and
hence research was limited to the 2D information registered
in the video frames. While dealing with recognition of more
complex movements, such as movement of body part either
nearer to a camera or away from the camera where there is no
texture variation, the distance from body part (object surface)
from the camera lens varies significantly. Owing to this, idea of
depth sensors came into reality.

The invention of low price depth sensors addressed these
limitations of 2D frames by registering the 3D depth (distance
from the lens of camera) information. Recent research works on
action recognition are exploring the feasibility of using depth
information along with RGB (Aggarwal , Xia, 2014) data.
Depth sensors are proven to be advantageous as the intensity
based video frames are highly sensitive to the cluttering of
background as well as lighting variance whereas depth frames
are insensitive to lighting variance. Apart from this, depth
frames are rich with discriminating, de facto depth and edge
information.

1.1 Motivation and Contribution

In order to shuffle off the burden of accessing huge video
files and high computationally intensive 3-layer RGB video
frame processing, we need to explore the possibilities of action
recognition solely based on depth frames. Further, to extract
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the textural features over the video frames, we need an efficient
and concise representation of the entire depth frame sequence.

The proposed work aims to explore depth motion map concept
to efficiently represent and classify human actions. The work
date backs to the pioneering work carried out by (Bobick
, Davis, 2001) where an accumulated foreground regions of
human to track the shape changes using motion history images
is addressed. Further, (Yang et al., 2012) extended this idea to
represent video frames using depth motion map.

With this backdrop, we propose a compact and computationally
efficient DMM representation, namely Stridden Depth Motion
Map (S-DMM), which hastily generates an accumulated dense
structure striding 4 frames of the video sequence at a time.
This completes the DMM generation four times faster than the
existing approach presented in (Chen et al., 2015b). Second, we
explore a Undecimated Dual Tree Complex Wavelet Transform
(UDTCWT) based feature descriptor for extracting the wavelet
features from our S-DMMs. Third, using a Sequential Extreme
Learning Machine (S-ELM) for classification, we compare our
method with the state-of-the-art methods considering standard
datasets.

The rest of paper is organized as follows. We briefly
discuss significant related works in Section 2. The proposed
methodology is detailed in Section 3, followed by experimental
results in Section 4 and Section 5 concludes this paper.

2. RELATED WORKS

Invention of depth sensors and action based game controlling
techniques have brought significant importance to HAR. Initial
attempts of action recognition from depth sequences were
focused on extracting local features. For example, (Li et
al., 2010) presented collection of 3D points features wherein
silhouettes of depth images were used to sample the 3D points.
(Vieira et al., 2012) segregates 3D points onto 4D grids of
equal size, encoding these grids as Spatio-Temporal Occupancy
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Figure 1. Proposed methodology for Stridden Depth Motion Map generation, extracting UDTCWT features and Action
Recognition from Depth sequences

Patterns (STOP). (Wang et al., 2012) used sparse coding
method to encode large sampling space of Random Occupancy
Pattern (ROP) features.

Global feature representations generally use the differences
between consecutive frames to accumulate the motion
regions.(Bobick , Davis, 2001) proposed Motion History Image
(MHI) from the temporal history of each point giving rise to
the intensity of pixels in MHI. (Yang et al., 2012) proposed
Depth Motion Map (DMM) representation wherein absolute
difference between consecutive frames is calculated that results
to a frontal depth map, which is projected onto the other two
orthogonal planes (side and top). These projected maps are
accumulated yielding the corresponding DMMs in three planes.
Enhanced DMM based approaches are presented in (Chen et al.,
2015b, Chen et al., 2016a), such as stacking of depth frames
across an entire depth sequence on three orthogonal planes.
(Chen et al., 2015b) exploited LBP feature on DMM and
Kernal Extreme Learning Machine(K-ELM) for classification
whereas (Chen et al., 2016a) uses vectorized DMM for feature
representation and l2-regularized collaborative representation
classifier for classification. (Yang , Yang, 2014) trained Deep
Convolutional Neural Networks (D-CNNs) on DMMs.

Various approaches of DMM representation and feature
representations on DMMs are presented in (Zhang , Tian,
2013, Bulbul et al., 2015b, Bulbul et al., 2015c, Bulbul et al.,
2015a, Chen et al., 2015a, Chen et al., 2017, Chen et al., 2016b).
(Liu et al., 2018) attempted a recognizer using multi-scale

energy based Global Ternary Image (GTI) modality on depth
sequences which accounted the spatial-temporal discrimination
and action speed variations in order to address the problems
of distinguishing similar actions and identifying the actions
with different speeds. DMM-based representations effectively
transform the action recognition problem from 3D to 2D,
with promising accuracies on the task of depth-based action
recognition (Liu et al., 2018).

3. PROPOSED ACTION RECOGNITION
METHODOLOGY

The proposed method has three phases namely, S-DMM based
depth video representation, UDTCWT based feature extraction
followed by classification using S-ELM technique. Different
phases of our methodology such as S-DMM generation,
UDTCWT feature representation, dimensionality reduction and
classification are briefed in sections 3.1, 3.2, 3.3 and 3.4
respectively. The work flow is pictorially presented in Figure
1.

3.1 Stridden Depth Motion Maps

Aiming for computation efficiency and more compact
representation, we traverse the depth video in strides (steps) of
4 frames per iteration during DMM generation. In addition,
we compute the frame variation at an interval of two frames
rather than subtracting the consecutive frames to find the energy
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Figure 2. Stridden DMM generated for high

wave action due to the proposed method.
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Figure 3. DMM generated for high wave action
due to an existing method (Chen et al., 2015b).

difference. The summation of absolute differences between
two alternative frames across the video sequence yields a
single S-DMM. The process is mathematically summarized in
equation 1.

SDMM{f,s,t} =
NX

k=3,k=k+4

���Dk
{f,s,t} �Dk�2

{f,s,t}

��� (1)

where f, s, t are front, side and top projections respectively
Dk

{f,s,t} is the k-th frame under the projection view
N is the number of frames in the depth sequence
SDMM is the generated Stridden Depth Motion Map.

It shall be observed that the S-DMM generated for high wave

action, using the proposed methodology (Figure 2 ) is more
prominent than the DMM generated using the existing method
(Figure 3) presented in (Chen et al., 2015b).

In our methodology, apart from the front (f) view available
in the depth video frame we generate two more additional
projection views namely, side(s) and top(t).

The computation of side and top 2D projected views from
the corresponding front view using equations 2 and 3 is given
below,

Ds
ik =

(
j, if Df

ij 6= 0

0, otherwise
(2)

Dt
kj =

(
i, if Df

ij 6= 0

0, otherwise
(3)

where i = 1, 2...M, j = 1, 2...N and k = 1, 2...L
L being the maximum depth value across front frames
Df is the current front frame of size MxN

Ds and Dt are the generated side and top projections.

3.2 Undecimated Dual Tree Complex Wavelet Transform

During the second phase, each of the S-DMMs generated
as described above are scanned with an Undecimated Dual
Tree Complex Wavelet Transform (UDTCWT) function to
produce an efficient feature descriptor. The traditional
wavelet transforms such as DWT, DTCWT are having certain
limitations when applied in digital image processing(Rajesh ,
Shekar, 2016). For example, the wavelet function produced
from 2D DWT is not suitable for extracting diagonal edge
details of an image due to its checker board pattern spectrum,
whereas Dual Tree Complex Wavelet Transform (DTCWT) is
free from such limitations. DTCWT wavelet coefficients are
invariant to signal shift, free from oscillations around signal
discontinuities such as edges and moreover do not suffer from
aliasing.

An undecimated version of the DTCWT i.e UDTCWT is
proposed in (Hill et al., 2012). It is more robust than DWT
and DTCWT as downsampling is not employed, which helps
in incorporating perfect one-to-one relationship between the
co-located coefficients extracted at different scales. This helps
to attain a flawless shift invariance in UDTCWT.

In our work, we form an higher dimensional global descriptor
using UDTCWT similar to the method presented in (Rajesh ,
Shekar, 2016). This is achieved in four stages. At first, we
compute UDTCWT at 6 different orientations (�150, �450,
�750, 150, 450, 750) and 4 scales leading to 24 complex
coefficient images. We separate the real and imaginary part
of each coefficient image producing 48 complex coefficient
images in total. During the second stage, we generate 8 Global
UDTCWT Phase Pattern (GUPP) images from the above said
48 complex coefficient images. In this process, the values
of 6 orientation coefficient images at each location (x,y) are
concatenated forming a 6 element vector. The elements in
vector are binarised (0 if value is greater than or equal to 0,
1 otherwise), to get a 6 bit vector which is in turn 0 padded at
the two ends to form a vector byte. The value of this byte is the
GUPP image value at (x,y). The process is shown in figure 4.
GUPP image for a given scale is computed by computing the
values in the similar manner for all (x,y) locations.

In the third stage, for each of the 48 complex coefficient images
Local UDTCWT Phase Pattern (LUPP) images are generated.
The LUPP image value at location (x,y) is computed from its
eight neighbor locations as shown in Figure 5, forming a 8 bit
vector. LUPP value at location p is computed using equation 4
as shown below,

LUPP
�
p
�
=

7X

j=0

sgval(aj ⇤ P ) ⇤ 2j (4)
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Figure 4. Computing GUPP value at location p from complex coefficient images at six different orientations.

Figure 5. Eight neighbor locations for
computation of LUPP value at p.

where sgval(product)=0 if product is +ve, =1 if product is -ve.
P is the value of UDTCWT at the center pixel p.
ajs are values of UDTCWT at the eight neighbors.

Finally, we divide GUPPs and LUPPs into blocks, compute
spatial histogram in each block and concatenate these
histograms to form a global descriptor for the given S-DMM.
We as well extract similar features from side and top projections
of S-DMMs.

3.3 Dimensionality Reduction

The global descriptor obtained due to GUPP and LUPP
images is found to be robust. However, due to consecutive
concatenation of spatial histogram of each blocks and
concatenation of similar vectors from three projected DMMs,
the dimension of feature vector turns to be very high. It is
advisable to reduce the dimensionality in order to facilitate
an efficient and smooth computation. We employ Principal
Component Analysis (PCA) to reduce the dimension of feature
vector, retaining the most discriminating features. PCA linearly
maps the data to a new lower dimensional space, with the key
objective of maximizing the variance of the data in the lower
dimensional space.

3.4 Classification using S-ELM

We have used Sequential Extreme Learning Machine (Huang
et al., 2005) for classification. It is a known fact

that the single-hidden layer feed forward neural networks
(SLFNs)(Huang et al., 2006) with randomly chosen weights
between the input layer and the hidden layer and adequately
chosen output weights are universal approximators for any
bounded non-linear piecewise continuous function. In ELM,
the input weights and bias matrix are randomly assigned.
Considering an output neuron with a linear activation function,
the SLFN network can be regarded as a linear regression model
between the output vector of the hidden layer and the output of
the SLFN. The sequential implementation of the ELM results in
the application of recursive least-squares (RLS) to estimate the
output weights vector. In brief, S-ELM is capable of randomly
choosing the input weights and analytically determining the
output weights of SLFNs.

4. EXPERIMENTAL RESULTS

In this section, we present experimental results conducted on
two standard datasets namely, MSR Action 3D dataset and
DHA dataset. The details of the datasets are presented in
subsection 4.1. We conducted extensive experiments as per the
standard protocols found in the existing literature and is detailed
in subsection 4.2. A comparative analysis of our work and the
results obtained are presented in subsection 4.3.

4.1 Dataset Description

We evaluate our approach with two of the popular benchmark
datasets namely MSR Action 3D dataset(Li et al., 2010) and
Depth-included Human Action (DHA) dataset (Lin et al.,
2012). The MSR Action 3D dataset contains 557 depth video
sequences, depicting 20 different actions, where each action is
performed 2 or 3 times by 10 subjects facing the depth sensor.
This dataset is challenging due to similarity of actions (e.g.
draw x, draw tick, draw circle) and variations in the speed
of actions. The DHA dataset is an extended dataset from the
Weizmann dataset (Blank et al., 2005), containing 23 actions in
total, each performed by 12 male and 9 female, 21 subjects in
total.

4.2 Experimental Setup

For comparison with the standard published results, we have
examined our method under two different experimental settings
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Method Action Subsets Average (%)AS1 AS2 AS3
Li et al.(Li et al., 2010) 72.9 71.9 79.2 74.7

DMM-HOG (Yang et al., 2012) 96.2 84.1 94.6 91.6
Chen et al. (Chen et al., 2016a) 96.2 83.2 92.0 90.5

HOJ3D (Xia et al., 2012) 88.0 85.5 63.6 79.0
STOP (Vieira et al., 2014) 91.7 72.2 98.6 87.5

DMM-LBP (Chen et al., 2015b) 98.1 92.0 94.6 94.9

Proposed DMM-UDTCWT 95.6 93.82 96.6 95.34
Stridden DMM-UDTCWT 96.52 93.82 96.92 95.75

Table 1. Average recognition accuracies (%) under Cross Subject tests on fixed subsets on MSR Action 3D dataset.
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Figure 6. Confusion matrix under setting 2 on MSR Action 3D dataset demonstrating the class-wise recognition
accuracy.

Method Accuracy (%)
DMM-HOG(Yang et al., 2012) 85.5

ROP (Wang et al., 2012) 86.5
HON4D (Oreifej , Liu, 2013) 88.9

DMM-LBP (Chen et al., 2015b) 91.9
DMM-UDTCWT 92.67

Stridden DMM-UDTCWT 93.41

Table 2. Recognition accuracies under setting 2 on MSR
Action 3D dataset .

Method Accuracy (%)
D-STV/ASM (Lin et al., 2012) 86.8
SDM-BSM (Liu et al., 2015) 89.5

D-DMHI-PHOG (Gao et al., 2015) 92.4
D-STV (Gao et al., 2014) 86.8

DMM-UDTCWT 94.2
Stridden DMM-UDTCWT 94.6

Table 3. Average recognition accuracies under Leave One
Subject Out test on DHA dataset.

available in the literature(Chen et al., 2015b). On MSR Action
3D dataset, under setting 1, the actions are divided into three
subsets (AS1, AS2 and AS3) comprising of 8 actions each.
The AS1 includes actions namely, Horizontal wave, Hammer,

Forward punch, High throw, Hand clap, Bend, Tennis serve and
Pickup throw. The AS2 comprises of action sequences such
as High wave, Hand catch, Draw x, Draw tick, Draw circle,

Two hand wave, Forward kick and Side boxing whereas AS3 is
made up of actions like High throw, Forward kick, Side kick,

Jogging, Tennis swing, Tennis serve, Golf swing and Pickup

throw. On these three action subsets, we perform cross subject
test, wherein one half of the subjects (1, 3, 5, 7, 9) were used
for training and the rest for testing.

On Action 3D dataset, in setting 2, all the 20 actions are
employed and one half of the subjects (1, 3, 5, 7, and 9) are
used for training and the remaining subjects are used for testing.
Thus, setting 2 is more challenging than setting 1, comprising
more action classes. To evaluate our method on DHA dataset,
we employ Leave One Subject Out (LOSO) testing protocol.
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4.3 Discussion

We have made a comparative study with state-of-the-art
action recognition methods, following their standard train/test
protocol. Under setting 1 of MSR Action 3D dataset, our
method achieves 95.75% of average accuracy. The results are
tabulated in Table 1. Under setting 2 with cross subject test,
experimental results are obtained and the results are tabulated
in Table 2 along with other existing methods. In addition, we
have also made a comparative study considering much more
complex dataset such as DHA dataset with Leave One Subject
Out strategy. The comparative results are presented in Table 3.

The confusion matrix is presented in Figure 6, that
demonstrates the class-wise recognition accuracies of MSR
Action 3D dataset under setting 2 and it is evident that
seven out of thirteen Draw x actions are wrongly classified as
Draw tick whereas five out of fifteen Draw circle actions are
wrongly predicted to be Draw tick. This is due to the fact
that there is strong interclass similarities among these three
action sequences. Figure 7 shows action frames from Draw

x, Draw tick and Draw circle actions respectively. Comparing
the confusion matrix for Action 3D dataset of our proposed
method to that of presented in (Chen et al., 2017, Chen et
al., 2015b), it is evident and we conclude that our method
effectively discriminates and better classifies Draw x action
from Horizontal wave and Hammer actions as opposed to the
methods presented in (Chen et al., 2017, Chen et al., 2015b).

Figure 7. Interclass similarity across Draw x,
Draw tick and Draw circle action sequences on

MSR Action 3D dataset.

Considering various recognition accuracies on MSR action
3D dataset presented in Table 1, Table 2 and the recognition
accuracies on DHA dataset presented in Table 3, we observe
that there is a substantial difference between the recognition
rate achieved by the proposed method and it is much more
evident in the case of DHA dataset.

5. CONCLUSION

An accurate and efficient method for human action recognition
using UDTCWT based feature descriptor considering newly
proposed Depth Motion Map from depth sequences is
presented. The proposed Stridden DMMs efficiently and

quickly register the action cues and UDTCWT extracts the
wavelet features from this compact DMM representation.
A Sequential ELM is employed to classify the action
sequences. The proposed method is extensively evaluated on
two benchmark datasets, under standard protocols presented
in the literature. Our experiments exhibit better results when
compared to state-of-the-art methods. However, effective and
discriminative representation to overcome the challenge of
interclass similarities is to be addressed in our future works.
Also, we intend to address the lack of DMMs in registering
the speed variations of action sequences and to improve
the computational speed of the proposed UDTCWT feature
descriptor.
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