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ABSTRACT:

Image denoising is one of the important tasks required by medical imaging analysis. In this work, we investigate an adaptive
variation model for medical images restoration. In the proposed model, we have used the first-order total variation combined
with Laplacian regularizer to eliminate the staircase effect in the first-order TV model while preserve edges of object in the
piecewise constant image. We also propose an instance of Split Bregman method to solve the proposed denoising model as
an optimization problem. Experimental results from mixed Poisson-Gaussian noise are given to demonstrate that our proposed
approach outperforms the related methods

1. INTRODUCTION

In the process of receiving and transmitting through
communication channels, the image is usually corrupted by
noise of a different nature. Therefore, image restoration
and, in particular, denoising is the most fundamental tasks of
medical image processing to help supply a better diagnosis and
treatment. An important requirement for the image denoising
procedure is to preserve local image features for efficient
subsequent analysis. Image restoration is often formulated as
the problem of reconstruction of a true image, damaged by
some noise, from the observed image of the same size. The
sought-for image is a solution of the corresponding inverse
problem (Pham, 2015, Pham, 2016).

Many types of noise have been studied in the literature, but
the majority of models in image denoising are associated with
additive Gaussian noise and Poisson noise (Bertero et al.,
2009, Pham, 2017, Pham, 2018). One of the most common
variational models to restore an image is a well-known Rudin,
Osher and Fatemi model (ROF model), which allows to remove
Gaussian noise effectively (Rudin et al., 1992). The authors
in (Le et al., 2007) had proposed total-variation regularized
denoising model along the lines of ROF model but modified
for use with Poisson noise(M-ROF model). However, the
considered models ROF and M-ROF are effective for image
reconstruction, if there is either Gaussian or Poisson noise. In
practical, image can be corrupted by different types of noise like
as mixed Poisson-Gaussian noise (Luisier, 2011, Lanza et al.,
2014, Jezierska et al., 2014). The linear combination of models
ROF and M-ROF was proposed for mixed Poisson-Gaussian in
(De los Reyes , Schnlieb, 2013):

u∗ = arg min
u∈BV (Ω)

E(u) (1)

∗Corresponding author

E(u) =

∫
Ω

|∇u| dx+
λ

2

∫
Ω

(u− f)2dx

+ β

∫
Ω

(u− f log u)dx

where f(x) - the observed image
x = (x1, x2) ∈ Ω
Ω ∈ R2 - an open bounded domain
BV - the space of functions of bounded variation∫

Ω
|∇u| dx - total variation of u

λ, β - positive regularization parameters

The model (1) can denoise an image corrupted by a mixture of
Poisson and Gaussian noise. However, problems of negative
values arise in the numerical algorithms. To avoid this
problem, authors in (Pham et al., 2018) proposed a modified
scheme of gradient descent (MSGD) that is impossible to avoid
sign-changing of the solution during the optimization process
and guarantees the reconstructed image to be positive in the
image domain. The authors proposed a time marching strategy
to the associated Euler-Lagrange equation. The algorithm
has the advantage of being rather easy to implement and to
offer a good compromise between performance and quality
of results. Like similar algorithms, no previous training
is required (by contrast with deep learning techniques), and
only one observation of the image is needed. However, this
method is slow due to the constraint of stability conditions
about the time step size. Hence, construction of fast and
effective algorithms has become an active research area so
far. The model (1) performs well in preserving image edges
compared with other related method. However, this model has
sometimes undesirable staircase effect in some cases, namely,
the transformation of smooth regions into piecewise constants
regions (Chan et al., 2015).
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In this paper, we proposed adaptive model in which the
first-order TV is combined with Laplacian regularizer to
eliminate the staircase effect in the first-order TV model
(1) while preserve edges of object in the piecewise constant
image. Then, we employ split Bregman method (SBM) to
solve correspondent optimization problem (Goldstein, 2009).
Experimental results show the effectiveness of the proposed
method for denoising medical images corrupted by mixed
Poisson-Gaussian noise. Comparison with other related
methods and state-of-the-art algorithms is provided numerically
as well.

2. THE PROPOSED NEW MODEL AND ALGORITHM

2.1 Adaptive variational model

In this work, we focus on the model (1) and propose the
following adaptive model:

u∗ = arg min
u∈T (Ω)

E(u) (2)

E(u) = α

∫
Ω

|∇u| dx+ µ

∫
Ω

|4u| dx

λ

2

∫
Ω

(u− f)2dx+ β

∫
Ω

(u− f log u)dx

where f - the observed image
x = (x1, x2) ∈ Ω
Ω ∈ R2 - an open bounded domain
T (Ω) = {u ∈ BV (u) : u > 0}
λ, β - positive regularization parameters
4u - Laplacian operator of u
µ and α - constant function

In recent years, many efficient numerical algorithms have
emerged (Chambolle, 2004, Wang et al., 2008, Goldstein,
2009, Pham et al., 2017), which can be used to solve the
proposed model (2). In this paper, we decide to employ split
Bregman method (Goldstein, 2009) to solve our minimization
problem (2). In next subsection, we present the Split-Bregman
method which is used solve the energy minimization problem
(2).

2.2 Split-Bregman method

The split Bregman method performs break the minimization
problem down into easy subproblems (Goldstein, 2009,
Getreuer, 2012). Subproblems can be directly solved with tools
like Fast Fourier Transform, shrinkage operator that makes the
optimization algorithm rather fast. We have a scalar γ and two
convex functionals Ψ(·) andG(·); and that we need to solve the
following constrained optimization problem:

find arg min
u,d

‖d‖1 +
γ

2
G(u), s.t. d = Ψ(u) (3)

We convert (3) into an unconstrained problem:

find arg min
u,d

‖d‖1 +
γ

2
G(u) +

ρ

2
‖d−Ψ(u)− b‖22 (4)

where ρ -penalty parameter (a positive constant)
b - variable of the Bregman iterations
d - splitting variable

The solution to problem (4) can be approximated by the Split
Bregman Algorithm:

u(k+1) = arg min
u

γ

2
G(u) +

ρ

2
‖d(k) −Ψ(u)− b(k)‖22

d(k+1) = arg min
d
‖d‖1 +

ρ

2
‖d−Ψ(u(k+1))− b(k)‖22

b(k+1) = b(k) + Ψ(u(k+1))− d(k+1)

2.3 Algorithm for the proposed model

Now we return to the problem (2). We introduce three
new variables and rewrite (2) in the constrained optimization
problem as follows:

arg min
u,d,r

(α‖d‖1 + µ‖r‖1 +
γ

2
G(z) (5)

s.t. d = ∇u, z = u, r = 4u

where G(z) = λ
2

(z − f)2 + β(z − f log z)

The augmented Lagrangian functional for the constrained
optimization problem (5) is defined as:

arg min
u,d,r

(α‖(d1, d2)‖1 + µ‖r‖1 +
γ

2
G(z)+ (6)

+
ρ1

2
‖z − u− bz‖22 +

ρ2

2
‖d1 −∇1u− b1‖22+

+
ρ2

2
‖d2 −∇2u− b2‖22 +

ρ3

2
‖r −4u− b3‖22)

where ρ1, ρ2, λ, γ - positive parameters
bz, bi, (i = 1..3) - variables of the Bregman iterations
(∇1u,∇2u) - spatial derivatives
(d1, d2) - splitting variables

The discrete gradient ∇u and Laplacian operator 4u of an
image u for the pixel at coordinates (i, j) in u(i = 1..M ; k =
1..N) are defined like:

∇uj,k = (∇1u(i, j),∇2u(i, j))

∇1u(i, j) = u(i+ 1, j)− u(i− 1, j)

∇2u(i, j) = u(i, j + 1)− u(i, j − 1)

|∇u| =
√

(∇1u(i, j))2 + (∇2u(i, j))2

4 u(i, j) = −4u(i, j) + u(i+ 1, j)

+ u(i− 1, j) + u(i, j + 1) + u(i, j − 1)

The split Bregman method for solving (6) is described as
follows:

u(k+1) = arg min
u

ρ1

2
‖z − u− bz‖22 +

ρ2

2
‖d1 −∇1u− b1‖22

+
ρ2

2
‖d2 −∇2u− b2‖22 +

ρ3

2
‖r −4u− b3‖22
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z(k+1) = arg min
z

γ

2
G(z) +

ρ1

2
‖z − u(k+1) − b(k)

z ‖22

d
(k+1)
1 = arg min

d
α‖d1‖1 +

ρ2

2
‖d1 −∇1u

(k+1) − b(k)
1 ‖

2
2

d
(k+1)
2 = arg min

d
α‖d2‖1 +

ρ2

2
‖d2 −∇2u

(k+1) − b(k)
2 ‖

2
2

r(k+1) = arg min
r

µ‖r‖1 +
ρ3

2
‖r −4u(k+1) − b(k)

3 ‖
2
2

b(k+1)
z = b(k)

z + u(k+1) − z(k+1)

b
(k+1)
1 = b

(k)
1 +∇1u

(k+1) − d(k+1)
1

b
(k+1)
2 = b

(k)
2 +∇2u

(k+1) − d(k+1)
2

b
(k+1)
3 = b

(k)
3 +4u(k+1) − r(k+1)

There are four subproblems to solve: u, z, d and r.

Subproblem 1. The u subproblem is a quadratic optimization
problem, whose optimality condition reads:

ρ1(u− z + bz) + ρ2∇T1 (∇1u+ b1 − d1)

+ρ2∇T2 (∇2u+ b2 − d2) + ρ3 4 (4u+ b3 − r) = 0 (7)

We can rewrite the equation (7) as:(
ρ1 + ρ2(∇T1∇1 +∇T2∇2) + ρ3(4(4))

)
u(k+1)

=ρ1(z(k) − b(k)
z ) + ρ2∇T1 (d

(k)
1 − b(k)

1 )

+ρ2∇T2 (d
(k)
2 − b(k)

2 ) + ρ3 4 (r(k) − b(k)
3 ) (8)

under considering periodic boundary conditions. Note that
left-hand-side matrix in (8) includes a Laplacian matrix
(∇T1∇1 + ∇T2∇2 = −∆) and is strictly diagonally dominant.
Following (Tao et al., 2009, Tai et al., 2011), equation (8) can
be solved efficiently with one Fourier transform operation and
one inverse FFT operation as:

u(k+1) = F−1

(
F(q)

ρ1 − ρ2F(∆) + ρ2F(4(4))

)
(9)

with q = ρ1(z(k) − b(k)
z ) + ρ2∇T1 (d

(k)
1 − b(k)

1 )

+ρ2∇T2 (d
(k)
2 − b(k)

2 ) + ρ3 4 (r(k) − b(k)
3 )

whereF andF−1 are the forward and inverse Fourier transform
operators.

Subproblem 2. The optimality condition for the z
subproblem is given by:

γ

2

(
λ(z − f) + β(1− f

z
)

)
+ ρ1(z − u(k+1) − b(k)

z ) = 0

This equation can be rewritten as:

(
γ

2
λ+ ρ1)(z(k+1))2

−(
γ

2
λf − β γ

2
+ ρ1(u(k+1) + b(k)

z ))z(k+1) − γ

2
βf = 0

The positive solution is given by:

z(k+1) = W (k) +

√
(W (k))2 +

γβf

γλ+ 2ρ1
(10)

where

W (k) =
λγf − βγ + 2ρ1(z(k+1) + b

(k)
z )

2(γλ1 + 2ρ1)

Subproblem 3. The solution of the d = (d1, d2) subproblem
can readily be obtained by applying the soft thresholding
operator (Micchelli et al., 2011). We can use shrinkage
operators to compute the optimal values of d1 and d2 separately:

d
(k+1)
i = shrink

(
∇iu(k+1) + b

(k)
i ,

α

ρ2

)
(11)

=
∇iu(k+1) + b

(k)
i∣∣∣∇iu(k+1) + b
(k)
i

∣∣∣ ·max

(∣∣∣∇iu(k+1) + b
(k)
i

∣∣∣− α

ρ2
, 0

)

Subproblem 4. The solution of the r subproblem can be
obtained by applying the soft thresholding operator too:

r(k+1) = shrink
(
4u(k+1) + b

(k)
3 ,

µ

ρ3

)
(12)

=
4u(k+1) + b

(k)
3∣∣∣4u(k+1) + b
(k)
3

∣∣∣ ·max

(∣∣∣4u(k+1) + b
(k)
3

∣∣∣− µ

ρ3
, 0

)

The algorithm. The complete method is summarized in
Algorithm (1). We need a stopping criterion for the iteration;
we end the loop if the maximum number of allowed outer
iterations N has been carried out (to guarantee an upper bound
on running time) or the following condition is satisfied for some
prescribed tolerance ς:

‖u(k) − u(k−1)‖2
‖u(k)‖2

< ς (13)

where ς is a small positive parameter. For our experiments, we
set tolerance in (13) ς = 0.0005 and N = 200.

Algorithm 1 Adaptive Split Bregman Algorithm for
solving the model (2)

1: Initialize: u(0) = ν(0) = f ; b
(0)
i = c(0) = d(0) = 0;

k = 1
2: while Stopping condition is not satisfied do
3: Compute u(k) using (9)
4: Compute z(k+1) using (10)
5: Compute d(k+1)

i for i = 1, 2 using (11)
6: Compute r(k+1) using (12)
7: Update b(k+1)

z = b
(k)
z + u(k+1) − z(k+1)

8: Update b(k+1)
1 = b

(k)
1 +∇1u

(k+1) − d(k+1)
1

9: Update b(k+1)
2 = b

(k)
2 +∇2u

(k+1) − d(k+1)
2

10: Update b(k+1)
3 = b

(k)
3 +4u(k+1) − r(k+1)

11: k = k + 1
12: end while
13: return u

3. EXPERIMENTAL RESULTS

In this section, we demonstrate our algorithm for staircasing
reduction in medical image denoising. All simulations are
performed in Matlab 7.8 on a PC with an Intel Core (TM) i7
CPU at 1.99GHz and 8.00GB of memory. Test images are

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W12, 2019 
Int. Worksh. on “Photogrammetric & Computer Vision Techniques for Video Surveillance, Biometrics and Biomedicine”, 13–15 May 2019, Moscow, Russia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W12-219-2019 | © Authors 2019. CC BY 4.0 License.

 
221



Magnetic resonance imaging (MRI) 1 scans with size 360 ×
360. Noisy observation is generated by Poisson noise with
peak Imax , and by Gaussian noise with standard deviation
σG to the test images. To quantify the denoising results, we
use the Peak-Signal-to-Noise Ratio (PSNR) and the Structural
Similarity Index (SSIM) defined as (Bovik, 2006):

PSNR = 10 log10

(
MNI2

max

‖u∗ − u‖22

)

SSIM(u, u∗) =
(2µuµu∗ + c1)(2σu,u∗ + c2)

(µ2
u + µ2

u∗ + c1)(σ2
u + σ2

u∗ + c2)

where u, u∗ are the original image, the reconstructed or noisy
image accordingly; Imax is the maximum intensity of the
original image; M and N are the number of image pixels
in rows and columns; µu, µu∗ - means of images; σu, σu∗ -
standard deviations (the square root of variance) of images;
σu,u∗ - covariance of two images u and u∗; c1 = (K1L)2,
c2 = (K2L)2, L is the dynamic range of the pixel values (255
for 8-bit grayscale images), and K1 � 1 , K2 � 1 are small
constants.

On Fig. (1) and (2) example results of the proposed method on
test images with various noise levels are shown.

(a)

(b)

(c)

Figure 1. Image Elbow. Recovered images of our method
for removing mixed Poisson–Gaussian noise. From left to
right: the noisy image and its recovered image with noise

level: (a) Imax = 120, σG = 5; (b)
Imax = 120, σG = 10; (c) Imax = 60, σG = 5

1Clinical Images, https://www.healthcare.siemens.co.

uk/magnetic-resonance-imaging/magnetom-world/toolkit/

clinical-images, accessed 20/12/2018.

(a)

(b)

(c)

Figure 2. Image Hip. Recovered images of our method for
removing mixed Poisson–Gaussian noise. From left to

right: the noisy image and its recovered image with noise
level : (a) Imax = 120, σG = 5; (b)

Imax = 120, σG = 10; (c) Imax = 60, σG = 5

Fig. (3) and (5) show original test images and their noisy
images with noise level Imax = 60 and σG = 10, used
in experimental comparisons. We compare our proposed
method with state-of-the-art denoising methods such as SBM
(Goldstein, 2009), MSGD (Pham et al., 2018). All of the
compared methods perform image denoising with their default
parameters. For our proposed method, we set λ = 0.4, β =
0.6, ρ2 = 0.8, ρ3 = 1, α = 4 , µ = 1. The parameters γ and
ρ1 are chosen to give the best PSNR performance.

Fig. (4) and (6) show recovered results of the compared
methods for the test images corrupted by noise with parameters
Imax = 60 and σG = 10. We can easily detect staircase effect
in the mehods SBM and MSGD. It is clear to see that staircase
has been successfully reduced in the results by our method.

The PSNR and SSIM values of different methods are displayed
in Tables (1) and (2). The best values among all the methods
are shown in bold. We can see that the PSNR and SSIM values
of our method are better than those of SBM and MSGD on
different noise levels in most cases. Experiments demonstrate
that the proposed model outperforms relative methods for
mixed Poison-Gaussian removal

4. CONCLUSION

In this paper, we propose an adaptive variational model for
medical images corrupted with a mixed Poisson-Gaussian
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(a) (b)

(c) (d)

Figure 3. Image Elbow: (a) Original image, (b) the
zoomed-in part of the original image, (c) noisy image, (d)

the zoomed-in part of the noisy image

SBM

MSGD

Our proposed

Figure 4. Recovered results of the compared methods for
the Elbow Image. From left to right: the restored images

and their the zoomed-in part

noise. The new model not only removes noise on image well,
but also reduces the staircase effect. In addition, we give an
effective algorithm for the proposed model which allows to

(a) (b)

(c) (d)

Figure 5. Image ’Hip’: (a) Original image, (b) the
zoomed-in part of the original image, (c) noisy image, (d)

the zoomed-in part of the noisy image

SBM

MSGD

Our proposed

Figure 6. Recovered results of the compared methods for
the Hip Image. From left to right: the restored images and

their the zoomed-in part

obtain results outperforming the related methods. Our future
research will consider the application of the proposed model to
mixed Poisson-Gaussian colour image noise removal.
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Image Noisy SBM MSGD Our proposed
Imax σG

Elbow
120 5 26.8681 27.4881 28.2132

10 26.4459 27.1037 27.4336

60 5 25.8111 25.3611 27.0221
10 24.6620 24.8153 25.5741

Hip
120 5 29.3330 31.1894 31.5953

10 29.2205 30.0327 30.3408

60 5 28.3415 27.9522 29.4010
10 26.9792 27.4590 27.9816

Table 1. PSNR values for recovered images given by the compared
methods with various levels

Image Noisy SBM MSGD Our proposed
Imax σG

Elbow
120 5 0.8111 0.8264 0.8548

10 0.8029 0.8217 0.8303

60 5 0.7927 0.7605 0.8019
10 0.7623 0.7456 0.7716

Hip
120 5 0.8010 0.8335 0.8507

10 0.7984 0.8115 0.8171

60 5 0.7836 0.7677 0.8015
10 0.7367 0.7529 0.7579

Table 2. SSIM values for recovered images given by the compared
methods with various levels
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