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ABSTRACT: 

 

The traditional fast marching algorithm for segmentation of the liver is suitable for processing on the central processing unit (CPU) 

platform, however, it is not suitable for implementation on Graphics Processing Unit (GPU). The fuzzy connection algorithm is used 

to extract the blood vessels in the liver, but there is a calculation error. The refinement algorithm is very time consuming when 

extracting the target skeleton line from the 3D image. In this paper, the fast-marching algorithm and the thinning algorithm are 

improved, which can be applied to the GPU computing, The fuzzy algorithm is also improved, and the calculation error of the algorithm 

is solved, making it more suitable for medical image processing. The computing speed of GPU is far faster than CPU. Medical image 

processing is one of the earliest applications where the computing performance is improved by GPU. These three segmentation methods, 

fast marching method, fuzzy connecting method and refinement algorithm are very common in medical image segmentation. Because 

the increment of medical image data results in the extension of computing time for medical image processing, it is necessary to apply 

the high parallelism of the GPU to speed up these algorithms. The experiment results demonstrate the feasibility of our accelerating 

algorithm. 

 

1. INTRODUCTION 

1.1 General Instructions 

The main work of this paper is to first extract the outline of the 

liver in the CT image of the abdomen, and then extract the blood 

vessels in the liver through the fuzzy connection segmentation 

algorithm. Refining the liver blood vessels and obtaining the 

skeleton line of the blood vessels finally. These tasks are based 

on GPU implementations and are compared to the CPU 

calculations.   
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Figure 1. Framework of our method 

 

1.2 Hepatic segmentation 

FMM is an effective method of hepatic segmentation  (Wan et al. 

2000) and achieve a worst case complexity of O(NlogN). It uses 

the min-heap data structure for adjusting the order of 

computational step. However, min-heap is very effective data 

structure on the CPU sequential paltform, which represent a 

bottleneck that thwarts parallelization. In order to adapt on 

CUDA SIMD architectures, parallel algorithm extends points 

processing to thread block processing, and uses Rouy-Tourin 

algorithm for solving equation in every one thread block. Finally, 

itachieves more than 3x against the CPU sequential algorithm in 

2D hepatic segmentation (Li et al. 2015). 

 

1.3 Vascular extraction 

A paralleled CUDA version of kFOE(CUDA-kFOE) was 

proposed to segment medical images. CUDA-kFOE achieves fast 

segmentation when processing large image datasets. However, it 

cannot precisely handle the competition of edge points when 

update operations happen by multiple threads simultaneously, 

thus an iterative correction method to improve CUDA-kFOE was 

proposed. By analyzing all the pathways of marginal voxels 

affinity and their consequently caused results, a two iteration 

correction scheme is employed to achieve the accurate 

calculation. In these two iterations, the resulted marginal voxels 

from the first iteration are used as the correction input of the 

second iteration, therefore, the values of affinity are corrected 

inthe second iteration. 

 

Independent of any image data (such as grey value), the image 

elements are considered to have a fuzzy adjacency relationship 

(Eapen et al. 2014), wherein the fuzzy adjacency instance of the 

fuzzy relationship can be expressed as the following formula: 

𝜇𝜔(𝑎, 𝑏) = {

1

1+𝑘1(√∑ (𝑎𝑖−𝑏𝑖)2𝑛
𝑖=1

 ,   𝑖𝑓 ∑ |𝑎𝑖 − 𝑏𝑖|𝑛
𝑖=1 ≤ n

       0                ,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒          

  (1) 

 

where  𝑘1 = a non-negative constant 

 𝑎, 𝑏 = any two points on the n-dimensional Euclidean  

space 

 

The fuzzy affinity of a fuzzy relationship 𝜉 is expressed as: 
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                  𝜇𝜉(𝑎, 𝑏)=
𝜇𝜔(𝑎,𝑏)

1+𝑘2|𝑓(𝑎)+𝑓(𝑏)|
                         (2) 

 

where k2 = a non-negative constant，f(a), f(b) is equal to the 

gray values of point a and point b. 

 

1.4 Vascular skeleton line extraction 

Thinning algorithm is a frequently used method for extracting 

object skeletons in 3D image. However, sequential thinning 

algorithm is a very time consuming computing process in CPU 

platform. By using powerful computation of Graphic Process 

Unit (GPU) to parallelize the 3D thinning algorithm is very 

necessary. There are two major methods to image thinning: a) 

decision trees and b) kernel-based filters. Because of more 

suitable for CUDA architectures, a12-subiteration image 

thinning algorithm which is kernel-based has been implemented 

for hepatic vessel thinning. The speedup achieved with the 

parallel algorithm for GPU achieves 11.6x, 12.0x and 13.8x 

against the CPU single-process version. 

 

Eventually, this paper adopt a 3D thinning algorithm based on 

12-sub-direction iteration (Zhang et al. 2017). The algorithm 

compares the simple points by using the mask method, which is 

suitable for computing in the parallel architecture of the GPU. 

The binarized blood vessel image obtained in the second step is 

refined to achieve a skeleton line of the blood vessel (Chowriappa 

et al. 2014). 

 

2. RELATED WORK 

 In terms of image registration, (Eklund A et al. 2012) proposed 

CUDA uses volumetric registration with inseparable 3D filtering. 

(Yuen et al. 2008)proposed a real-time ultrasonic volume 

dynamic compensation system based on GPU, which can be used 

to complete mitral valve repair in heartbeat. In terms of image 

segmentation, (Rumpf et al. 2001) first used the GPU to 

accelerate the level set method to segment the 2-D brain image. 

(Erdt et al. 2008) combined the characteristics of GPU to 

accelerate the region growing algorithm in parallel, which is 

applied in liver vessel segmentation. (Pan et al. 

2008)implemented a CUDA-based replacement fast region 

growth algorithm to segment different human tissues and organs. 

(Strzodka et al. 2003)  implemented an object detection and 

gesture recognition algorithm using Hough transform on the 

GPU. In terms of image denoising, (Schwarzkopf et al. 2003) 

achieved the effect of 3D image denoising based on nonlinear 

anisotropic diffusion filtering by CUDA acceleration. (Xu and 

Pattanaik. 2005) based on bilateral filtering to achieve Monte 

Carlo method on the GPU to achieve noise reduction.(Liu et al. 

2018) implemented an improved 3D U-net architecture, which 

achieves a more precise segmentation effect, (Alirr et al. 

2018)introduced a fully automated liver tumor segmentation 

method in the contrast-enhanced CT dataset. (Lebre et al, 2018) 

proposes an automatic three-dimensional skeleton segmentation 

method based on bones. (Matthies P et al, 2019) verified an 

interactive software tool that provides semi-automatic 

segmentation of co-registered image data. (Bal E et al, 2018) 

present an automatic method for liver segmentation (CT) portal 

vein phase scan liver segmentation and fibrosis classification. 

This method can perform liver volume segmentation and fibrosis 

grade in abdominal CT images. A multi-distribution level set 

method is proposed (Pan Q et al, 2018) to overcome the 

insufficient segmentation and over-segmentation in liver tumor 

segmentation. 

 

3. PROPOSED METHOD 

3.1 Description 

The main work of this paper is to extract the liver contour from 

the abdominal CT image and finally get the vascular skeleton line. 

These tasks are all based on GPU implementation. It consists 

mainly of three main steps: 

1. Using the improved FMM algorithm to extract the liver 

contour from the abdominal CT image. 

2. Extraction of blood vessels in the liver by fuzzy 

connection segmentation algorithm. 

3. Extracting the skeleton line of blood vessels from the 

blood vessels of the liver by a refinement algorithm. 

 

3.2 Hepatic segmentation 

The Fast Marching method proposed by (Sethian et al, 2003) is a 

very effective numerical method for solving the boundary value 

problem of the equation function. It is limited by the upper limit 

of the single core frequency of the CPU, and the solution speed 

is not very fast. The iterative method for solving the equation of 

the equation is proposed by Rouy and Tourin. Due to the 

simplicity and parallelism of the Rouy-Tourin iterative algorithm, 

it is very suitable for running under the CUDA architecture, and 

each thread can correspond to one pixel. However, due to the 

operation of the architecture, each thread can be iterated for one 

pixel. Due to the parallel disorder of threads and thread blocks in 

CUDA programs, it is difficult to control the iterative calculation 

at the point of no value, which leads to the phenomenon of 

inefficiency. In view of the above defects, this paper combines 

the narrow band idea of FMM algorithm and applies it to the 

control of CUDA thread block, which solves the problem of non-

computing thread block repeated loading participation operation. 
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Figure 2. Algorithm flow based on thread block iteration 

 

3.2.1 Algorithm Description：The algorithm consists of two 

main steps, including initialization and update. In the 

initialization, the initialization time value T𝑖,𝑗 = 0 of the velocity 

image seed point coordinates is first set, and the remaining points 

are set to a very large value. The next step is to add the block 

where the seed point is located to the active block array L𝑏 , 

initialize the iterative kernel function and load it into the CUDA 

device. After the active thread block iterates enough times, use 

the protocol operation to determine the thread block diffusion 

direction. Repeat this step until the thread The block array L𝑏 is 

empty. The block diagram of the algorithm is shown in FIG. 2. 

 

3.3 Vascular skeleton line extraction 

Fuzzy connection segmentation was first proposed by (Udupa et 
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al, 1996). The algorithm divides the target and background by 

comparing the connectivity of the seed point with the target area 

and the background area. The fuzzy connected image 

segmentation algorithm is abbreviated as kFOE, which uses the 

Dijkstra algorithm of the dynamic programming method to find 

the best path from the target point o to each pixel. 

 

The CUDA-kFOE algorithm proposed by (Zhuge et al, 2009) has 

parallelized fuzzy connections, which is divided into two steps: 

 

1. Affinity calculation. Affinity calculation is a calculation 

between voxel pairs (c, d)  and stores the calculated 

affinity μ𝑘(𝑐, 𝑑) in GPU-specific memory. 

2. Update fuzzy connections. The fuzzy connection 

algorithm for voxels is essentially a single-source 

Dijkstra algorithm. In devices with CUDA computing 

power greater than 1.1, atomic operations are used to 

solve multi-threaded access. The use of atomic operations 

solves the problem of multi-threaded access to the same 

address conflict, and basically achieves its parallelization. 

 

The CUDA-kFOE algorithm has two shortcomings: First, 

calculating the ambiguity in step 1 and saving it in the GPU 

memory requires a lot of extra space, which is difficult to perform 

in a graphics card with limited memory capacity; Second, Mutual 

interference at the edges between the blocks causes errors in the 

calculations at the edges of the blocks. 

 

In order to solve the problem of insufficient ambiguity storage 

space, this paper uses the lookup table method to optimize the 

problem of insufficient GPU memory space. In the process of 

determining the global fuzzy relationship, a local fuzzy 

relationship is needed. Therefore, many identical pairs of pixels 

are repeatedly calculated in the calculation process. In addition, 

the object studied in this paper is mainly the blood vessel 

segmentation inside the liver and the gray scale of the CT image. 

Values are often distributed between 100 −  230. The above 

analysis results in constructing a 256 × 256 lookup table to store 

all the connection strengths μ𝑘(𝑐, 𝑑) of the pixels between (c, d) 

before calculating the global fuzzy scene, where c ∈
[0, 255], d ∈ [0, 255] , Then, in the process of calculating the 

fuzzy scene, the affinity value of any pixel pair (c, d) can be 

directly taken out from the table, which not only shortens the 

calculation time, but also solves the problem that the GPU has 

limited video memory. 

 

In order to solve the error problem, it is necessary to analyze the 

source of the error. Considering that the starting point of the 

algorithm is a single seed point, and the fuzzy scene is calculated 

in the breadth-first order, the calculation process can be regarded 

as the generation process of the tree structure rooted at the seed 

point. If the affinity value that needs to be propagated outward is 

indicated in a, then when a is passed to the edge of the block, the 

problem of competition is caused by the need to propagate the 

affinity value across the block. Since the seed point propagates 

outward in the tree during the propagation process, the a between 

the block and the block does not appear to be a loop, otherwise it 

contradicts the tree propagation. 

 

From the above analysis, it can be concluded that in theory, three 

times correction iterations are needed to completely eliminate the 

influence of the thread block edge point competition. However, 

after experimentation, two times iterations are enough to 

eliminate the error caused by the transfer between such threads. 

Therefore, the algorithm in this paper combines the two steps in 

CUDA-kFOE into one step, and also reduces the time for data 

exchange between the host and the device in the iterative 

operation. The flow of the improved CUDA-kFOE is shown in 

FIG. 3. 

 

3.4 Vascular skeleton line extraction 

The binary refinement algorithm is usually used to find the center 

line or skeleton line of the target in the image. The main central 

idea is to continually iteratively etch the surface of the target until 

the target has only the skeleton line. In order to ensure the center 

position of the skeleton line and the connectivity of the target 

body, the corrosion must be performed symmetrically. In order 

to prevent voids in the target body, the corrosion operation must 

be very cautious. At present, the two main image refinement 

methods are: 1) based on decision tree method (Lee et al, 1994) , 

2) based on refinement kernel filtering (Jonker et al, 2000). This 

section proposes a refined kernel filtering based algorithm for 

CUDA for the second method. 
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Figure 3. Improved CUDA-kFOE algorithm flow 

 

Most 3D refinement algorithms are considered to be "parallel" 

refinement algorithms, but "parallelization" does not specify 

execution on the CPU or GPU. When all of these voxels satisfy 

a deletion condition at the same time, in the single iteration of the 

refinement algorithm, the order of some voxel deletions will 

affect each other, so that these "parallel" ways of deleting voxels 

will cause the 3D model topology (Kuba et al, 1998). Therefore, 

it is very important to use some different strategies (Kong et al, 

1995) to avoid this kind of out-of-synchronization: 

 

1. 1. k-direction refinement algorithm: Each global iteration 

is divided into several sub-iterations and the template of 

the template is changed. Usually the 3 × 3 × 3 neighbor 

position of a voxel will determine the result of the 

template. 

2. Sub-domain-based refinement algorithm: This method is           

different from 1). The method consists in dividing the 3D    

model into several sub-domains, and removing some 

voxels contained in these sub-fields during each sub-

iteration. 

It is easy to create a binarized kernel function that is responsible 

for determining voxels by each thread. As this step is executed, 

the entire program model enters the main loop, and the next step 

will be the core step of the algorithm, which is the loop that 

handles the sub-iterations. 

 

As we all know, communication between CPU and GPU requires 

a lot of computing resources (bandwidth), so the basic principle 

of GPGPU programming is to put most of the computing 

information into GPU memory, so that a lot of data can be 

avoided through PCI-E. Time dissipation due to information 

transfer on the CPU and GPU side. Similarly, in order to reduce 

the time taken by the GPU to launch the calling kernel, the three 

sub-iteration steps obtained from the above analysis are merged 

into two kernels for processing. In these 2 kernels, each thread is 

responsible for determining whether a voxel is a boundary point, 
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and if it is a boundary point, it generates rotation and mapping of 

its 3 × 3 × 3 neighbors in a specific direction, and then matches 

14 templates (only You need to match any template successfully), 

and finally delete all the simple points. 

 

It is noted that the main purpose of shared memory in the GPU is 

to reduce the amount of data that is repeatedly accessed in global 

memory and copy the data into shared memory to reduce the 

extra data access overhead. Because in the kernel function, if 

global memory is used as the intermediate storage station, the 

global memory is accessed once when the boundary point 

neighbor is read, then the neighbor index is converted and written 

to the global memory once, and finally the converted neighbor 

needs to be read. And repeatedly read and write global memory, 

such as matching with the template, which will inevitably lead to 

additional data access overhead. 

 

Another noteworthy thing is that in order to avoid data 

inconsistency, a double cache strategy will be adopted to ensure 

data consistency. If only one cache is used, it may cause 

unpredictable results when the neighbor point determined by 

thread B between thread A and black dot p contains this point p. 

For this reason, two pieces of memory will be requested in global 

memory, where cache A is used to store 3D images and cache B 

is used to store its copy results. In the kernel function, the voxel 

and neighbor information is read from cache A, and the template 

is parsed and tried, and finally the simple point of relative should 

be deleted in cache B. In the next sub-iteration, the two caches 

can be exchanged. 

 

4. RESULTS AND DISCUSSION 

In this experiment, three CT datasets were subjected respectively 

to liver extraction to obtain a liver portion. Figs. 4 are the original 

three sets of CT images, and Fig. 5 is the three sets of liver 

contours extracted by the CPU and GPU respectively. As can be 

seen from the figures, there is almost no difference in the outline 

of the liver extracted by the CPU and GPU. Fig. 6 shows a 

comparison diagram of the three sets of data after the fuzzy 

connection processing of Fig. 6 is performed before and after the 

threshold processing. Fig. 7 is a binarized image obtained by 

reducing the blur connection of Fig. 6.  

 

4.1 Hepatic segmentation 

In terms of data, semi-automated liver contour segmentation was 

performed using multiple sets of abdominal CT slices in different 

regions. The image size was 512×512. 

                                                                                                                             

(a) (b) (c)  
 

Figure 4. Three CT datasets: (a) I, (b) II, (c) III.  

 

As shown in FIG. 4, the liver contours of the three CT data are 

arranged from the largest to the smallest, but from the 

acceleration ratio in the table 1, the acceleration performance of 

the GPU decreases as the area decreases. This is because the 

information exchange with the CPU during the GPU algorithm 

operation process, this part of the time as the scale of the 

operation decreases, the proportion of the total time will become 

larger and larger, so there is the speedup ratio of GPU and CPU. 

Increase as the liver contour increases. 

 

As shown in Figs. 5, (a), (c), and (e) are the results of calculation 

by the CPU, and (b), (d), and (f) are the results of calculation 

using the GPU. It can be seen from the figure that there is no 

difference in the outline of the liver, but there are subtle 

differences in internal details. Because the GPU is limited to 

double-precision floating-point operations, so it takes a single-

precision floating-point operation and is different from the CPU 

instruction set in rounding. 

 

Table1. GPU vs. CPU time for 3 different CT datasets 

CT 

data 

Seed point 

coordinates 

Stop 

time

（ms） 

CPU-

FMM 

(ms) 

GPU 

(ms) 

Speedup 

ratio 

1 （129,21） 600 15.2 3.2 4.75 

2 （123,245） 450 12.7 3.3 3.85 

3 （122,254） 300 7.3 2.9 2.52 

 

(a) (b) (c)

(d) (e) (f)
 

 

Figure 5. GPU vs. CPU segmentation results 

 

4.2 Vascular extraction 

After experimental comparison, as shown in Tables 2 - 4, after 

experimental comparison, the experimental data after iterative 

correction is almost identical to the fuzzy connection result of the 

serial version of the CPU. Although the original CUDA-kFOE 

algorithm with a slightly iterative correction is slightly behind in 

speed, it still can improve the speed of the original CPU 

algorithm. After the fuzzy scene is calculated, a threshold is 

required to be binarized to produce the final processing result. 

The experimental results are shown in Fig. 6, where (a), (c), and 

(e) are the results of no threshold processing, and (b), (d), and (f) 

are the processing results with a threshold of 0.5. 

 

4.3 Vascular skeleton line extraction 

As show in FIG. 7, the test data part of this step is the binary 

image obtained by the fuzzy connection refinement in the 

previous step, and the second seed point of the first group and the 

third seed point of the second group in the fuzzy connection 

segmentation result are extracted as a test. The experimental data 

uses the unsigned char data type, in which the voxel value of the 

blood vessel is 255 and the voxel value of the background point 

is 0. Comparing the GPU parallel computing time with the time 

efficiency of the CPU serial operation, the acceleration effect of 

about 10 times is obtained, which enables real-time display 

refinement. The experimental results are shown in Table 5. 
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(a) (b) (c)

(d) (e) (f)

 
 

Figure 6. Test results obtained using three datasets 

 

4.4 Conclusion 

In this work, we propose an improvement of the FMM algorithm, 

the CUDA-based fuzzy connected algorithm, and the           

CUDA-based 12-subiterative thinning algorithm, so that it can 

run better under the GPU framework than CPU. Firstly, the FMM 

algorithm is improved to be more suitable for running in the GPU  

In this work, we propose an improvement of the FMM algorithm, 

the CUDA-based fuzzy connected algorithm, and the           

CUDA-based 12-subiterative thinning algorithm, so that it can 

run better under the GPU framework than CPU. Firstly, the FMM 

algorithm is improved to be more suitable for running in the GPU 

and used for liver segmentation. Then the CUDA-based 

connected algorithm is improved to improve the accuracy while 

the run time is not greatly extended. Finally, Through the    

CUDA-based 12-subiterative thinning algorithm, the skeleton 

line of the target body can be extracted from the 3D image, and 

compared with the time efficiency of the serial operation of the 

CPU, an acceleration effect of about 10 times is obtained. 

 

Table 2. CT dataset I 

 

(a) (b) (c)

(d) (e) (f)
 

 

Figure 7. Comparison of results before and after 

refinement of three datasets 

 

Table 3. CT dataset II 

 

Table 4. CT dataset III 

 

Table 5. CPU vs. GPU refinement time 

Data size 
CPU serial 

time /s 

GPU serial 

time /s 

Speedup 

ratio 

512×512×155 27.5 2.30 12.0 

512×512×175 22.7 1.64 13.8 

512×512×135 13.3 1.15 11.6 
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Seed 

point 

Serial 

algorithm 

runtime /s 

CUDA-kFOE algorithm Ours algorithm 

operation 

hours /s 

Speedup 

ratio 

Error 

points 

operation 

hours /s 

Speedup 

ratio 

Error 

points 

(183,  

279,  

76) 

288.8 63.9 4.52 3560 74.8 3.86 2 

(167,  

257,  

107) 

267.4 63.5 4.21 1147 74.0 3.61 0 

(158, 

 247, 

 148) 

230.5 61.9 3.72 526 70.8 3.26 0 

Seed 

point 

Serial 

algorithm 

runtime /s 

CUDA-kFOE algorithm Ours algorithm 

operatio

n hours 

/s 

Speedu

p ratio 

Error 

points 

operatio

n hours    

/s 

Speedup 

ratio 

Error 

points 

(197,  

258, 

123) 

281.6 63.8 4.41 762 72.3 3.89 0 

(163,  

187, 

 86) 

283.8 60.6 4.68 616 71.0 4.00 0 

(196,  

188,  

110) 

247.9 56.2 4.41 956 66.0 3.76 0 

Seed 

point 

Serial 

algorithm 

runtime /s 

CUDA-kFOE algorithm Ours algorithm 

operatio

n hours 

/s 

Speedu

p ratio 

Error 

points 

operation 

hours /s 

Speed

up 

ratio 

Error 

points 

(189, 

244, 

180) 

245.5 73.3 3.47 722 81.8 3.11 0.7 

(144, 

239, 

147) 

340.1 60.6 5.61 1147 84.2 4.04 0.7 

(107, 

223, 

117) 

386.7 73.4 5.27 526 86.8 4.46 0 
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