
AUTOMATED EXTRACTION OF LIVER OUTLINES FROM COMPUTED

TOMOGRAPHY SCAN IMAGES USING A CUDA-BASED SEGMENTATION METHOD

Yiping Chen, Dong Li, Qing Zhu, Cheng Wang, Jonathan Li

Fujian Key Laboratory of Sensing and Computing for Smart City, School of Information Science and Engineering, Xiamen

University, Xiamen 361005, China – (chenyiping, cwang, junli)@xmu.edu.cn

Commission II, WG II/10

KEY WORDS: Live Outline, CT Scan, Object Extraction, Image Segmentation, Hepatic Segmentation, Vascular Extraction,

ABSTRACT:

The traditional fast marching algorithm for segmentation of the liver is suitable for processing on the central processing unit (CPU)

platform, however, it is not suitable for implementation on Graphics Processing Unit (GPU). The fuzzy connection algorithm is used

to extract the blood vessels in the liver, but there is a calculation error. The refinement algorithm is very time consuming when

extracting the target skeleton line from the 3D image. In this paper, the fast-marching algorithm and the thinning algorithm are

improved, which can be applied to the GPU computing, The fuzzy algorithm is also improved, and the calculation error of the algorithm

is solved, making it more suitable for medical image processing. The computing speed of GPU is far faster than CPU. Medical image

processing is one of the earliest applications where the computing performance is improved by GPU. These three segmentation methods,

fast marching method, fuzzy connecting method and refinement algorithm are very common in medical image segmentation. Because

the increment of medical image data results in the extension of computing time for medical image processing, it is necessary to apply

the high parallelism of the GPU to speed up these algorithms. The experiment results demonstrate the feasibility of our accelerating

algorithm.

1. INTRODUCTION

1.1 General Instructions

The main work of this paper is to first extract the outline of the

liver in the CT image of the abdomen, and then extract the blood

vessels in the liver through the fuzzy connection segmentation

algorithm. Refining the liver blood vessels and obtaining the

skeleton line of the blood vessels finally. These tasks are based

on GPU implementations and are compared to the CPU

calculations.

CT Image

(size 512*512)

Vascular extraction

Hepatic segmentation

Extracted liver outline

Threshold

processing

Hepatic vessel

thinning

Thinning algorithm

processing

Figure 1. Framework of our method

1.2 Hepatic segmentation

FMM is an effective method of hepatic segmentation (Wan et al.

2000) and achieve a worst case complexity of O(NlogN). It uses

the min-heap data structure for adjusting the order of

computational step. However, min-heap is very effective data

structure on the CPU sequential paltform, which represent a

bottleneck that thwarts parallelization. In order to adapt on

CUDA SIMD architectures, parallel algorithm extends points

processing to thread block processing, and uses Rouy-Tourin

algorithm for solving equation in every one thread block. Finally,

itachieves more than 3x against the CPU sequential algorithm in

2D hepatic segmentation (Li et al. 2015).

1.3 Vascular extraction

A paralleled CUDA version of kFOE(CUDA-kFOE) was

proposed to segment medical images. CUDA-kFOE achieves fast

segmentation when processing large image datasets. However, it

cannot precisely handle the competition of edge points when

update operations happen by multiple threads simultaneously,

thus an iterative correction method to improve CUDA-kFOE was

proposed. By analyzing all the pathways of marginal voxels

affinity and their consequently caused results, a two iteration

correction scheme is employed to achieve the accurate

calculation. In these two iterations, the resulted marginal voxels

from the first iteration are used as the correction input of the

second iteration, therefore, the values of affinity are corrected

inthe second iteration.

Independent of any image data (such as grey value), the image

elements are considered to have a fuzzy adjacency relationship

(Eapen et al. 2014), wherein the fuzzy adjacency instance of the

fuzzy relationship can be expressed as the following formula:

𝜇𝜔(𝑎, 𝑏) = {

1

1+𝑘1(√∑ (𝑎𝑖−𝑏𝑖)2𝑛
𝑖=1

 , 𝑖𝑓 ∑ |𝑎𝑖 − 𝑏𝑖|𝑛
𝑖=1 ≤ n

 0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (1)

where 𝑘1 = a non-negative constant

 𝑎, 𝑏 = any two points on the n-dimensional Euclidean

space

The fuzzy affinity of a fuzzy relationship 𝜉 is expressed as:

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W12, 2019
Int. Worksh. on “Photogrammetric & Computer Vision Techniques for Video Surveillance, Biometrics and Biomedicine”, 13–15 May 2019, Moscow, Russia

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-W12-31-2019 | © Authors 2019. CC BY 4.0 License.

31

 𝜇𝜉(𝑎, 𝑏)=
𝜇𝜔(𝑎,𝑏)

1+𝑘2|𝑓(𝑎)+𝑓(𝑏)|
 (2)

where k2 = a non-negative constant，f(a), f(b) is equal to the

gray values of point a and point b.

1.4 Vascular skeleton line extraction

Thinning algorithm is a frequently used method for extracting

object skeletons in 3D image. However, sequential thinning

algorithm is a very time consuming computing process in CPU

platform. By using powerful computation of Graphic Process

Unit (GPU) to parallelize the 3D thinning algorithm is very

necessary. There are two major methods to image thinning: a)

decision trees and b) kernel-based filters. Because of more

suitable for CUDA architectures, a12-subiteration image

thinning algorithm which is kernel-based has been implemented

for hepatic vessel thinning. The speedup achieved with the

parallel algorithm for GPU achieves 11.6x, 12.0x and 13.8x

against the CPU single-process version.

Eventually, this paper adopt a 3D thinning algorithm based on

12-sub-direction iteration (Zhang et al. 2017). The algorithm

compares the simple points by using the mask method, which is

suitable for computing in the parallel architecture of the GPU.

The binarized blood vessel image obtained in the second step is

refined to achieve a skeleton line of the blood vessel (Chowriappa

et al. 2014).

2. RELATED WORK

 In terms of image registration, (Eklund A et al. 2012) proposed

CUDA uses volumetric registration with inseparable 3D filtering.

(Yuen et al. 2008)proposed a real-time ultrasonic volume

dynamic compensation system based on GPU, which can be used

to complete mitral valve repair in heartbeat. In terms of image

segmentation, (Rumpf et al. 2001) first used the GPU to

accelerate the level set method to segment the 2-D brain image.

(Erdt et al. 2008) combined the characteristics of GPU to

accelerate the region growing algorithm in parallel, which is

applied in liver vessel segmentation. (Pan et al.

2008)implemented a CUDA-based replacement fast region

growth algorithm to segment different human tissues and organs.

(Strzodka et al. 2003) implemented an object detection and

gesture recognition algorithm using Hough transform on the

GPU. In terms of image denoising, (Schwarzkopf et al. 2003)

achieved the effect of 3D image denoising based on nonlinear

anisotropic diffusion filtering by CUDA acceleration. (Xu and

Pattanaik. 2005) based on bilateral filtering to achieve Monte

Carlo method on the GPU to achieve noise reduction.(Liu et al.

2018) implemented an improved 3D U-net architecture, which

achieves a more precise segmentation effect, (Alirr et al.

2018)introduced a fully automated liver tumor segmentation

method in the contrast-enhanced CT dataset. (Lebre et al, 2018)

proposes an automatic three-dimensional skeleton segmentation

method based on bones. (Matthies P et al, 2019) verified an

interactive software tool that provides semi-automatic

segmentation of co-registered image data. (Bal E et al, 2018)

present an automatic method for liver segmentation (CT) portal

vein phase scan liver segmentation and fibrosis classification.

This method can perform liver volume segmentation and fibrosis

grade in abdominal CT images. A multi-distribution level set

method is proposed (Pan Q et al, 2018) to overcome the

insufficient segmentation and over-segmentation in liver tumor

segmentation.

3. PROPOSED METHOD

3.1 Description

The main work of this paper is to extract the liver contour from

the abdominal CT image and finally get the vascular skeleton line.

These tasks are all based on GPU implementation. It consists

mainly of three main steps:

1. Using the improved FMM algorithm to extract the liver

contour from the abdominal CT image.

2. Extraction of blood vessels in the liver by fuzzy

connection segmentation algorithm.

3. Extracting the skeleton line of blood vessels from the

blood vessels of the liver by a refinement algorithm.

3.2 Hepatic segmentation

The Fast Marching method proposed by (Sethian et al, 2003) is a

very effective numerical method for solving the boundary value

problem of the equation function. It is limited by the upper limit

of the single core frequency of the CPU, and the solution speed

is not very fast. The iterative method for solving the equation of

the equation is proposed by Rouy and Tourin. Due to the

simplicity and parallelism of the Rouy-Tourin iterative algorithm,

it is very suitable for running under the CUDA architecture, and

each thread can correspond to one pixel. However, due to the

operation of the architecture, each thread can be iterated for one

pixel. Due to the parallel disorder of threads and thread blocks in

CUDA programs, it is difficult to control the iterative calculation

at the point of no value, which leads to the phenomenon of

inefficiency. In view of the above defects, this paper combines

the narrow band idea of FMM algorithm and applies it to the

control of CUDA thread block, which solves the problem of non-

computing thread block repeated loading participation operation.

Start

Copy data from the

CPU to the GPU

memory

Initialize active thread

block Lb and first arrival

time image T

When the array Lb is

not empty

Run the BLOCK-

KERNEL function
Update array Lb

End

YES

Figure 2. Algorithm flow based on thread block iteration

3.2.1 Algorithm Description：The algorithm consists of two

main steps, including initialization and update. In the

initialization, the initialization time value T𝑖,𝑗 = 0 of the velocity

image seed point coordinates is first set, and the remaining points

are set to a very large value. The next step is to add the block

where the seed point is located to the active block array L𝑏 ,

initialize the iterative kernel function and load it into the CUDA

device. After the active thread block iterates enough times, use

the protocol operation to determine the thread block diffusion

direction. Repeat this step until the thread The block array L𝑏 is

empty. The block diagram of the algorithm is shown in FIG. 2.

3.3 Vascular skeleton line extraction

Fuzzy connection segmentation was first proposed by (Udupa et

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W12, 2019
Int. Worksh. on “Photogrammetric & Computer Vision Techniques for Video Surveillance, Biometrics and Biomedicine”, 13–15 May 2019, Moscow, Russia

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-W12-31-2019 | © Authors 2019. CC BY 4.0 License.

32

al, 1996). The algorithm divides the target and background by

comparing the connectivity of the seed point with the target area

and the background area. The fuzzy connected image

segmentation algorithm is abbreviated as kFOE, which uses the

Dijkstra algorithm of the dynamic programming method to find

the best path from the target point o to each pixel.

The CUDA-kFOE algorithm proposed by (Zhuge et al, 2009) has

parallelized fuzzy connections, which is divided into two steps:

1. Affinity calculation. Affinity calculation is a calculation

between voxel pairs (c, d) and stores the calculated

affinity μ𝑘(𝑐, 𝑑) in GPU-specific memory.

2. Update fuzzy connections. The fuzzy connection

algorithm for voxels is essentially a single-source

Dijkstra algorithm. In devices with CUDA computing

power greater than 1.1, atomic operations are used to

solve multi-threaded access. The use of atomic operations

solves the problem of multi-threaded access to the same

address conflict, and basically achieves its parallelization.

The CUDA-kFOE algorithm has two shortcomings: First,

calculating the ambiguity in step 1 and saving it in the GPU

memory requires a lot of extra space, which is difficult to perform

in a graphics card with limited memory capacity; Second, Mutual

interference at the edges between the blocks causes errors in the

calculations at the edges of the blocks.

In order to solve the problem of insufficient ambiguity storage

space, this paper uses the lookup table method to optimize the

problem of insufficient GPU memory space. In the process of

determining the global fuzzy relationship, a local fuzzy

relationship is needed. Therefore, many identical pairs of pixels

are repeatedly calculated in the calculation process. In addition,

the object studied in this paper is mainly the blood vessel

segmentation inside the liver and the gray scale of the CT image.

Values are often distributed between 100 − 230. The above

analysis results in constructing a 256 × 256 lookup table to store

all the connection strengths μ𝑘(𝑐, 𝑑) of the pixels between (c, d)

before calculating the global fuzzy scene, where c ∈
[0, 255], d ∈ [0, 255] , Then, in the process of calculating the

fuzzy scene, the affinity value of any pixel pair (c, d) can be

directly taken out from the table, which not only shortens the

calculation time, but also solves the problem that the GPU has

limited video memory.

In order to solve the error problem, it is necessary to analyze the

source of the error. Considering that the starting point of the

algorithm is a single seed point, and the fuzzy scene is calculated

in the breadth-first order, the calculation process can be regarded

as the generation process of the tree structure rooted at the seed

point. If the affinity value that needs to be propagated outward is

indicated in a, then when a is passed to the edge of the block, the

problem of competition is caused by the need to propagate the

affinity value across the block. Since the seed point propagates

outward in the tree during the propagation process, the a between

the block and the block does not appear to be a loop, otherwise it

contradicts the tree propagation.

From the above analysis, it can be concluded that in theory, three

times correction iterations are needed to completely eliminate the

influence of the thread block edge point competition. However,

after experimentation, two times iterations are enough to

eliminate the error caused by the transfer between such threads.

Therefore, the algorithm in this paper combines the two steps in

CUDA-kFOE into one step, and also reduces the time for data

exchange between the host and the device in the iterative

operation. The flow of the improved CUDA-kFOE is shown in

FIG. 3.

3.4 Vascular skeleton line extraction

The binary refinement algorithm is usually used to find the center

line or skeleton line of the target in the image. The main central

idea is to continually iteratively etch the surface of the target until

the target has only the skeleton line. In order to ensure the center

position of the skeleton line and the connectivity of the target

body, the corrosion must be performed symmetrically. In order

to prevent voids in the target body, the corrosion operation must

be very cautious. At present, the two main image refinement

methods are: 1) based on decision tree method (Lee et al, 1994) ,

2) based on refinement kernel filtering (Jonker et al, 2000). This

section proposes a refined kernel filtering based algorithm for

CUDA for the second method.

Start
Run the preprocessing

lookup table kernel

Copy data from

the CPU to the

GPU

Run improved

CUDA-kFOE
If update?

Copy data from

the CPU to the

GPU

End

NO

Figure 3. Improved CUDA-kFOE algorithm flow

Most 3D refinement algorithms are considered to be "parallel"

refinement algorithms, but "parallelization" does not specify

execution on the CPU or GPU. When all of these voxels satisfy

a deletion condition at the same time, in the single iteration of the

refinement algorithm, the order of some voxel deletions will

affect each other, so that these "parallel" ways of deleting voxels

will cause the 3D model topology (Kuba et al, 1998). Therefore,

it is very important to use some different strategies (Kong et al,

1995) to avoid this kind of out-of-synchronization:

1. 1. k-direction refinement algorithm: Each global iteration

is divided into several sub-iterations and the template of

the template is changed. Usually the 3 × 3 × 3 neighbor

position of a voxel will determine the result of the

template.

2. Sub-domain-based refinement algorithm: This method is

different from 1). The method consists in dividing the 3D

model into several sub-domains, and removing some

voxels contained in these sub-fields during each sub-

iteration.

It is easy to create a binarized kernel function that is responsible

for determining voxels by each thread. As this step is executed,

the entire program model enters the main loop, and the next step

will be the core step of the algorithm, which is the loop that

handles the sub-iterations.

As we all know, communication between CPU and GPU requires

a lot of computing resources (bandwidth), so the basic principle

of GPGPU programming is to put most of the computing

information into GPU memory, so that a lot of data can be

avoided through PCI-E. Time dissipation due to information

transfer on the CPU and GPU side. Similarly, in order to reduce

the time taken by the GPU to launch the calling kernel, the three

sub-iteration steps obtained from the above analysis are merged

into two kernels for processing. In these 2 kernels, each thread is

responsible for determining whether a voxel is a boundary point,

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W12, 2019
Int. Worksh. on “Photogrammetric & Computer Vision Techniques for Video Surveillance, Biometrics and Biomedicine”, 13–15 May 2019, Moscow, Russia

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-W12-31-2019 | © Authors 2019. CC BY 4.0 License.

33

and if it is a boundary point, it generates rotation and mapping of

its 3 × 3 × 3 neighbors in a specific direction, and then matches

14 templates (only You need to match any template successfully),

and finally delete all the simple points.

It is noted that the main purpose of shared memory in the GPU is

to reduce the amount of data that is repeatedly accessed in global

memory and copy the data into shared memory to reduce the

extra data access overhead. Because in the kernel function, if

global memory is used as the intermediate storage station, the

global memory is accessed once when the boundary point

neighbor is read, then the neighbor index is converted and written

to the global memory once, and finally the converted neighbor

needs to be read. And repeatedly read and write global memory,

such as matching with the template, which will inevitably lead to

additional data access overhead.

Another noteworthy thing is that in order to avoid data

inconsistency, a double cache strategy will be adopted to ensure

data consistency. If only one cache is used, it may cause

unpredictable results when the neighbor point determined by

thread B between thread A and black dot p contains this point p.

For this reason, two pieces of memory will be requested in global

memory, where cache A is used to store 3D images and cache B

is used to store its copy results. In the kernel function, the voxel

and neighbor information is read from cache A, and the template

is parsed and tried, and finally the simple point of relative should

be deleted in cache B. In the next sub-iteration, the two caches

can be exchanged.

4. RESULTS AND DISCUSSION

In this experiment, three CT datasets were subjected respectively

to liver extraction to obtain a liver portion. Figs. 4 are the original

three sets of CT images, and Fig. 5 is the three sets of liver

contours extracted by the CPU and GPU respectively. As can be

seen from the figures, there is almost no difference in the outline

of the liver extracted by the CPU and GPU. Fig. 6 shows a

comparison diagram of the three sets of data after the fuzzy

connection processing of Fig. 6 is performed before and after the

threshold processing. Fig. 7 is a binarized image obtained by

reducing the blur connection of Fig. 6.

4.1 Hepatic segmentation

In terms of data, semi-automated liver contour segmentation was

performed using multiple sets of abdominal CT slices in different

regions. The image size was 512×512.

(a) (b) (c)

Figure 4. Three CT datasets: (a) I, (b) II, (c) III.

As shown in FIG. 4, the liver contours of the three CT data are

arranged from the largest to the smallest, but from the

acceleration ratio in the table 1, the acceleration performance of

the GPU decreases as the area decreases. This is because the

information exchange with the CPU during the GPU algorithm

operation process, this part of the time as the scale of the

operation decreases, the proportion of the total time will become

larger and larger, so there is the speedup ratio of GPU and CPU.

Increase as the liver contour increases.

As shown in Figs. 5, (a), (c), and (e) are the results of calculation

by the CPU, and (b), (d), and (f) are the results of calculation

using the GPU. It can be seen from the figure that there is no

difference in the outline of the liver, but there are subtle

differences in internal details. Because the GPU is limited to

double-precision floating-point operations, so it takes a single-

precision floating-point operation and is different from the CPU

instruction set in rounding.

Table1. GPU vs. CPU time for 3 different CT datasets

CT

data

Seed point

coordinates

Stop

time

（ms）

CPU-

FMM

(ms)

GPU

(ms)

Speedup

ratio

1 （129,21） 600 15.2 3.2 4.75

2 （123,245） 450 12.7 3.3 3.85

3 （122,254） 300 7.3 2.9 2.52

(a) (b) (c)

(d) (e) (f)

Figure 5. GPU vs. CPU segmentation results

4.2 Vascular extraction

After experimental comparison, as shown in Tables 2 - 4, after

experimental comparison, the experimental data after iterative

correction is almost identical to the fuzzy connection result of the

serial version of the CPU. Although the original CUDA-kFOE

algorithm with a slightly iterative correction is slightly behind in

speed, it still can improve the speed of the original CPU

algorithm. After the fuzzy scene is calculated, a threshold is

required to be binarized to produce the final processing result.

The experimental results are shown in Fig. 6, where (a), (c), and

(e) are the results of no threshold processing, and (b), (d), and (f)

are the processing results with a threshold of 0.5.

4.3 Vascular skeleton line extraction

As show in FIG. 7, the test data part of this step is the binary

image obtained by the fuzzy connection refinement in the

previous step, and the second seed point of the first group and the

third seed point of the second group in the fuzzy connection

segmentation result are extracted as a test. The experimental data

uses the unsigned char data type, in which the voxel value of the

blood vessel is 255 and the voxel value of the background point

is 0. Comparing the GPU parallel computing time with the time

efficiency of the CPU serial operation, the acceleration effect of

about 10 times is obtained, which enables real-time display

refinement. The experimental results are shown in Table 5.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W12, 2019
Int. Worksh. on “Photogrammetric & Computer Vision Techniques for Video Surveillance, Biometrics and Biomedicine”, 13–15 May 2019, Moscow, Russia

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-W12-31-2019 | © Authors 2019. CC BY 4.0 License.

34

(a) (b) (c)

(d) (e) (f)

Figure 6. Test results obtained using three datasets

4.4 Conclusion

In this work, we propose an improvement of the FMM algorithm,

the CUDA-based fuzzy connected algorithm, and the

CUDA-based 12-subiterative thinning algorithm, so that it can

run better under the GPU framework than CPU. Firstly, the FMM

algorithm is improved to be more suitable for running in the GPU

In this work, we propose an improvement of the FMM algorithm,

the CUDA-based fuzzy connected algorithm, and the

CUDA-based 12-subiterative thinning algorithm, so that it can

run better under the GPU framework than CPU. Firstly, the FMM

algorithm is improved to be more suitable for running in the GPU

and used for liver segmentation. Then the CUDA-based

connected algorithm is improved to improve the accuracy while

the run time is not greatly extended. Finally, Through the

CUDA-based 12-subiterative thinning algorithm, the skeleton

line of the target body can be extracted from the 3D image, and

compared with the time efficiency of the serial operation of the

CPU, an acceleration effect of about 10 times is obtained.

Table 2. CT dataset I

(a) (b) (c)

(d) (e) (f)

Figure 7. Comparison of results before and after

refinement of three datasets

Table 3. CT dataset II

Table 4. CT dataset III

Table 5. CPU vs. GPU refinement time

Data size
CPU serial

time /s

GPU serial

time /s

Speedup

ratio

512×512×155 27.5 2.30 12.0

512×512×175 22.7 1.64 13.8

512×512×135 13.3 1.15 11.6

5. ACKNOWLEDGEMENT

This work was supported by National Natural Science

Foundation of China (Grant No. 61601392 and No.41871380).

Seed

point

Serial

algorithm

runtime /s

CUDA-kFOE algorithm Ours algorithm

operation

hours /s

Speedup

ratio

Error

points

operation

hours /s

Speedup

ratio

Error

points

(183,

279,

76)

288.8 63.9 4.52 3560 74.8 3.86 2

(167,

257,

107)

267.4 63.5 4.21 1147 74.0 3.61 0

(158,

 247,

 148)

230.5 61.9 3.72 526 70.8 3.26 0

Seed

point

Serial

algorithm

runtime /s

CUDA-kFOE algorithm Ours algorithm

operatio

n hours

/s

Speedu

p ratio

Error

points

operatio

n hours

/s

Speedup

ratio

Error

points

(197,

258,

123)

281.6 63.8 4.41 762 72.3 3.89 0

(163,

187,

 86)

283.8 60.6 4.68 616 71.0 4.00 0

(196,

188,

110)

247.9 56.2 4.41 956 66.0 3.76 0

Seed

point

Serial

algorithm

runtime /s

CUDA-kFOE algorithm Ours algorithm

operatio

n hours

/s

Speedu

p ratio

Error

points

operation

hours /s

Speed

up

ratio

Error

points

(189,

244,

180)

245.5 73.3 3.47 722 81.8 3.11 0.7

(144,

239,

147)

340.1 60.6 5.61 1147 84.2 4.04 0.7

(107,

223,

117)

386.7 73.4 5.27 526 86.8 4.46 0

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W12, 2019
Int. Worksh. on “Photogrammetric & Computer Vision Techniques for Video Surveillance, Biometrics and Biomedicine”, 13–15 May 2019, Moscow, Russia

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-W12-31-2019 | © Authors 2019. CC BY 4.0 License.

35

6. REFERENCES

Chowriappa A, Seo Y, Salunke S, et al. 3-D vascular skeleton

extraction and decomposition. IEEE Journal of Biomedical and

Health Informatics, 18(1), pp. 139-147, 2014.

Eapen M, Korah R, Geetha G. Computerized liver segmentation

from CT Images using Probabilistic Level Set Approach. Arabian

Journal for Science and Engineering, 41(3), pp. 921-934, 2016.

Rouy E. and Tourin A, A viscosity solutions approach to shape-

from-shading. SIAM Journal of Numerical Analysis, 29:867–884,

1992.

Li G, Chen X, Shi F, et al. Automatic liver segmentation based

on shape constraints and deformable graph cut in CT images.

IEEE Transactions on Image Processing, 24(12), pp. 5315-5329,

2015.

Wan S Y, Kiraly A P, Ritman E L, et al. Extraction of the hepatic

vasculature in rats using 3-D micro-CT images. IEEE

Transactions on Medical Imaging, 19(9), pp. 964, 2000.

Zhang Q, Fan Y, Wan J, et al. An efficient and clinical-oriented

3D liver segmentation method. IEEE Access, 5, pp.18737-18744,

2017.

Eklund A, Andersson M, Knutsson H. fMRI analysis on the

GPU—possibilities and challenges. Computer methods and

programs in biomedicine, pp.105(2): 145, 2012.

Yuen S G, Kesner S B, Vasilyev N V, et al. 3D ultrasound-guided

motion compensation system for beating heart mitral valve repair.

Medical Image Computing and Computer-Assisted Intervention–

MICCAI. Springer Berlin Heidelberg, pp.711-719, 2008.

Zhuge Y, Cao Y, Miller R W. GPU accelerated fuzzy connected

image segmentation by using CUDA, Engineering in Medicine

and Biology Society, 2009. EMBC 2009. Annual International

Conference of the IEEE. IEEE, pp. 6341-6344,2009

Rumpf M, Strzodka R. Level set segmentation in graphics

hardware, Image Processing, 2001. Proceedings. 2001

International Conference on. IEEE, pp. 3: 1103-1106, 2001.

Erdt M, Raspe M, Suehling M. Automatic hepatic vessel

segmentation using graphics hardware. Medical imaging and

augmented reality. Springer Berlin Heidelberg, pp. 403-412,

2008.

Pan L, Gu L, Xu J. Implementation of medical image

segmentation in CUDA, Information Technology and

Applications in Biomedicine, 2008. ITAB 2008. International

Conference on. IEEE, pp.82-85,2008.

Strzodka R, Ihrke I, Magnor M. A graphics hardware

implementation of the generalized Hough transform for fast

object recognition, scale, and 3D pose detection, Image Analysis

and Processing, 2003. Proceedings. 12th International

Conference on. IEEE, pp. 188-193, 2003.

Schwarzkopf A, Kalbe T, Bajaj C, et al. Volumetric nonlinear

anisotropic diffusion on GPUs, Scale Space and Variational

Methods in Computer Vision. Springer Berlin Heidelberg, pp.

62-73,2011.

Xu R, Pattanaik S. Non-iterative, robust Monte Carlo noise

reduction. IEEE computer graphics and applications, pp. 25(2):

31-35,2005

Sethian J A. Level set methods and fast marching methods.

Journal of Computing and Information Technology, pp. 11(1): 1-

2,2003.

Udupa J K, Samarasekera S. Fuzzy connectedness and object

definition: theory, algorithms, and applications in image

segmentation. Graphical models and image processing, pp.

58(3): 246-261,1996.

Lee T C, Kashyap R L, Chu C N. Building skeleton models via

3-D medial surface axis thinning algorithms. CVGIP: Graphical

Models and Image Processing, pp. 56(6): 462-478,1994.

Jonker P P. Morphological operations on 3D and 4D images:

From shape primitive detection to skeletonization, Discrete

Geometry for Computer Imagery. Springer Berlin Heidelberg, pp.

371-391,2000.

Palágyi K, Kuba A. A 3D 6-subiteration thinning algorithm for

extracting medial lines. Pattern Recognition Letters, pp. 19(7):

613-627,1998.

Liu C, Cui D, Shi D, et al. Automatic Liver Segmentation in CT

Volumes with Improved 3D U-net, Proceedings of the 2nd

International Symposium on Image Computing and Digital

Medicine. ACM, pp. 78-82,2018.

Alirr O I, Rahni A A A, Golkar E. An automated liver tumour

segmentation from abdominal CT scans for hepatic surgical

planning. International journal of computer assisted radiology

and surgery, pp. 13(8): 1169-1176,2018.

Lebre M A, Vacavant A, Grand-Brochier M, et al. Automatic 3-

D Skeleton-Based Segmentation of Liver Vessels from MRI and

CT for Couinaud Representation, 2018 25th IEEE International

Conference on Image Processing (ICIP). IEEE, pp. 3523-

3527,2018

Matthies P, Wuestemann J, Pinto F A, et al. First Validation of

Semi-automatic Liver Segmentation Algorithm, World Congress

on Medical Physics and Biomedical Engineering 2018. Springer,

Singapore, pp. 279-282,2019.

Bal E, Klang E, Amitai M, et al. Automatic liver volume

segmentation and fibrosis classification, Medical Imaging 2018:

Computer-Aided Diagnosis. International Society for Optics and

Photonics, pp. 10575: 1057506, 2018.

Pan Q, Zhang L, Xia L, et al. Liver tumor segmentation based on

level set, Tenth International Conference on Digital Image

Processing (ICDIP 2018). International Society for Optics and

Photonics, pp. 10806: 108062N,2018.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W12, 2019
Int. Worksh. on “Photogrammetric & Computer Vision Techniques for Video Surveillance, Biometrics and Biomedicine”, 13–15 May 2019, Moscow, Russia

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-W12-31-2019 | © Authors 2019. CC BY 4.0 License.

36

