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ABSTRACT:

In this paper we propose automatic image denoising method based on Hermite functions (HeNLM). It is an extension of non-local
means (NLM) algorithm. Differences between small image blocks (patches) are replaced by differences between feature vectors
thus reducing computational complexity. The features are calculated in coordinate system connected with image gradient and are
invariant to patch rotation. HeNLM method depends on the parameter that controls filtering strength. To chose automatically
this parameter we use a no-reference denoising quality assessment method. It is based on Hessian matrix analysis. We compare
the proposed method with full-reference methods using PSNR metrics, SSIM metrics, and its modifications MSSIM and CMSC.
Image databases TID, DRIVE, BSD, and a set of dermatological immunofluorescence microscopy images were used for the tests.
It was found that more perceptual CMSC and MSSIM metrics give worse correspondence than SSIM and PSNR to the results of
information preservation by the non-reference image denoising.

1. INTRODUCTION

Use of the self-similarity is one of the main classical ideas in
image denoising methods. Even CNN based image denoising
methods benefit from its use (see (Cruz et al., 2018) as
an example). The most known of the self-similarity based
denoising algorithms is non-local means (NLM) (Buades et
al., 2005). Its weights depend on Euclidean distance between
whole blocks (patches) around respective pixels. NLM
provides a high quality of the resulting image. However,
it has high computational complexity. To overcome this
shortcoming of NLM several methods has been proposed
including LJNLM-LR (Manzanera, 2010) and GFNLM (Wang
et al., 2012). In these methods weights depend on the Euclidean
distance between the feature vectors which characterize the
patches. In LJNLM-LR components of the feature vector are
values of Taylor series expansion coefficients, which, in turn,
are the values of image convolution with derivatives of the
Gaussian function. One of advantages of (Manzanera, 2010)
is the invariance of features to rotation. In GFNLM features
are based on Gabor functions. Another shortcoming of NLM is
that the method does not consider rotation of blocks i.e. pixels
lying on one edge, but with different gradient directions, will
be considered different and have small weights. This can lead
to poor noise reduction along edges where the gradient has a
different direction in each pixel of the edge This shortcoming
is overcomed by LJNLM-LR by rotation of components of the
feature vector to the coordinate system aligned by the image
gradient. We suggest a modification of NLM method using
the Hermite function (HeNLM). Components of the feature
vector are values of convolutions of source noisy image with
multiscale Hermite functions.

Image denoising methods depend on filtering strength
parameters. If the source image without noise (or, reference

image) is known then an optimal denoising parameter can be
chosen by optimization of some metric (for example, PSNR)
between filtered image and the reference image. The quality
of optimization depends on the selected metrics. The choice
of metrics is not trivial task. There is no one opinion how to
calculate similarity or difference between two images. In this
work we use two most popular quality measures PSNR and
SSIM and consider their perseption based extensions MSSIM
and CMSC. First is constructed using separate components
of SSIM and on an assignment of a physically valid weight
function is to each component. Second metric aims to inherit
advantages of the both measures.

Nevertheless in practice a reference image is unavailable so a
method that works without it (no-reference methods) is needed.
One way is to use image quality assessment algorithms to
estimate denoising quality. These methods usually calculate
image statistics in spatial (Mittal et al., 2012, Moorthy , Bovik,
2011), or frequency (Saad et al., 2012) domains. However,
these methods do not take into account the condition of image
structure preserving. To control this structures by ridge based
approach we calculate image denoising quality using difference
between noisy and filtered images (so called method noise
(Buades et al., 2005)). A method for automatic parameter
selection for image denoising algorithms has been proposed in
(Zhu , Milanfar, 2010). It uses structure tensor analysis with
fixed scale derivatives estimation. This doesn’t allow us to
use multiscale approach for image structure analysis. In this
paper we use a method for no-reference image denoising quality
assessment to choose parameter of a denoising algorithm. We
propose to choose denoising parameter by minimization of
mutual information of joint distribution of values in method
noise image at ridge points along the ridge (Mamaev et al.,
2017). We use Hessian matrix eigenvectors and eigenvalues
analysis for ridge detection and direction and size estimation.
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2. HENLM DENOISING ALGORITHM

HeNLM denoising algorithm (Mamaev et al., 2013) is a
modification of the non-local means (NLM) algorithm (Buades
et al., 2005). In NLM the value of denoised image If (x, y) is a
weighted sum of values of the source noisy image I(x, y):

If (x, y) =
1

w(x, y)

∑
(x′,y′)∈Q(x,y)

w(x, y, x′, y′)I(x′, y′), (1)

w(x, y, x′, y′) = e
− ‖v(x,y)−v(x

′,y′)‖22
2ρ2 . (2)

Here Q(x, y) is a rectangular neighbourhood of pixel (x, y),
v(x, y) is the patch of pixels from image I around pixel (x, y),
and w(x, y) is normalizer such that

w(x, y) =
∑

(x′,y′)∈Q(x,y)

w(x, y, x′, y′). (3)

HeNLM algorithm replaces the difference between image
patches v(x, y) by the difference between feature vectors.
The dimensionality of these vectors is much lower than
the dimensionality of image patches so the computational
complexity for HeNLM algorithm is lower than for NLM. In
HeNLM algorithm feature vector components are found as
convolutions with Hermite functions ψσnm(x, y):

fσnm(x, y) = I(x, y) ∗ ψσnm(x, y). (4)

Hermite functions can be defined as (Krylov et al., 2002):

ψn(x) =
1√√
π2nn!

e
x2

2
dn(e−x

2

)

dxn
(5)

ψσn(x) =
1

σ
ψn
(x
σ

)
(6)

ψσnm(x, y) = ψσn(x)ψσm(y) (7)

The denominator σ in (6) is introduced for the equivalence
of the filter responses at different scales. The method is
similar to LJNLM-LR (Manzanera, 2010), where feature vector
components are the values of convolutions of source image
with Gaussian derivatives. Some of Hermite functions and
Gaussian function derivatives are shown in Figure 1. It
can be seen that the localization areas of Hermite functions
and Gaussian derivatives are roughly the same but Hermite
functions much better allow to represent peripheral parts of
the area and have no strong variance of amplitude (for small
orders). Hermite functions form the complete orthogonal
system in L2(−∞,+∞). This lead to high independence of
feature vector components in comparison with features used by
LJNLM-LR algorithm.

As in LJNLM-LR algorithm the features fσnm(x, y) are
calculated in local coordinate system (g(x, y), τ(x, y)) where
g(x, y) is image gradient on scale σ in point (x, y) and τ(x, y)
is tangential to g(x, y). This allows the features to be invariant
to patch rotation. The feature vector is defined as:{

f̃σnm(x, y) : n+m ≤ r, σ ∈ S
}
, (8)

where f̃σnm(x, y) is the feature in the local coordinate system,
r is the maximal order of Hermite function, and S is the set of
scales. In our calculations we used r = 4, and S = {1, 3}.

(a) (b)

Figure 1. Hermite functions (a) and Gaussian function
derivatives (b)

3. NO-REFERENCE IMAGE DENOISING QUALITY
ASSESSMENT

We use method noise analysis for image denoising quality
assessment. We define method noise image Id for image I as
the difference between image I and the image after application
of a denoising method If :

Id = I − If . (9)

If a denoising method works ideally, then method noise
image will contain only removed noise. If method noise
image contains structured details, then these details have been
smoothed or wiped out after application of a denoising method.
The absence of correlation of pixel values in method noise
image can show that the method noise image contains only
noise. While the presence of regular structures results in the
presence of correlation of nearby pixel values in area where
these structures appear. Image ridge smoothing or suppression
by denoising algorithm results in presence of regular structures
in the method noise image. So we will analyse the the presence
of structure on method noise image in ridge areas (Mamaev et
al., 2017).

For ridge detection we use Hessian matrix analysis of the
following image:

Lσ(x, y) = I(x, y) ∗Gσ(x, y), (10)

Gσ(x, y) =
1

2πσ2
e
x2+y2

2σ2 . (11)

We note that the differentiation of Lσ(x, y) is equivalent to
convolution of the source image I(x, i) with corresponding
Gaussian function derivative. Let Lσxx(x, y), Lσxy(x, y),
Lσyy(x, y) be second derivatives of Lσ(x, y) by the
corresponding variables multiplied by σ2. This multiplication
by σ2 is used for equalization of Laplacian filter response
at different scales (Lindeberg, 1998). Modulus of Laplacian
∆Lσ(x, y) has maximal response in the central point of ridge
of 2σ width. Consider a Hessian matrix:

Hσ(x, y) =

(
Lσxx(x, y) Lσxy(x, y)
Lσxy(x, y) Lσyy(x, y)

)
. (12)

The eigenvector
−→
vσ(x, y) corresponding to the smallest by

absolute value eigenvalue of H(x, y) will be directed along the
ridge (Lindeberg, 1998).
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Different values of σ ∈ {σ1, . . . , σn}, σi = σ0 · νi−1 are
used for multiscale ridge detection. Calculating ∆Lσi(x, y)

and
−→
vσi(x, y), the characteristic ridge size s(x, y) and direction

−→v (x, y) are calculated as:

s(x, y) = arg max
σi

(|∆Lσi(x, y)|), (13)

−→v (x, y) =
−−−−→
vs(x,y)(x, y). (14)

To eliminate false responses of the Laplacian produced by noise
for small σ we use the following scheme:

1. Apply thresholding to |∆Ls(x,y)(x, y)|:

B(x, y) =

{
1, |∆Ls(x,y)(x, y)| ≥ Tl
0, otherwise

. (15)

We set the threshold value Tl to 0.1 in all tests.

2. Find connected components in B(x, y) image and remove
components that have less than 5 pixels.

3. Apply binary mask B(x, y) to |∆Ls(x,y)(x, y)| to obtain
filtered Laplacian responses:

F (x, y) = B(x, y) · |∆Ls(x,y)(x, y)|. (16)

To evaluate that correlation we build a joint distribution p(k,m)
of the following random variables: K is a value of method
noise in point (x, y) and M is a value of method noise in point
(x, y)+s(x, y) ·−→v (x, y). We use the points where F (x, y) > 0
as points belonging to ridges. Also we quantize the method
noise image intensities to N levels so the nearby intensities are
belong to the same event. Bicubic interpolation is used to find
intensity values outside the pixel grid. So p(k,m) is defined as
follows:

p(k,m) =
1

P
·
∣∣∣∣{(x, y) :

⌊
Id(x, y) ·N

Imax

⌋
= k,⌊

Id(x̃, ỹ) ·N
Imax

⌋
= m, F (x, y) > 0

}∣∣∣∣ , (17)

x̃ = x+ s(x, y) · −→v (x, y)x,

ỹ = y + s(x, y) · −→v (x, y)y,
(18)

where Imax is the maximal allowed pixel intensity value and P
is normalizing constant such that

∑N
k=1

∑N
m=1 p(k,m) = 1.

We note that the joint distribution in the case s(x, y) = s ≡
const, −→v (x, y) = −→v ≡ const, and Tl = 0 represents
a co-occurrence matrix (Haralick et al., 1973) built for the
direction s · −→v .

We use mutual information to evaluate independence of random
variables p(k,m):

µ = µ(K;M) =

N∑
k=1

N∑
m=1

p(k,m) log

(
p(k,m)

p(k)p(m)

)
, (19)

where p(k) and p(m) are marginal probability distribution
functions:

p(k) =

N∑
m=1

p(k,m), p(m) =

N∑
k=1

p(k,m). (20)

The less is µ value of the less brightness values of the method
noise image along ridges are correlated. We note that the
Laplacian ∆Ls(x,y)(x, y) has also a response in the points
that belong to edges and blobs. This leads to taking into
consideration by the µ value pairs of pixels belonging to edges
and blobs.

The pipeline for computation of µ value is shown in Algorithm
1. Minimal value of µ will correspond to the optimal denoising
parameter:

ρest = arg min
ρ

(µ). (21)

Algorithm 1: The proposed image denoising quality
assessment algorithm

Input : I is a noisy source image
If is a denoised image

Output: µ is image denoising quality assessment metric
1 compute Hessian matrix Hσ(x, y) using (10), (11), (12)
2 compute Laplacian and find smallest by absolute value

eigenvector
−→
vσ(x, y)

3 compute s(x, y) and −→v (x, y) using (13), (14)
4 compute B(x, y) using (15) and remove connected

components of size less than 5
5 compute F (x, y) using (16)
6 Id ← I − If
7 compute p(k,m) using (17)
8 compute µ using (19), (20)

We note that the µ value will be unstable or even undefined in
the case if the Laplacian does not contain enough values larger
than Tl. It also means that the image almost does not contain
ridges, edges or other complex structures so edge-preserving
denoising is not required. We estimate amount of detected
ridges counting the number of points as:

S = |{(x, y) : F (x, y) > 0}| . (22)

If S value is less than threshold Tr = max(100, 0.01 · R · C)
then denoising is not required and denoising quality assessment
is not performed. Here R and C are the number of rows
and columns in image respectively. We also note that in the
case if there is no noise in source image the µ value will
be monotonically increasing with the increase of the filtering
strength since the method noise will not contain noise and
denoising should not be performed. To avoid this we check
the existence of noise in image using PCA-based noise level
estimation method (Pyatykh et al., 2013). If noise level is lower
than ε then denoising is not performed.

4. FULL-REFERENCE IMAGE QUALITY METRICS

In this paper we compare the above non-reference denoising
parameter estimation method with the full-reference estimation
using PSNR, SSIM and modifications of two new SSIM-based
similarity measures. First measure is MSSIM (Dovganich et
al., 2018) (a modified version of SSIM). The use of MSSIM
metrics for the weights estimation gives good results in NLM
denoising algorithm. The metrics uses separate components of
SSIM and a physically valid weight function is assigned to each
component. The standard SSIM contains three components:

SSIM(x, y, x′, y′) =

l(x, y, x′, y′)c(x, y, x′, y′)s(x, y, x′y′),
(23)
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l(x, y, x′,′ y′) =
2µ(x, y)µ(x′, y′) + C1

µ2(x, y) + µ2(x′, y′) + C1
, (24)

— luminance similarity function,

c(x, y, x′,′ y′) =
2σ(x, y)σ(x′, y′) + C2

σ2(x, y) + σ2(x′, y′) + C2
, (25)

— contrast similarity function,

s(x, y, x′,′ y′) =
Γ(x, y, x′, y′) + C3

2σ(x, y)σ(x′, y′) + C3
, (26)

— structure similarity function.

The constants C1, C2, C3 are introduced to prevent division
by zero. Here µ(x, y) = 〈I(x, y)〉 is image average,
σ2(x, y) = 〈I2(x, y)〉 − 〈I(x, y)〉2 is image variance, and
Γ(x, y, x′, y′) = 〈I(x, y)I(x′, y′)〉 − 〈I(x, y)〉〈I(x′, y′)〉 is
image covariance. C1, C2, C3 are the stabilization coefficients.
As concerned self-similarity based methods like NLM, high
weights correspond to blocks that have same structure (pattern)
and same brightness and same contrast. Very often fragments
of objects in the real world have same structure, but they are
observed in various luminance conditions, i.e. have differ
brightness and contrast. Moreover, human vision is often not
sensitive to such differences and automatically ignores them.
Indeed, from the point of view of computer processing, the
boundaries of light and shadow are often very important, while
human usually ignores them and focuses on the structure of
the scene. So, the third multiplier in SSIM can be more
important that the first two. Also, and therefore SSIM can
take negative values. In theory, it allows to use not only
similar patterns, but also their negatives. However, real scenes
consisting of positives of some objects and their negatives are
very rare in practice. Therefore, we propose to make the
third multiplier equal to zero for the case of negative value of
the correlation coefficient. We also modified luminosity and
contrast multipliers to control the spread of these values. As a
result, we get the following expression for MSSIM:

MSSIM(x, y, x′, y′) =

Θ(T1µ(x, y)µ(x′, y′)− (µ2(x, y) + µ2(x′, y′))

·Θ(T2σ(x′, y′)− σ(x, y))

·Θ(Γ(x, y, x′, y′))f(Γ(x, y, x′, y′)),

(27)

where Θ is the Heaviside step function, T1, T2 are the
thresholds and we used function f(x) = x.

Second measure is CMSC(Palubinskas, 2014). This is a family
of metrics that inherits advantages of MSE and SSIM but at
the same time avoid their drawbacks. It is based on Means,
Standard deviations and Correlation coefficient (CMSC) and
consists of the three components: two normalized squared
Euclidian measures and one correlation coefficient. Depending
on the way of combination three versions are possible. Metrics
CMSCam uses averaging and multiplication of individual
similarities, CMSCm uses only multiplication of similarities
and CMSCa uses only averaging of similarities.

d1(x, y, x′, y′) =
(µ(x, y)− µ(x′, y′))2

R2
,

d2(x, y, x′, y′) =
((σ(x, y)− σ(x′, y′))2

(R/2)2
,

CMSCam(x, y, x′, y′) =

(1− d1 + d2
2

) · s(x, y, x′, y′),

CMSCm(x, y, x′, y′) =

(1− d1) · (1− d2) · s(x, y, x′, y′),

CMSCa(x, y, x′, y′) =

2

3
− d1 + d2

3
+
s(x, y, x′, y′)

3
.

(28)

Here R is a normalization constant e.g. R = 255 for 8bit
data. It is easy to prove that for the normalization of contrast
including standard deviations a two times smaller constant R/2
can be used.

5. COMPARISON METHOD

For comparison we analyzed the correlation between the
considered full-reference similarity metrics parameter
estimation results and no-reference mutual information
ridge-based technique. For this task we use the following
algorithm. We take reference image without noise and add
to it Gaussian noise of different levels. After that each
image is denoised using HeNLM algorithm and the following
extremal problem is solved to find optimal value of the strength
parameter ρ using selected full-reference metrics:

ρ = arg max
ρ

(f),

fρ = M(Iref , Idenoized)
(29)

where M is one of the metrics:
PSNR,SSIM,MSSIM,CMSCam, CMSCm, CMSCa.

To find the value of optimal parameter we use maximization
algorithm from (Brent, 2013). Finally we compare ρ found
by each of the full-reference metrics and the optimal strength
parameter found by the no-reference mutual information
ridge-based technique using only given noised reference image.

6. RESULTS

Image databases TID (Ponomarenko et al., 2015), DRIVE
(Staal et al., 2004), and BSD (Martin et al., 2001) were
used for the tests. The designed automatic denoising
method was also used for dermatological immunofluorescence
microscopy images of dermatitis herpetiformis, pemphigus
vulgaris and bullous pemphigoid and it showed very good
structure preserving denoising results.

Figure 2 shows average values of the absolute difference of
values of the denoising parameter automatically found by
the proposed mutual information based no-reference method
and the values found using full-reference metrics: CMSCa,
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CMSCm, CMSCam, SSIM, MSSIM and PSNR on TID
database per noise level. As a result, we can see that the
parameter selected using SSIM is the closest to the parameter
found by the non-reference method. The average difference
over the entire base and for all noise levels is 0.143 for SSIM,
0.1447 for PSNR. Other metrics give worse results with the
average value 0.17. It can be also seen that results for these
metrics are less stable than for PSNR and SSIM, but it is mainly
caused by the small volume if the TID database. Very close
results were obtained for DRIVE database.

Figure 2. Average values of the absolute difference of
parameters found by no-reference mutual information
metrics and by full-reference metrics on TID database

The results were also obtained for a larger test database
BSDS500 with 500 images. On this database the average
difference in parameter for PSNR is 0.1404, for SSIM
is 0.1421, for CMSCa is 0.1595, for CMSCm is 0.1559,
CMSCam is 0.1585, and for MSSIM is 0.1694. We can see
that the dependency graph has become smoother in figure 3.

Figure 3. Average values of the absolute difference of
parameters found by no-reference mutual information
metrics and by full-reference metrics on BSD database

A result of dermatological immunofluorescence microscopy

images denoising is shown in figure 4. The results with the
optimal denoising parameter, underestimated parameter (the
parameter is 0.5 times less than the optimal) and overestimated
parameter (the parameter is 2 times higher than the optimal) are
shown.

(a) (b)

(c) (d)

Figure 4. Results of a pemphigus vulgaris microscopy
image denoising. (a) original image, (b) denoising result

with optimal parameter, (c) denoising result with low
parameter, (d) denoising result with high parameter

A very good correspondence of the obtained optimal denoising
parameters to the choice of dermatologists was also found for
all examined dermatological immunofluorescence microscopy
images.

Test results show that the choice of the metrics that are closer to
human vision(CMSC, MSSIM) saves image information after
denoising process worse than the choice of PSNR and SSIM.
On the other hand when we are using modern metrics we can
remove more noise. The price of this often is removing the
details unimportant to the human eye, but image becomes more
pleasant to see. Correspondingly, if we work with medical
images, where every detail can be important, then for the
denoising parameter selection is better to use standard metrics
(PSNR and SSIM).

7. CONCLUSIONS

In this paper we have analysed correspondence of different
image metrics to the mutual information based criterion
of information preservation after image denoising. It was
found that more perceptual CMSC and MSSIM metrics give
worse correspondence than SSIM and PSNR to the results of
information preservation by the non-reference image denoising.
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