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ABSTRACT:

We propose here an HDR compression method for medical images based on a windowing operator, an adaptive tone mapping
operator, and the probabilistic normal-gamma model. First, we use the windowing operator based on a structural fidelity measure for
optimal visualization of the input HDR medical image. Then, we transform the windowed image to the logarithm domain and split it
into base and detail layers with the help of the probabilistic normal-gamma model. Base and detail layers are used to make the tone
map with help the adaptive tone mapping operator. Finally, the tone mapping result is the LDR image. The proposed method has
comparable quality and low computation time compared to other tone mapping operators.

1. INTRODUCTION

Technological advances in medicine lead to complication of
acquisition and diagnostic devices and, consequently, to
increase the quality medical images. The technology of fusion
images with different exposures to expand dynamic range and
preserve the detailed information is widely used e.g. for X-ray
(Skurowski, 2018) and Magnetic Resonance Imaging (Hung,
2013). Moreover, images stored according to the Digital
Imaging and Communications in Medicine (DICOM) standard
(Pianykh, 2008) typically have a precision of 12 to 16 bits per
pixel that is higher than common Low Dynamic Range (LDR)
images with precision 8 to 10 bits per pixel.

At the same time, modern displays have high contrast and
luminance but cannot visualize images with High Dynamic
Range (HDR). Therefore, tone mapping operators (TMO’s) and
windowing operators are needed to convert HDR to LDR
images, which can be seen on common displays. Tone mapping
operators aim at maintaining the overall contrast and brightness
levels imitating images with a high dynamic range. The most
important aspect of these operators is saving texture, contrast
and brightness information of an image. The relative amount of
information of the above-mentioned characteristics is one of the
parameters used to measure the quality of the tone mapped
image. Windowing operators map an intensity interval of
interest linearly to the dynamic range of the display. Linear
mapping is the most straightforward windowing operator but
may not be the optimal mapping function in terms of structure
preserving. An adaptive framework for finding the optimal
windowing function for different medical images can help to
solve this problem. Combination of windowing operators and
TMO compression followed by windowing (CW) and
windowing followed by compression (WC) gives better results
(Athar, 2015).

In this paper, we propose the new HDR image compression
method. The method is based on the combination of the
windowing operator (Nikvand, 2014) and the TMO, along with
base and detail layers technique (Durand, 2002) using the
probabilistic normal-gamma model (Gracheva, 2015, Gracheva,
2017). The windowing operator is used for optimal visualization

of medical images. It has an adaptive scheme based on
structural fidelity measure, which can find an optimal
windowing operator for different medical images. The
probabilistic normal-gamma model of the hidden field
performed well in image denoising, image haze removal, and
the structure-transferring problem. The advantages of this model
are strict mathematical formulation and low computational
complexity. The proposed method has comparable quality and
low computation time compared to other tone mapping
algorithms.

2. PREVIOUS WORKS
2.1 Tone mapping operators

All the tone mapping methods developed for last years can be
divided into two groups: global methods and local methods.

The main idea of global TMO (also known as spatially invariant)
is to use the same function to all image pixels. Examples of
these functions can be a power function, a logarithm, a sigmoid,
or a function that is image dependent. Global TMOs take good
results for scenes with a dynamic range approximately
appropriate to the dynamic range of the display device, or lower.
However, for scenes where the dynamic range is larger than the
dynamic range of a display device, the global TMOs will
compress the dynamic range of the scene too much, which
result in a loss of contrast and detail visibility. Global TMOs are
computationally simple, preserve the intensity orders of the
original scenes, thus avoiding halo artefacts, and can suitable
for video processing.

Example of the global TMOs is Reinhard TMO (Reinhard,
2005), which used the zone system for mapping HDR world
image into LDR ones. In the zone system, the photographer first
selects the middle-grade key in the image and then selects the
darkest and brightest points to compute the dynamic range.
Reinhard and his colleagues work on automating this system by
mapping first the whole image using a local averaging
logarithmic operator. Then they implemented an automated
dodging and burning algorithm that uses a circular Gaussian
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operator at multiple scales and convolves it with the entire
image to correct the bright and dark regions of the image. Shan
et al. (Shan, 2009) presented a TMO which performs local
adjustments across the entire HDR image on small windows
which are overlapped. The linear adjustment is applied locally
by each window, which preserves the radiance values
monotonicity. A global optimization is applied to each
overlapped window to satisfy the local constraints defined on
them. For efficient reduction of high contrast and for preserving
details, local constraints are used as a guidance. This method
effectively reduces the global contrast and preserves details.
Drago TMO (Drago, 2003) proposed the adaptive logarithmic
TMO for compressing the luminance values by adaptively
varying the logarithmic bases. They used contrast enhancement
to improve the contrast of dark areas in the image. Kim et al.
(Kim, 2008) presented a tone reduction algorithm based on a
new k factor and highlight factor of compression.

The main idea of the local TMOs (also known as a spatial
variant) is to use different functions for different spatial pixel
positions. Local tone mapping methods can improve local
contrast, and make the compressed image more detailed.

The group of local TMOs includes Ashikmin (Ashikhmin,
2002), which used the ratio of Gaussian filtered images to get
the texture information. Fattal and his colleague (Fattal, 2002)
developed a gradient-based TMO by compressing the gradient
of the image luminance component and then constructing the
LDR image by solving a Poisson equation on the compressed
gradient image. Fairchild and Johnson (Fairchild, 2004) applied
an image colour appearance model (called Image Color
Appearance Model, iCAM) to chromatics. However, the color
space transformation caused colour saturation loss. Kuang et al.
(Kuang, 2007) designed an algorithm named iCAMO6 based on
the colour appearance model, which gives the perceptual
attributes of each pixel, such as lightness, chromaticity, hue,
contrast, and sharpness. It includes an inverse model that
considers viewing conditions to generate the result. However, it
also reduced colour saturation. Krawczyk et al. (Krawczyk,
20006) first segmented an HDR image and then applied different
tone reproduction curves to the segments to achieve spatially
variant HDR compression. Lischinski et al. (Lischinski, 2006)
presented an interactive method to adjust the tonal values and
other visual parameters locally. In their method, the user has a
set of brushes to impose constraints on the image. Influence
functions are computed to confine the modifications of the tonal
value in image space. Li et al. (Li, 2005) presented a tone
mapping technique, which relies on statistical and spatial
information. In this technique, the image is initially divided into
two layers i.e. base layer and detail layer. The base layer shows
the smooth details and the detail layer represents the fine details.
The statistically-based histogram adjustment is applied to the
base layer. To obtain the detail layer, they use an adaptive
spatial filter based on the mapping function of the base layer.
The detailed layer after the enhancement is merged with the
base layer. The tone-reduced image is obtained by applying the
gain map on the detail-enhanced image. Durand and Dorsey
TMO (Durand, 2002) employed the same technique, but the
base layer is derived by the bilateral filter (Tomasi, 1998) to
minimize of artefacts (halo-effects) around edges of objects on
the image.

2.2 Windowing operators

The Windowing procedure is intended for visualization of HDR
medical images. It maps the structural details within the
intensity interval of interest at the dynamic range of regular

displays. Such intervals of interest vary for different imaging
modality and body parts. These intervals can be defined using
two parameters: window width, the range of the interval, to be
denoted here as  and the window center, the center of this
interval, to be denoted as ¢ . It follows that the tone-mapping
algorithm maps the range of luminance values ; in range
C—m f2 =/<C 4w g2 to the LDR range [0, 255] using
linear function. Linear mapping is the most straightforward
windowing operator but may not be the optimal mapping
function in terms of structure-preserving (Nikvand, 2014). The
windowing function may also be expressed using a linear
combination of a family of sine basis functions. Experiments in
(Nikvand, 2014) confirm that the linear mapping function is not
optimal in terms of the fidelity of structural information. In
addition, they show that modifying the mapping function to
obtain maximal structural fidelity measurement produces
computed tomography (CT) medical images with higher
contrast and more visible details.

2.3 Combined scheme of windowing operators and tone
mapping operators

The work (Athar, 2015) compares two different schemes for
data rate and high dynamic range compression of medical
images. In this work linear and optimized sine functions were
used as the windowing operators.

In the first scheme, the LDR image is initially obtained by
applying windowing to the HDR DICOM image and then, 8-bit
JPEG2000 compression is applied to this LDR image to obtain
the compressed LDR image. This scheme was called
“Windowing-Compression” (WC). The compressed LDR image
can then be transmitted to the end users. The benefit of this
scheme is to maximally reduce the transmission bandwidth, but
it suffers from two drawbacks: lossy image compression is
being applied to an already altered image (as a result of
windowing); since the end users receive an LDR image, further
windowing is not possible and other body parts, that require
different windows, cannot be retrieved. This can lead to
retransmission requests and the requirement to store the original
uncompressed HDR images at the source, which takes more
storage space.

In the second scheme, image compression of the original HDR
DICOM image is done first by using 16-bit JPEG2000
compression. This results in a compressed HDR image
transmitted to the remote user. At the user side, the compressed
HDR image is decompressed and windowing is applied to
obtain an LDR image. This scheme was called “Compression-
Windowing” (CW). The apparent advantages of this approach
are: different types of windows can be applied at the user end,
and thus different body parts can be viewed without
retransmission of the images; compressed HDR images, instead
of the original HDR images, can be stored at the source which
leads to reduced storage requirement. The drawbacks are: more
bandwidth may be required to transmit the image; typical
browsers may not be able to decode and show images
compressed at 16 bits, and thus dedicated software may need to
be installed at the user end.

3. TONE MAPPING TECHNIQUE BASED ON THE
PROBABILISTIC GAMMA-NORMAL MODEL

Tone-mapping of HDR DICOM images involves transforming
the HDR DICOM image to an LDR medical image that can be
presented on a standard display device. The complete tone-
mapping scheme is shown in Figure 1. First, we use the
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windowing operator based on a structural fidelity measure for
optimal visualization of the input HDR DICOM image. Then,
we transform the windowed image to the logarithm domain and
share it on base and detail layers with the help of the
probabilistic normal-gamma model. Base and detail layers are
used to make the tone map with help the adaptive tone mapping
operator. Finally, the tone mapping result is the LDR medical
image.

Windowed image

HDR DICOM image

Logarithmicimage

Detailimage

Figure 1. The complete tone-mapping scheme

Let’s consider this scheme in more detail.
3.1 Windowed image

Let x* is the original HDR DICOM image. In the paper
(Nikvand, 2014) one of the windowing operators 7 (x¢) uses
functions spanned by an appropriate family of sine functions
#4(x*) (k=0,1,2,..,n , where » is an order of

approximation of 7 (x*) ) for receiving the windowed image

H
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for min(x%1< 2% <maxix®1,
where w =  difference between maximal and minimal
values intensity of input HDR DICOM image.

As a special case, when » =3, we have
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Then, the windowed image is applied to the logarithmic domain
L=log,(fi{x*n 2

After the logarithm luminance channel is obtained, we can to
decompose it into two layers: the base layer and the detail layer.

3.2 Base and detail layers

As mentioned earlier, we use the technique, which splits the
image into two layers i.e. base layer and detail layer. The
Bayesian approach described in (Gracheva, 2015) is based on
the special model of the Markov field, called normal-gamma
model (Krasotkina, 2010), which makes it possible to obtain the
base layer. The base layer can be found by the structure-
transferring technique similar to He et al. (He, 2013). The
resulting image x = (x, ,t€T) is obtained from the input

HDR DICOM
F=fe=ir.elcr =l N i, =1... A , which plays the

image X' =(x/ter)

role of “guided” image and the logarithm domain image
¥ =(y, ,teT),which plays the role of the analyzed image.

It is easy to see that the maximum a posteriori probability (MAP)
estimate leads to the minimization of the following goal
function.

J(x N|T¥ L) = by (v, —x,) +
= G)

! [ —x, )0+ j.L:|+

+ 1+ 1—;. In A, L
T

Illustration of this structure-transferring scheme is in Figure 2.
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Analyzed (logarithmic) image

A”(A, Y,h,p)=argmin J(X | A, Y, h, 1)
X

|

Processing (base) image

Y=(,.tel)
Guided (HDR DICOM) image

X=(x,tel)

|

A(XE 0, 1) = argmin J(A| X&, 0, 1)
A

X&=(xftel)

Figure 2. Illustration of the structure-transferring scheme
Then the field of coefficients is fixed, MAP estimation of x

can be obtained as a solution of the following simple quadratic
optimization task:

j’ =argmin J(X | 1"1,1’,1,',!.{] =

- 1 N
=argmin JL ,; (v, —x ) + ,; —ia,. = x) p

er wer L,

which can be solved by the extremely fast procedure on the
basis of tree-serial dynamic programming (Mottl, 1998).

Then ¥ =(x .t eT isfixed x = x “, criterion (3) gives the

following equation for optimal A  with fixed structural
parameters 2 and 4 :

° . R N e S WA

AL A T R =0 JELEt e,

S
where 7 = the lattice neighbourhood graph of the image
elements

» =the smoothing degree of the result image
4+ = the degree of bonds breaking near objects edges

Thus, the base layer stores information about the objects edges
in the original HDR DICOM image, which further allows them
to be taken into account when compressing the dynamic range.

Detail layer can be defined from the base layer and logarithm
domain by the equation:

D=L—-8 @)

Decomposition into two layers is used for contrast reduction. A
base layer B is computed by blurring a luminance image using a
probabilistic normal-gamma model and a detail layer D is
obtained by subtraction of base layer from the logarithm image.
Further, the base layer is compressed by a tone-curve and added
back to the detail layer thus reducing the dynamic range to a
displayable level. The underlying assumption is that the detail
layer will be predominantly low dynamic range while the base
layer is HDR.

3.3 LDR image

We will employ a simplified version of Durand TMO (Durand,
2002). First of all, we apply an offset and a scale to the base
layer:

dal
HF'=(E —max(E))

max(E)—min()

The offset should provide the maximum intensity of the base
equal to 1 since the values are in the log domain. The scale 4r
is set so that the output base has stops of dynamic range.

Then we reconstruct the log intensity:

T =27 (5)

The result of the tone mapping transformation will be an LDR
image.

4. EXPERIMENTAL RESULTS

The proposed algorithm and the current traditional tone
mapping methods are tested in MATLAB (2015a) on the PC
platform of Intel Core 15-2450M processor (2.5 GHz, 4G
caches). The experimental dataset is chosen from Medical
Image Samples website which provides HDR source images
(http://www .barre.nom.fr/medical/samples/).

We will use three standard criteria to estimate the quality of the
resulting images (see Table 1, Figure 3), criteria based on the
neural networks (see Table 2, Figure 4) and computation time
(Figure 5), received by the proposed method, and compare them
to the results of other methods.

4.1 Standard criteria

4.1.1 The modified form of the peak signal-noise ratio
(MPSNR): The quality measurement will be enhanced by using
the MPSNR value. To measure the quality of the original image
and reconstructed image, PSNR is used. PSNR is generally used
for normal RGB images, but for the HDR images MPSNR is
defined which will evaluate the quality of the original image
and tone mapped image. MPSNR is used for the measurement
of quality of reconstruction. It is described in the unit of a
logarithmic decibel. If the value of MPSNR is high, means the
reconstruction is of good quality. MPSNR can be defined by the
equation (Yip, 2005)

1*255°
MPSNR =10*log,, | ———— |,
MSE

where 7 =luminance channel of the original HDR image
M SE = Mean square error
4.1.2 Mean square error (MSE): MSE is the aggregate of

squared error between the reconstructed and the original image.
It can be defined as a risk function which is related to the
expected value of quadratic loss (Lehmann, 1998). It can be
defined by equation
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where HDR (i, j) = original HDR DICOM image
LDR (i, j) = resulting LDR image
M , N = dimensions
If the value of MSE is less, then mean error is also less.
4.1.3 Mean absolute error (MAE): MAE estimates how
close the reconstructed image to the original image. It is the

average of absolute errors (Willmott, 2005). It is defined by
equation

—
MAE =—§ le, |
n =1

where le |=|idr —hdr | = absolute difference between

reconstructed image 74, and original image 4,

Time,s 6.9 7.67 5
Li  (Li, | PSNR 9.98 8.057 23.77
2005) MSE 9.955 0.156 2.383
MAE 0.227 0.36 0.369
Time,s 1.57 4785 3.415
Tumburri | PSNR 9.732 8.33 23.766
no MSE 9.402 0.147 2.38
(Tamburri | MAE 0.076 0.336 0.408
no, 2008) | Time,s 0.684 1.9 1.842
Kuang PSNR 9.978 10.17 23.797
(Kuang, MSE 9.95 0.096 2.397
2007) MAE 0.259 0.283 0.41
Time,s 7.1 5.3 5.636
Kim PSNR 10.01 6.205 23.787
(Kim, MSE 10.022 | 0.24 2.393
2008) MAE 0.355 0.47 0.515
Time,s 0.715 0.88 0.729
Mertens PSNR 10.016 | 2.813 23.803
(Mertens, | MSE 10.027 | 0.523 2.401
2007) MAE 0.598 0.428 0.509
Time,s 5.81 5.923 5.276
Bruce PSNR 10.104 | 3.614 23.806
(Bruce, MSE 10.243 | 0.435 2.402
2013) MAE 0.6 0.662 0.59
Time,s 60.47
Raman PSNR 10.106 | 2.255 23.788
(Raman, MSE 10248 | 0.6 2.392
2009) MAE
Time,s 2.9 5 4.93
Our PSNR 10.107 23.773
method MSE 9.2 0.084 24
MAE 0.15 0.35 0.273
Time,s 0.526 0.694 0.703

Method Assessment Image
CR- CT- OT-
MONO | MONO | MONO
1-10- 2-16- 2-8-
chest.dc | chest.dc | hip.dem
m m
Durand PSNR 10.086 2.968 23.796
(Durand, MSE 10.201 0.505 2.397
2002) MAE 0.541 0.582
Time,s 1 1.1 1.06
Drago PSNR 10.03 6.159 23.8
(Drago, MSE 10.069 0.242 2.399
2003) MAE 0.401 0.468 0.449
Time,s 0.837 0.756 0.694
Rainhard PSNR 10.04 6.93 23.79
(Rainhard, | MSE 10.1 0.203 2.393
2005) MAE 0.578 0.441 0.59
Time,s 1.49 1.09 1.04
Fattal PSNR 10.031 6.455 23.818
(Fattal, MSE 10.072 0.226 2.409
2002) MAE 0.275 0.472 0.335
Time,s 7.444 18.705 5.187
Qi Shan | PSNR 10.1 4.495 23.765
(Shan, MSE 10.209 0.355 2.379
2009) MAE 0.373 0.57 0.463
Time,s 26.316 49.438 50.062
Fast PSNR 10.072 5.546
guided MSE 10.169 0.438 2.385
filter (He, | MAE 0.538 0.64 0.527
2013) Time,s 0.621 1.25 1.189
Ashikhmi | PSNR 10.015 8.393 23.812
n MSE 10.034 0.145 2.406
(Ashikhmi | MAE 0.304 0.34 0.318
n,2002) | Time,s 1.73 1.728 1.84
Banterle PSNR 10.05 6.159 23.785
(Banterle, | MSE 10.115 0.242 2.4
2011) MAE 0.4 0.468 0.544
Time,s 86 84.47
Krawczyk | PSNR 9.977 9.184 23.786
(Krawczy | MSE 9.946 0.121 2.391
k, 2006) MAE 0.224 0.3 0.489
Time,s 4.171 3.957 2.768
Lischinski | PSNR 10.002 6.879 23.796
(Lischinsk | MSE 10.004 0.205 2.397
i, 2006) MAE 0.347 0.413 0.414

Table 1. Comparison results of the proposed method and the
current methods on the basis of PNSR, MSE and MAE
estimations

Notice that maximal values are emphasized green colour,
minimal values are emphasized red colour.

12

10,02
10,03
10,05
10,12
10,10
10,24
10,01
10,02
9,98
95
98
95
10,00
10,00
10,01
10,02
10,11
10,10
10,21
10,11
10,25
10,04
10,10

~ IS ey o 5

0’30—

¢
0,40

*

Epsnr mmse mmae

a)

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-2-W12-87-2019 | © Authors 2019. CC BY 4.0 License. 91




The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W12, 2019
Int. Worksh. on “Photogrammetric & Computer Vision Techniques for Video Surveillance, Biometrics and Biomedicine”, 13—-15 May 2019, Moscow, Russia

Given the distribution of ratings as , , the mean quality score is
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v2)
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Figure 3. Diagrams of quality comparison results (MPSNR, (ConvNet) (1.412) | (1.424 (1.354)

MSE, MAE) of the proposed method and the current methods Rainhard NIMA 4911 4.523 4.379

for: a) CR-MONO1-10-chest.dcm image; b) CT-MONO2-16- (Rainhard, | (MobileNet) | (1.640) | (1.691) | (1.794)

chest.dem image; ¢) OT-MONO2-8-hip.dcm image. 2005) NIMA 4.486 3.879 3.924
(Inception- (1.711) | (1.649) | (1.652)
4.2 Neural Image Assessment v2)
o ) ) ) NIMA 4.577 3.013 2.822
An apphcathn of machine learning methods ‘to quah.ty (ConvNet) (1.444) (1.398) (1.359)
assessment .of images hag recently chome a hot topic due tohlts Fattal NIMA 4.699 4348 4.099
ysefulness in a led? variety of apphcgtlons such as pvaluatu_lg (Fattal, (MobileNet) | (1.641) (1.700) (1.807)
image capture plpe}lnes, storage techniques, and sharing media. 2002) NIMA 3827 3746 3911
In this paper, we will use the Nqural Image Assessment (NIMA) (Inception- (1.635) (1.645) (1.683)
(Hossein, 2017) approach for images quality assessment (see v2)
Tablle 2, F1g.4): NIMA approach dlffers.fr.om others in t.hat it NIMA 3220 3114 2863
predicts .the distribution of human opinion scores using a (ConvNet) (1.423) (1.441) (1.421)
convolutional neural network. NIMA architecture also has the -
. L . Qi  Shan | NIMA 4.978 4.463 4.369
advantage of being significantly simpler than other methods .

. . (Shan, (MobileNet) | (1.599) | (1.674) | (1.808)
with comparable performance. NIMA stands on Inception-v2 2009) NIMA 4639 3920 3008
(Szegedy, 2016), MobileNet (Howard, 2017) and ConvNet (Inception- (1' 729) (1' 669) (1' 650)
(Simonyan, 2014) image classifier architectures. Inception-v2 is ) P ) ) )
based on Inception module (loffe, 2015) which allows for v2)
parallel use of convolution and pooling operations. Also, in the NIMA 3.910 2.958
Inception-v2 architecture, traditional fully-connected layers are (ConvNet) (1.426) (1.376)
replaced by average pooling, which leads to a significant Fa;t NIMA 4.821 4.385
reduction in the number of parameters. MobileNet is an efficient guided (MobileNet) (1.678) (1.772)
deep CNN, mainly designed for mobile vision applications. In filter (He, NIMA, 5.216 4.279 3.975
this architecture, dense convolutional filters are replaced by 2013) (Inception- | (1.827) | (1.720) | (1.657)
separable depth filters. This simplification results in smaller and v2)
faster CNN models. ConvNet consists of 13 convolutional and 3 NIMA 5.465 3.026 3.166
fully-connected layers. Small convolution filters of size 3 x 3 (ConvNet) (1.5) (1.354) | (1.421)
are used in the deep ConvNet architecture. Image quality Ashikhmi | NIMA 4931 4.525 4.355
assessment is done without the need for a “golden” reference n (MobileNet) | (1.619) | (1.696) (1.817)
image, consequently allowing for single-image, semantic- and (Ashikhmi | NIMA 4.476 3.934 3.852
perceptually-aware, no-reference quality assessment. NIMA’s n, 2002) (Inception- (1.711) (1.653) (1.649)
goal is to predict the distribution of ratings for a given image. v2)

Ground truth distribution of human ratings of a given image can NIMA 4.339 2.817 2.796

be expressed as an empirical probability mass function (ConvNet) (1.423) 1.277) (1.368)

p=[p ...p ] with <, <, ,where ; denotes the i" Banterle | NIMA 4.879 4531 4.456
B B (Banterle, | (MobileNet) | (1.634) | (1.691) | (1.836)

score bucket, and n denotes the total number of score buckets.
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2011) NIMA “.324 3.897 3.964 NIMA 3.358 2911 2.778
Inception-v2) |(1.711) 1.655) 1.670) (ConvNet) (1.423) | (1.335) | (1.375)
NIMA 4.061 3.027 2.843 Our NIMA 5.186 4.167
(ConvNet) (1.393) | (1.424) | (1.303) method (MobileNet) | (1.59) (1.819)
Krawczyk | NIMA 4.8329 4.479 4.395 NIMA 3.940
(Krawczy | (MobileNet) | (1.629) (1.719) (1.798) (Inception- (1.671)
k, 2006) NIMA 4.394 3.811 3.954 v2)
(Inception- (1.696) | (1.642) | (1.651) NIMA 3.457 2.455
v2) (ConvNet) (1.475) | (1.282)
NIMA 3.949 2.949 3.089 Table 2. Comparison results of the proposed method and the
(ConvNet) (1.423) (1.351) (1.406) current methods on the basis of the NIMA with quality score
Lischinski | NIMA 4.963 4.539 4.400 W(£o), where p and o represent the mean and standard deviation
(Lischinsk | (MobileNet) | (1.629) (1.674) (1.798) of the score, respectively
i, 2006) NIMA 4.673 3.943 3.958
(Inception- (1.756) (1.653) (1.651) Notice that maximal values are emphasized green colour,
v2) minimal values are emphasized red colour.
NIMA 4715 3.019 2.948
(ConvNet) (1452) | (1.364) | (1.381)
Li (Li, | NIMA 5.044 4.690
2005) (MobileNet) | (1.601) | (1.658)
NIMA 4.881 4232 4.042
(Inception- (1.746) | (1.674) | (1.655)
v2)
NIMA 4.383 3.082
(ConvNet) (1.429) | (1.333)
Tumburri | NIMA 4.736 4.445 4.306
no (MobileNet) | (1.628) | (1.687) | (1.804)
(Tamburri | NIMA 4.032 3.771 4.033
no, 2008) | (Inception- (1.657) (1.622) (1.676)
v2)
NIMA 3.628 2.591 3.175
(ConvNet) | (1.462) | (1.269) | (1.453)
Kuang NIMA 4.896 4.505 4.390
(Kuang, (MobileNet) | (1.603) | (1.690) | (1.754)
2007) NIMA 4316 3.897 3.885
(Inception- (1.672) | (1.642) | (1.647)
v2)
NIMA 3914 2.9 2.861
(ConvNet) (1.42) (1.321) (1.324)
Kim NIMA 4.776 4.538 4.377
(Kim, (MobileNet) | (1.627) | (1.685) | (1.800)
2008) NIMA 4.108 4.052 3.982
(Inception- (1.656) | (1.673) | (1.668)
v2)
NIMA 4.038 2.959 3.007 0)
(ConvNet) (1.402) | (1.36) (1.39)
Mertens NIMA 4.835 4.329 4.27 Figure 4. Diagrams of quality comparison results (NIMA with
(Mertens, | (MobileNet) | (1.611) | (1.704) | (1.798) quality score s(+c) , where 4 and o represent the mean and
2007) NIMA 4.078 3.942 3.940 . .
(Inception- (1.640) (1.688) (1.674) standard deviation of the score, respectively) of the proposed
V2) method .and the current methods for: a) CR-MONOI-IO-
NIMA 3658 3289 2807 chest.dem 1mage,ll;'>/l) OCI\?(—)I\z/Icg)I;IlQZéI6-c.hest.dcm image; ¢) OT-
(ConvNet) | (1.459) | (1.457) | (1.386) -e-ip.dem 1mage.
Bruce NIMA 4.998 4.571 4.437 L.
(Bruce, | (MobileNet) | (1.609) | (1.731) | (1.823) 4.3 Computation time
2013) NIMA 4.142 4.033 Figure 5 shows comparison results of fast TMO’s and proposed
(Inception- (1.662) (1.699) method.
v2)
NIMA 3.835 3.091 2.822
(ConvNet) (1.401) | (1.404) | (1.391)
Raman NIMA 4753 4.344 4.039
(Raman, (MobileNet) | (1.618) | (1.703) | (1.844)
2009) NIMA 3.899 4.003 4.013
(Inception- (1.625) (1.698) (1.712)
v2)
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Kumg  Fatal

Lishinsk

Figure 5. Time comparison results between the proposed
method and other TMO algorithms

The comparison results of the proposed method by the
processing quality are comparable with other TMOs, however,
the computation time in all cases is lower than for the compared
algorithms.

5. CONCLUSIONS

We presented the new tone mapping method based on the
adaptive tone mapping operator and the probabilistic normal-
gamma model in this paper. First, we use the windowing
operator that transforms the input HDR DICOM image range.
Then we apply the filter based on the normal-gamma model to
extract the base layer. Subtraction the base layer from the
logarithm domain of the windowed image give us the detail
layer. After that, the contrast reduced base layer and detail layer
have been merged and a tone-reduced image is obtained. The
quality of our tone mapping method results is comparable to
other tone mapping algorithms. The comparison is done on the
basis of three comparison metrics - MPSNR, MSE, MAE. To
control the perceptual quality of images we use automatic
images quality assessment NIMA approach. NIMA approach
differs from others in that it predicts the distribution of human
opinion scores using a convolutional neural network. NIMA
architecture also has the advantage of being significantly
simpler than other methods with comparable performance.
NIMA stands on Inception-v2, MobileNet, and ConvNet image
classifier architectures. The proposed method has comparable
quality to other 17-th tone mapping algorithms, considered in
the experimental comparison. However, the computation time
of our tone mapping method lower than the computation time of
other tone mapping algorithms. It gives the chance to use the
proposed tone mapping method for the solution of dynamic
HDR medical imaging compression problem.
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