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ABSTRACT:  

 

The classification of mobile Lidar data is challenged by the complexity of objects in the point clouds and the limited number of 

available training samples. Incomplete shape, noise points and uneven point density make the extraction of features from point 

clouds relatively arduous. Additionally, the difference in point density, and size and shape of objects, restricts the utilization of 

labelled samples from other sources. To solve this problem, we explore the possibility of improving the classification performance of 

a state-of-the-art deep learning method, Vox-Net, by using auxiliary training samples from a different dataset. We compare the 

performance of Vox-Net trained with and without the auxiliary dataset. The comparison shows that more instances can be recognized 

in classes with auxiliary data. At the same time, the performance in classes without complementary data can deteriorate due to the 

low number of samples in these categories. To achieve a balance in the performance for different categories, we further replace the 

classification layer of Vox-Net with AdaBoost. The AdaBoost classification displays good recognition ability in classes with few 

instances but decreases the overall accuracy.  
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1. INTRODUCTION 

A common challenge in segment-based classification of Lidar 

point clouds is the generation of training samples. On the one 

hand, it is difficult to obtain enough balanced training samples 

for training by labelling the segments manually. On the other 

hand, samples from publicly available datasets exhibit a wide 

range of data formats, precision and structure, which makes it 

difficult to utilize these datasets for training.  

 

Traditional feature-based classification methods require a 

considerable number of training samples to achieve a 

satisfactory performance(He et al., 2017). Recent feature 

learning methods based on deep learning need an even larger set 

of training samples. Fehr et al. (2016), Jing and Suya (2015), 

and Yokoyama et al. (2013) achieved successful pole-like 

object detection, but less than good performance in the 

classification of pole-like objects due to the limitation of 

training samples. The diversity of objects in mobile Lidar point 

clouds makes it even more difficult to balance the number of 

training samples. One approach to reducing the number of 

required training samples is to reduce the dimensionality by 

feature selection methods (Khoshelham et al., 2013).  

 

In order to effectively reduce the dimension of features, 

Chatfield et al. (2011) employed feature encoding methods to 

preserve the discriminative power of the features. Recent 

research on 3D deep convolutional networks shows that better 

performance can be achieved by feature learning rather than 

feature selection or encoding. However, the deep learning 

method is inherently a data-hungry method (Koch et al., 2015). 

To reduce sample number requirements, one-shot learning 

(Koch et al., 2015) and transfer learning (Dai et al., 2007; 

Rosenstein et al., 2005) have been introduced for object 

classification. 

 

A feasible way to enrich the training data for point cloud 

classification is to incorporate samples from other Lidar 

datasets, or from Web-based libraries of 3D models, as auxiliary 

training samples. The shape information can be transferred 

within multiple data representations and formats (Kar et al., 

2015; Qi et al., 2016; Su et al., 2015). Moreover, the data 

collected and labelled before can be reused in a new task by 

transfer learning.  

 

Considering that the objects obtained from different Lidar 

datasets vary in resolution, density and even formats, we 

adopted Vox-Net (Maturana and Scherer, 2015b), which can 

adapt to different sizes and density of input data. Maturana and 

Scherer (2015b) demonstrate that Vox-Net can handle different 

datasets, such as Lidar data, CAD data and RGB-D data, in the 

same network framework by adjusting the grid algorithm and 

resolution. Compared with other 3D deep learning nets, Vox-

Net can outperform other nets in low-quality mobile lidar 

dataset.  

 

In this paper, we design several experiments to test the 

performance of classification with and without an auxiliary 

data. Data with different scales and resolution are also 

introduced to the check the scale and resolution invariance of 

volumetric grid and Vox-Net based framework. Moreover, 

AdaBoost classification is introduced to evaluate the 

performance of weight adjustment method in instance-based 

transfer learning.  
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2. RELATED WORK 

Although deep learning methods show outstanding performance 

in classification of 2D images, their extension to the 3D domain 

remains severely challenging. First of all, effective 

representation and organization of 3D point clouds are required 

for convolutional neural network (CNN) filters. Secondly, the 

number of point clouds collected could vary in different regions 

of the object, which could influence the organization of point 

clouds for CNN filters. Different data representation methods 

are proposed to deal with these two issues. In PointNet (Charles 

et al., 2017) and PointNet++ (Fan et al., 2017), the network 

learns from the original points, and optimization functions are 

designed for selecting informative points. Another popular 

solution is the volumetric representation, in which the raw point 

clouds are voxelized into uniform grids (Maturana and Scherer, 

2015a; Minto et al., 2018; Qi et al., 2016; Wu et al., 2015; 

Zhou and Tuzel, 2017). Although the voxelization of point 

clouds into regular 3D voxel grids makes it easier for weight 

sharing and kernel optimizations, this quantization can 

introduce unnecessary variance to the original data, and the 

performance of 3D CNNs varies according to the volume 

resolution. Another attempt at adopting deep learning on point 

clouds is to construct graphs of points in Euclidean space. The 

Kd-network (Klokov and Lempitsky, 2017) and octree-based 

network (Wang et al., 2017) have been proposed for the 

organization of points. 2.5D convolutional neural networks 

solve the issue by reducing the dimension into 2D with multiple 

views (Qi et al., 2016) or depth images (Roveri et al., 2018). In 

addition, 3D deep feature-based networks (Wang et al., 2018) 

and geometric 3D nets (Weinmann et al., 2017) have also been 

proposed. 

 

Besides the challenges in extending 2D deep learning models 

into 3D, the number of training samples is another factor 

influencing the performance of 3D deep learning-based 

classification. Incorporating data or basic networks from other 

domains is popular in 2D classification (Weiss et al., 2016). 

Generally, the situation in which previously learned knowledge 

from other domains, tasks or distributions is reused in a current 

machine learning task is named transfer learning (Pan and 

Yang, 2010). Tan et al. (2018) provide a comprehensive review 

of available deep learning transfer learning methods. Instance-

based transfer learning is widely used in similarly structured 

data by adjusting the sample selection bias (Dai et al., 2007; 

Yao and Doretto, 2010) to pick out the partial useful instances 

in the training section. In mapping-based transfer learning, 

instances from the source domain and target domain are 

transferred into a new domain sharing more similarity. Transfer 

components analysis (TCA) and joint maximum mean 

discrepancy (JMMD) provide possible mapping solutions (Long 

et al., 2017; Zhang et al., 2017). Network-based transfer 

learning is widely used in deep learning networks by reusing the 

pre-trained front-layers (Oquab et al., 2014). Adversarial-based 

transfer learning is proposed by Goodfellow et al. (2014) to find 

transferable representations for both domains. 

 

Here, in order to incorporate datasets collected with different 

equipment in different scenarios, we design instance-based 

transfer learning experiments based on Vox-Net and AdaBoost.  

 

3. METHODOLOGY 

The conceptual framework for the proposed method is shown in 

Figure 1. It includes data processing, Vox-Net training and 

classification. In the data processing step, the segments are first 

augmented into 12 rotated copies, then voxelized into grid 

format from the point clouds. In the second step, we train the 

Vox-Net on an original dataset with and without an auxiliary 

dataset. The performance of Vox-Net-based classifications with 

and without the complementary dataset is then compared. 

Finally, AdaBoost classification is implemented on the features 

obtained from the output layer of Vox-Net trained with the 

combined dataset.  

 

 

 

 

 

 

 

 

 

Figure 1. The conceptual framework of the Vox-Net based 

feature extraction and classification. 

 

3.1 Data Processing 

We first unite the two data sources into point segments after 

segmentation of original points. Then we select perfect training 

samples from the auxiliary dataset. Then we follow the basic 

workflow of Vox-Net after augmentation of training samples. In 

the grid section, the resolution in the gridding of point clouds is 

set as 0.2m considering the length of light poles in the 

complementary dataset. We compare the performance under 

distinct settings of rotation interval and augmentation number, 

and then get the 12 rotated copies with a fixed interval value 

along the z coordinate. Volumetric occupancy grid is realized 

by the hit grid method, which calculates the point occupancy 

information in each cell of the grid. As no origin or orientation 

information is provided, the mean value of samples is used as 

the origin and the samples are assumed perpendicular to the 

ground. 

 

3.1.1 Data Augmentation 

 

It is obvious that the origin, orientation, and the resolution of 

the voxel grid can influence the representation of gridded 

segments. In the grid occupancy part, the centroid of segment is 

calculated by ( ),m ( ),m ( )mean x ean y ean z
j j j

 
 
 

, and the rotation interval 

is set as 2 /(12 1) +  along z coordinate. Then, the coordinates of 

the points are normalized. Based on the shape size of most road 

furniture considered in this research, the size and resolution of a 

voxel are set as ( )32,32,32=p  and 0.2r m=  respectively. The 

basic geometric information, including the majority part of the 

segments in the voxel box, is thus maintained. Rotation 

augmentation, together with translation before the gridding, is 

employed. Random augmentation of the dataset is adopted by 

creating 12n=  copies along the z axis, with equal interval 

rotation within ( , ) −  and normalized translation.  (Sedaghat et 

al., 2016).  

 

3.1.2 Volumetric Occupancy Grid 

 

The instances from two data source are different in resolution, 

scale and quality. The instances from two data sources are 

united into identical data structure by utilizing grid and Vox-

Net. 3D ray tracing (Amanatides and Woo, 1987), which builds 

the occupancy model by calculating the number of hits or pass-
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throughs for each voxel, is the most popular way to realize 

gridding in range data. Here, we selected the hit grid model in 

our method. In this grid model, cell occupied with points is set 

as 1, otherwise 0.  

 

3.2 Vox-Net Modelling 

The framework of Vox-Net is shown in Figure 2. Like most 3D 

CNNs, it consists of an input layer, convolutional layers, 

pooling layer and a fully connected layer. In the input layer, the 

volumetric grid of fixed size 32 * 32 * 32 voxels is accepted. The 

information in the grid is the occupancy information. It can also 

be updated with other features (Zhou and Tuzel, 2017).  We set 

the learning rate at 0.001, batch size at 32, number of batches in 

one epoch at 5000 and number of epochs at 8. For the 

adaptation function we used AdamOpitimizer. The number of 

other parameters can be referenced in Figure 2. In the training 

section, the pooling layer is introduced to decrease the chance 

of overfitting and achieving translation invariance in the deep 

learning net.  

 

 

 

Figure 2. The conceptual framework of Vox-Net based feature 

extraction and classification.  

 

3.3 Classification 

In a first experiment, we use Vox-Net with the SoftMax 

function to realize classification, and to compare the results of 

models trained with both the original dataset only and the 

combined dataset. In a second experiment, we first extracted the 

feature vectors of samples in the fully connected layer of the 

Vox-Net model trained with the combined dataset. AdaBoost 

classification on these generated feature vectors was then 

implemented. We select AdaBoost (Freund and Schapire, 1996) 

in view of its principle of improving the classification by 

increasing the weight of misclassified instances. SAMME 

(Hastie et al., 2009) was selected as the basic AdaBoost 

algorithm.   

 

4. EXPERIMENT AND ANALYSIS 

4.1 Data Description 

The Sydney dataset contains a variety of common urban road 

objects scanned with a Velodyne HDL-64E Lidar, the data 

having been collected by De Deuge et al. (2013)  in the CBD of 

Sydney, Australia. The Sydney dataset contains 631 urban 

objects in segmented format with XYZ and range information. 

In the experiment, we selected the same target classes and 

organization of the datasets adopted in Vox-Net for comparison 

purpose. A set of 588 objects was selected from the full 631, 

split evenly into 4 folds. Folds were selected to ensure no object 

appeared in two folds (some objects appear more than once in 

the dataset, scanned from different positions).  
 

 

The Enschede dataset, which covers several similar urban road 

object categories as the Sydney dataset, is used as the auxiliary 

training dataset in the experiment. The Enschede dataset was 

collected with an Optech LYNX Mobile Mapper system by the 

German company TopScan in 2008 in the city of Enschede, 

Netherlands.  

 

The number of samples in each category in each file is provided 

in Table 1. F0, F1, F2 and F3 are the datasets collected in 

Sydney. The first three folds from F0 to F2 are set as the 

original training datasets, and F3 is reserved as the testing 

dataset. The samples in these four folds are evenly distributed 

and the accuracy did not show significant differences when the 

test folder was set differently. F4 is the dataset collected in 

Enschede, which is used as a complementary training dataset.  

 

Table 1. The distribution of samples.  

 

 

4.2 Experiments and Results 

In the first experiment, we compared the performance of Vox-

Net based classification with and without the Enschede dataset.  

In the training section, each instance of the training datasets is 

augmented with 12 copies. In the test section, the original 

samples were used to evaluate the performance. The recalls, 

precision and F1-score in each category found for Vox-Net 

Category 

Dataset 1 

(Sydney Dataset) 

Number 

Dataset 2 

(Enschede 

Dataset) 

Number 

File Name F0 F1 F2 F3 F4 

4wd 5 6 4 6  

building 5 5 5 5  

bus 5 3 3 5  

car 23 20 21 24 34 

pedestrian 37 36 34 45 19 

pillar 6 5 4 5  

pole 6 5 4 6  

traffic light 10 18 8 11 25 

traffic sign 11 18 11 11 33 

tree 8 8 8 10 92 

truck 3 3 3 3  

trunk 14 13 15 13  

ute 4 4 4 4  

van 9 11 8 7  

Total Number 146 155 132 155 203 
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based classification are provided in Figure 3, Figure 4 and 

Figure 5. The SoftMax function is used here for classification. 
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Figure 3. The Recall of Vox-Net classification with and without 

a complementary dataset. 

 

The trained Vox-Net model in both cases achieved similar 

evaluation and test accuracy. The overall accuracy of the model 

trained with the Sydney dataset is 69.68%. The accuracy of the 

model trained with the combined dataset are 70.32%. The 

number of correctly recognized objects is provided in Table 2.  

Classification accuracy was limited by the quality of Sydney 

dataset, with misclassification mostly occurring within the 

vehicle- and pole-structure objects. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Precision (Sydney) Precision (Sydney+Enschede)

 
 

Figure 4. The Precision of Vox-Net classification with and 

without a complementary dataset. 
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Figure 5. The F1-score of Vox-Net classification with and 

without a complementary dataset. 

 

From the comparison, it was found that (1) the classification 

results in pedestrian and tree categories, which have enough 

training samples, remained the same; (2) the misclassification 

between pole and tree trunks was mitigated by the increase of 

instances from several pole-structure categories by checking the 

confusion matrixes; and (3) the increase of instances from class 

car only in vehicle-type objects improved the number of 

correctly recognized instances in the car class, while decreasing 

the possible recognition of other vehicle-type objects. 

 

In the second experiment, AdaBoost was combined with Vox-

Net to improve the classification result. First, we trained the 

Vox-Net model with the Sydney and Enschede datasets 

together. Then, AdaBoost classification was implemented on 

the feature vectors extracted in the fully connected layer of the 

trained Vox-Net model. Multi-class AdaBoost decision trees 

proposed by Hastie et al. (2009) were used. The number of 

estimators was set at 200, and the learning rate at 0.9. The 

parameter and algorithm are selected according to optimization 

tests. The recall, precision and F1-score with the SoftMax 

function and SAMME AdaBoost classification are provided in 

Figure 6 Figure 7 and Figure 8 separately. 
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Figure 6. The Recall of SoftMax and SAMME algorithms on 

feature instances extracted from the fully connected layer of the 

trained Vox-Net model. 
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Figure 7. The Precision of SoftMax and SAMME algorithms on 

feature instances extracted from the fully connected layer of the 

trained Vox-Net model. 
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Figure 8. The F1-score of SoftMax and SAMME algorithms on 

feature instances extracted from the fully connected layer of the 

trained Vox-Net model. 

 

The result from AdaBoost showed higher recall and precision in 

most classes with limited instances. Also, it alleviated the 

misclassification within vehicle-type objects.  We also observed 

that classes with few instances, say bus, truck and ute with 

instance less than 12, cannot be correctly recognized in any of 

the cases. However, the AdaBoost method did not improve the 

overall accuracy compared with the SoftMax function in the 

Vox-Net model. 

 

Upon further investigation of the results listed in Table 2, we 

found that the incompleteness of vehicle shape and the variation 

of traffic signs slightly influences the classification result. 

Additionally, the size of both buses and buildings, which were 

larger than 32*0.2m, made the distinguishing of these two 

categories difficult. In the experiments, the scale of light poles 

in the Enschede dataset was different to that in the Sydney 

dataset. The framework also showed scale-invariance in 

classification of light-pole by introducing multi-scale light 

poles. 

 

Table 2. The comparison of correctly recognized objects in each 

class from three experiments. D1 represents the Sydney dataset, 

and D2 represents the Enschede dataset. 

Label 
Real 

Number 

Recognized Number 

VoxNet 

+Sydney 

Dataset 

VoxNet+ 

Sydney 

+Enschede 

Dataset 

SAMME+ 

VoxNet 

4wd 6 3 2 2 

building 5 4 2 2 

bus 5 0 0 3 

car 24 19 24 16 

pedestrian 45 45 45 45 

pillar 5 1 1 1 

pole 6 0 2 2 

traffic light 11 8 9 7 

traffic sign 11 10 9 7 

tree 10 9 9 9 

truck 3 0 0 0 

trunk 13 3 6 6 

ute 4 0 0 0 

van 7 6 0 3 

Total 155 108 109 103 

 

5. DISCUSSION 

The performance of Vox-Net based mobile lidar classification 

with auxiliary data has been investigated, and it has shown that 

the occupancy grid and Vox-Net based framework can united 

the original and complementary data in an efficient way. 

 

To better demonstrate the effectiveness of this transfer learning 

framework, we will aim to improve the following aspects: (1) 

set comparison experiments by setting the instance number of 

the original datasets at several levels from sparse to medium to 

sufficient; (2) set comparison experiments by changing the 

instance ratio of the datasets in the target domain to the source 

domain; (3) improve the weight adjustment algorithm to filter 

out dissimilar instances from the source domain and improve 

the recognition of instances misclassified in the target domain at 

the same time; and (4) data in other formats will be introduced 

to evaluate the proposed method. 
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