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ABSTRACT:

The classification of mobile Lidar data is challenged by the complexity of objects in the point clouds and the limited number of
available training samples. Incomplete shape, noise points and uneven point density make the extraction of features from point
clouds relatively arduous. Additionally, the difference in point density, and size and shape of objects, restricts the utilization of
labelled samples from other sources. To solve this problem, we explore the possibility of improving the classification performance of
a state-of-the-art deep learning method, Vox-Net, by using auxiliary training samples from a different dataset. We compare the
performance of Vox-Net trained with and without the auxiliary dataset. The comparison shows that more instances can be recognized
in classes with auxiliary data. At the same time, the performance in classes without complementary data can deteriorate due to the
low number of samples in these categories. To achieve a balance in the performance for different categories, we further replace the
classification layer of Vox-Net with AdaBoost. The AdaBoost classification displays good recognition ability in classes with few

instances but decreases the overall accuracy.

1. INTRODUCTION

A common challenge in segment-based classification of Lidar
point clouds is the generation of training samples. On the one
hand, it is difficult to obtain enough balanced training samples
for training by labelling the segments manually. On the other
hand, samples from publicly available datasets exhibit a wide
range of data formats, precision and structure, which makes it
difficult to utilize these datasets for training.

Traditional feature-based classification methods require a
considerable number of training samples to achieve a
satisfactory performance(He et al.,, 2017). Recent feature
learning methods based on deep learning need an even larger set
of training samples. Fehr et al. (2016), Jing and Suya (2015),
and Yokoyama et al. (2013) achieved successful pole-like
object detection, but less than good performance in the
classification of pole-like objects due to the limitation of
training samples. The diversity of objects in mobile Lidar point
clouds makes it even more difficult to balance the number of
training samples. One approach to reducing the number of
required training samples is to reduce the dimensionality by
feature selection methods (Khoshelham et al., 2013).

In order to effectively reduce the dimension of features,
Chatfield et al. (2011) employed feature encoding methods to
preserve the discriminative power of the features. Recent
research on 3D deep convolutional networks shows that better
performance can be achieved by feature learning rather than
feature selection or encoding. However, the deep learning
method is inherently a data-hungry method (Koch et al., 2015).
To reduce sample number requirements, one-shot learning
(Koch et al., 2015) and transfer learning (Dai et al., 2007;
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Rosenstein et al., 2005) have been introduced for object
classification.

A feasible way to enrich the training data for point cloud
classification is to incorporate samples from other Lidar
datasets, or from Web-based libraries of 3D models, as auxiliary
training samples. The shape information can be transferred
within multiple data representations and formats (Kar et al.,
2015; Qi et al., 2016; Su et al., 2015). Moreover, the data
collected and labelled before can be reused in a new task by
transfer learning.

Considering that the objects obtained from different Lidar
datasets vary in resolution, density and even formats, we
adopted Vox-Net (Maturana and Scherer, 2015b), which can
adapt to different sizes and density of input data. Maturana and
Scherer (2015b) demonstrate that VVox-Net can handle different
datasets, such as Lidar data, CAD data and RGB-D data, in the
same network framework by adjusting the grid algorithm and
resolution. Compared with other 3D deep learning nets, Vox-
Net can outperform other nets in low-quality mobile lidar
dataset.

In this paper, we design several experiments to test the
performance of classification with and without an auxiliary
data. Data with different scales and resolution are also
introduced to the check the scale and resolution invariance of
volumetric grid and Vox-Net based framework. Moreover,
AdaBoost classification is introduced to evaluate the
performance of weight adjustment method in instance-based
transfer learning.
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2. RELATED WORK

Although deep learning methods show outstanding performance
in classification of 2D images, their extension to the 3D domain
remains severely challenging. First of all, effective
representation and organization of 3D point clouds are required
for convolutional neural network (CNN) filters. Secondly, the
number of point clouds collected could vary in different regions
of the object, which could influence the organization of point
clouds for CNN filters. Different data representation methods
are proposed to deal with these two issues. In PointNet (Charles
et al., 2017) and PointNet++ (Fan et al., 2017), the network
learns from the original points, and optimization functions are
designed for selecting informative points. Another popular
solution is the volumetric representation, in which the raw point
clouds are voxelized into uniform grids (Maturana and Scherer,
2015a; Minto et al., 2018; Qi et al., 2016; Wu et al., 2015;
Zhou and Tuzel, 2017). Although the voxelization of point
clouds into regular 3D voxel grids makes it easier for weight
sharing and kernel optimizations, this quantization can
introduce unnecessary variance to the original data, and the
performance of 3D CNNSs varies according to the volume
resolution. Another attempt at adopting deep learning on point
clouds is to construct graphs of points in Euclidean space. The
Kd-network (Klokov and Lempitsky, 2017) and octree-based
network (Wang et al., 2017) have been proposed for the
organization of points. 2.5D convolutional neural networks
solve the issue by reducing the dimension into 2D with multiple
views (Qi et al., 2016) or depth images (Roveri et al., 2018). In
addition, 3D deep feature-based networks (Wang et al., 2018)
and geometric 3D nets (Weinmann et al., 2017) have also been
proposed.

Besides the challenges in extending 2D deep learning models
into 3D, the number of training samples is another factor
influencing the performance of 3D deep learning-based
classification. Incorporating data or basic networks from other
domains is popular in 2D classification (Weiss et al., 2016).
Generally, the situation in which previously learned knowledge
from other domains, tasks or distributions is reused in a current
machine learning task is named transfer learning (Pan and
Yang, 2010). Tan et al. (2018) provide a comprehensive review
of available deep learning transfer learning methods. Instance-
based transfer learning is widely used in similarly structured
data by adjusting the sample selection bias (Dai et al., 2007;
Yao and Doretto, 2010) to pick out the partial useful instances
in the training section. In mapping-based transfer learning,
instances from the source domain and target domain are
transferred into a new domain sharing more similarity. Transfer
components analysis (TCA) and joint maximum mean
discrepancy (JMMD) provide possible mapping solutions (Long
et al., 2017; Zhang et al., 2017). Network-based transfer
learning is widely used in deep learning networks by reusing the
pre-trained front-layers (Oquab et al., 2014). Adversarial-based
transfer learning is proposed by Goodfellow et al. (2014) to find
transferable representations for both domains.

Here, in order to incorporate datasets collected with different
equipment in different scenarios, we design instance-based
transfer learning experiments based on VVox-Net and AdaBoost.

3. METHODOLOGY

The conceptual framework for the proposed method is shown in
Figure 1. It includes data processing, Vox-Net training and
classification. In the data processing step, the segments are first

augmented into 12 rotated copies, then voxelized into grid
format from the point clouds. In the second step, we train the
Vox-Net on an original dataset with and without an auxiliary
dataset. The performance of Vox-Net-based classifications with
and without the complementary dataset is then compared.
Finally, AdaBoost classification is implemented on the features
obtained from the output layer of Vox-Net trained with the
combined dataset.
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Figure 1. The conceptual framework of the Vox-Net based
feature extraction and classification.

3.1 Data Processing

We first unite the two data sources into point segments after
segmentation of original points. Then we select perfect training
samples from the auxiliary dataset. Then we follow the basic
workflow of Vox-Net after augmentation of training samples. In
the grid section, the resolution in the gridding of point clouds is
set as 0.2m considering the length of light poles in the
complementary dataset. We compare the performance under
distinct settings of rotation interval and augmentation number,
and then get the 12 rotated copies with a fixed interval value
along the z coordinate. Volumetric occupancy grid is realized
by the hit grid method, which calculates the point occupancy
information in each cell of the grid. As no origin or orientation
information is provided, the mean value of samples is used as
the origin and the samples are assumed perpendicular to the
ground.
3.1.1 Data Augmentation

It is obvious that the origin, orientation, and the resolution of
the voxel grid can influence the representation of gridded
segments. In the grid occupancy part, the centroid of segment is

calculated by[mean(xj),mean(yj),mean(zj)}, and the rotation interval

is set as 2x/(12+1) along z coordinate. Then, the coordinates of

the points are normalized. Based on the shape size of most road
furniture considered in this research, the size and resolution of a

voxel are set as p =(32,32,32) and r =02m respectively. The

basic geometric information, including the majority part of the
segments in the voxel box, is thus maintained. Rotation
augmentation, together with translation before the gridding, is
employed. Random augmentation of the dataset is adopted by
creating n=12 copies along the Z axis, with equal interval
rotation within (-z,#z) and normalized translation. (Sedaghat et

al., 2016).

3.1.2  Volumetric Occupancy Grid

The instances from two data source are different in resolution,
scale and quality. The instances from two data sources are
united into identical data structure by utilizing grid and Vox-
Net. 3D ray tracing (Amanatides and Woo, 1987), which builds
the occupancy model by calculating the number of hits or pass-
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throughs for each voxel, is the most popular way to realize
gridding in range data. Here, we selected the hit grid model in
our method. In this grid model, cell occupied with points is set
as 1, otherwise 0.

3.2 Vox-Net Modelling

The framework of Vox-Net is shown in Figure 2. Like most 3D
CNNs, it consists of an input layer, convolutional layers,
pooling layer and a fully connected layer. In the input layer, the
volumetric grid of fixed size 32*32*32voxels is accepted. The
information in the grid is the occupancy information. It can also
be updated with other features (Zhou and Tuzel, 2017). We set
the learning rate at 0.001, batch size at 32, number of batches in
one epoch at 5000 and number of epochs at 8. For the
adaptation function we used AdamOpitimizer. The number of
other parameters can be referenced in Figure 2. In the training
section, the pooling layer is introduced to decrease the chance
of overfitting and achieving translation invariance in the deep
learning net.
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Figure 2. The conceptual framework of Vox-Net based feature
extraction and classification.

3.3 Classification

In a first experiment, we use Vox-Net with the SoftMax
function to realize classification, and to compare the results of
models trained with both the original dataset only and the
combined dataset. In a second experiment, we first extracted the
feature vectors of samples in the fully connected layer of the
Vox-Net model trained with the combined dataset. AdaBoost
classification on these generated feature vectors was then
implemented. We select AdaBoost (Freund and Schapire, 1996)
in view of its principle of improving the classification by
increasing the weight of misclassified instances. SAMME
(Hastie et al., 2009) was selected as the basic AdaBoost
algorithm.

4. EXPERIMENT AND ANALYSIS
4.1 Data Description

The Sydney dataset contains a variety of common urban road
objects scanned with a Velodyne HDL-64E Lidar, the data
having been collected by De Deuge et al. (2013) in the CBD of
Sydney, Australia. The Sydney dataset contains 631 urban
objects in segmented format with XYZ and range information.
In the experiment, we selected the same target classes and
organization of the datasets adopted in VVox-Net for comparison
purpose. A set of 588 objects was selected from the full 631,
split evenly into 4 folds. Folds were selected to ensure no object
appeared in two folds (some objects appear more than once in
the dataset, scanned from different positions).

The Enschede dataset, which covers several similar urban road
object categories as the Sydney dataset, is used as the auxiliary
training dataset in the experiment. The Enschede dataset was
collected with an Optech LYNX Mobile Mapper system by the
German company TopScan in 2008 in the city of Enschede,
Netherlands.

The number of samples in each category in each file is provided
in Table 1. FO, F1, F2 and F3 are the datasets collected in
Sydney. The first three folds from FO to F2 are set as the
original training datasets, and F3 is reserved as the testing
dataset. The samples in these four folds are evenly distributed
and the accuracy did not show significant differences when the
test folder was set differently. F4 is the dataset collected in
Enschede, which is used as a complementary training dataset.

Table 1. The distribution of samples.

Dataset 2
Dataset 1 (Enschede
Category (Sydney Dataset) Dataset
Number ataset)
Number
File Name FO F1 F2 F3 F4
4wd 5 6 4 6
building 5 5 5 5
bus 5 3 3 5
car 23 20 21 24 34
pedestrian 37 36 34 45 19
pillar 6 5 4 5
pole 6 5 4 6
traffic light 10 18 8 11 25
traffic sign 11 18 11 11 33
tree 8 8 8 10 92
truck 3 3 3 3
trunk 14 13 15 13
ute 4 4 4 4
van 9 11 8 7
Total Number | 146 | 155 | 132 | 155 203

4.2 Experiments and Results

In the first experiment, we compared the performance of Vox-
Net based classification with and without the Enschede dataset.
In the training section, each instance of the training datasets is
augmented with 12 copies. In the test section, the original
samples were used to evaluate the performance. The recalls,
precision and F1-score in each category found for Vox-Net
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based classification are provided in Figure 3, Figure 4 and
Figure 5. The SoftMax function is used here for classification.
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Figure 3. The Recall of Vox-Net classification with and without
a complementary dataset.

The trained Vox-Net model in both cases achieved similar
evaluation and test accuracy. The overall accuracy of the model
trained with the Sydney dataset is 69.68%. The accuracy of the
model trained with the combined dataset are 70.32%. The
number of correctly recognized objects is provided in Table 2.
Classification accuracy was limited by the quality of Sydney
dataset, with misclassification mostly occurring within the
vehicle- and pole-structure objects.
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Figure 4. The Precision of Vox-Net classification with and
without a complementary dataset.
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Figure 5. The F1-score of Vox-Net classification with and
without a complementary dataset.

From the comparison, it was found that (1) the classification
results in pedestrian and tree categories, which have enough
training samples, remained the same; (2) the misclassification
between pole and tree trunks was mitigated by the increase of
instances from several pole-structure categories by checking the
confusion matrixes; and (3) the increase of instances from class
car only in vehicle-type objects improved the number of
correctly recognized instances in the car class, while decreasing
the possible recognition of other vehicle-type objects.

In the second experiment, AdaBoost was combined with Vox-
Net to improve the classification result. First, we trained the
Vox-Net model with the Sydney and Enschede datasets
together. Then, AdaBoost classification was implemented on
the feature vectors extracted in the fully connected layer of the
trained Vox-Net model. Multi-class AdaBoost decision trees
proposed by Hastie et al. (2009) were used. The number of
estimators was set at 200, and the learning rate at 0.9. The
parameter and algorithm are selected according to optimization
tests. The recall, precision and F1-score with the SoftMax
function and SAMME AdaBoost classification are provided in
Figure 6 Figure 7 and Figure 8 separately.
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Figure 6. The Recall of SoftMax and SAMME algorithms on
feature instances extracted from the fully connected layer of the
trained Vox-Net model.
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Figure 7. The Precision of SoftMax and SAMME algorithms on
feature instances extracted from the fully connected layer of the
trained Vox-Net model.
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Figure 8. The F1-score of SoftMax and SAMME algorithms on
feature instances extracted from the fully connected layer of the
trained Vox-Net model.

The result from AdaBoost showed higher recall and precision in
most classes with limited instances. Also, it alleviated the
misclassification within vehicle-type objects. We also observed
that classes with few instances, say bus, truck and ute with
instance less than 12, cannot be correctly recognized in any of
the cases. However, the AdaBoost method did not improve the
overall accuracy compared with the SoftMax function in the
Vox-Net model.

Upon further investigation of the results listed in Table 2, we
found that the incompleteness of vehicle shape and the variation
of traffic signs slightly influences the classification result.
Additionally, the size of both buses and buildings, which were
larger than 32*0.2m, made the distinguishing of these two
categories difficult. In the experiments, the scale of light poles
in the Enschede dataset was different to that in the Sydney
dataset. The framework also showed scale-invariance in
classification of light-pole by introducing multi-scale light
poles.

Table 2. The comparison of correctly recognized objects in each
class from three experiments. D1 represents the Sydney dataset,
and D2 represents the Enschede dataset.

Recognized Number
VoxNet+
Label Nsm:er :/SoxNet Sydney SAMME+
ydney +Enschede VoxNet
Dataset
Dataset
4wd 6 3 2 2
building 5 4 2 2
bus 5 0 0 3
car 24 19 24 16
pedestrian 45 45 45 45
pillar 5 1 1 1
pole 6 0 2 2
traffic light 11 8 9 7
traffic sign 11 10 9 7
tree 10 9 9 9
truck 3 0 0 0
trunk 13 3 6 6
ute 4 0 0 0
van 7 6 0 3
Total 155 108 109 103

5. DISCUSSION

The performance of Vox-Net based mobile lidar classification
with auxiliary data has been investigated, and it has shown that
the occupancy grid and Vox-Net based framework can united
the original and complementary data in an efficient way.

To better demonstrate the effectiveness of this transfer learning
framework, we will aim to improve the following aspects: (1)
set comparison experiments by setting the instance number of
the original datasets at several levels from sparse to medium to
sufficient; (2) set comparison experiments by changing the
instance ratio of the datasets in the target domain to the source
domain; (3) improve the weight adjustment algorithm to filter
out dissimilar instances from the source domain and improve
the recognition of instances misclassified in the target domain at
the same time; and (4) data in other formats will be introduced
to evaluate the proposed method.
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