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ABSTRACT: 

 

Denoising is a key pre-processing step for many airborne LiDAR point cloud applications. However, the previous algorithms have a 

number of problems, which affect the quality of point cloud post-processing, such as DTM generation. In this paper, a novel 

automated denoising algorithm is proposed based on empirical mode decomposition to remove outliers from airborne LiDAR point 

cloud. Comparing with traditional point cloud denoising algorithms, the proposed method can detect outliers from a signal 

processing perspective. Firstly, airborne LiDAR point clouds are decomposed into a series of intrinsic mode functions with the help 

of morphological operations, which would significantly decrease the computational complexity. By applying OTSU algorithm to 

these intrinsic mode functions, noise-dominant components can be detected and filtered. Finally, outliers are detected automatically 

by comparing observed elevations and reconstructed elevations. Three datasets located at three different cities in China were used to 

verify the validity and robustness of the proposed method. The experimental results demonstrate that the proposed method removes 

both high and low outliers effectively with various terrain features while preserving useful ground details. 
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1. INTRODUCTION 

Airborne LiDAR (Light Detection and Ranging) has become an 

important remote sensing means for capturing the three-

dimensional geometry of the Earth (Lin and Zhang, 2014). By 

integrating the global positioning system, the inertial navigation 

system and the laser scanning sensor, huge amount of point 

clouds reflected from Earth’s surface can be obtained (Yang et 

al., 2016). These point clouds consist of three parts, namely 

ground points, object points and noisy points (Meng et al., 

2010). Both ground and object points can be used for lots of 

applications, such as digital elevation model (DTM) generations, 

road extractions, forest investigations, etc., while noisy points 

are undesired measurements.  

 

The noisy points can be categorized into high and low outliers. 

The high outliers are always elevated points that are generally 

generated by birds and low flying aircraft. The low outliers 

normally originate from multi-path and errors in the laser range 

finder and thus do not belong to the landscape (Sithole and 

Vosselman, 2003). The existence of noisy points will always 

bring about some negative effects, including that (1) the quality 

of DTM generation may be affected by the noisy points, 

especially the low outliers, since most of the filtering algorithms 

always assume that the lowest points in the local areas must 

belong to ground; (2) the rendering of point cloud based on 

elevation will be influenced due to the maximal or minimal 

elevations of outliers; and (3) mass of noisy point will incur low 

three-dimensional model reconstruction quality and decrease 

the degree of automation.  

 

To avoid the influences mentioned above, lots of researchers 

have made contributions on airborne LiDAR point cloud 

denoising. These denoising algorithms can be classified into 

three categories, namely algorithms based on morphological 

operations (Chen et al., 2007; Mongus and Zalik, 2012; 

Mongus et al., 2014; Li et al., 2013; Li et al., 2014), elevation 

thresholds setting (Haugerud and Harding, 2001; Silván-

Cárdenas and Wang, 2006; Hui et al., 2016) and interpolation 

fitting (Brovelli et al., 2002; Wang et al., 2009), respectively.    

 

Although lots of denoising algorithms have been put forward in 

recent years, most of them are only byproducts of realizing 

other applications, such as filtering, modeling, feature 

extracting among others. Moreover, there are some unresolved 

problems in the above-mentioned denoising algorithms. The 

main problem of the algorithms based on morphological 

operations is how to choose appropriate structuring elements for 

denoising. The performance of threshold-setting-based 

approaches relies heavily on the threshold, which can only be 

determined by trial and error. The methods based on 

interpolation fitting always mislabel some ground points as 

noise points in the abrupt terrains, which affect the quality of 

point cloud post-processing, such as DTM generation. 

 

To overcome these problems, a novel denoising algorithm based 

on empirical mode decomposition (EMD) has been proposed in 

this paper. EMD owns many good characteristics, including 

completeness, self-adaptability, data-driven, model-free, etc. 

Thus, EMD can be applied to nonlinear and nonstationary data 

sets such as airborne LiDAR point clouds. In this paper, point 

clouds are decomposed into a series of intrinsic mode functions 

(IMFs) and one residual. By using OTSU algorithm (Otsu, 1979) 

the noise-dominated IMFs were determined, and then these 

IMFs were then filtered according to soft thresholding method. 

After reconstructing using all the processed IMFs and residual, 

noise points were detected automatically. The main 

contributions of this paper are as follows 
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(1) Propose a new theoretical background denoising algorithm 

for point clouds on the basis of EMD; (2) Integrate 

morphological operations with EMD to realize envelope 

estimation, which will decrease the computational complexity; 

and (3) Apply OTSU algorithm to IMFs to extract noise-

dominated components automatically. 

 

The remainder of this paper was organized as follows. Section 2 

elaborated the principle of the proposed method, while 

experiments and analysis were undertaken in Section 3. At last, 

conclusions were drawn at the end of this paper 

 

2. METHODOLOGY 

Figure 1 depicts the flow chart of the proposed method. 

Airborne LiDAR point cloud was first transformed into digital 

surface model (DSM) using nearest neighbor interpolation, 

since raster data own the strength of high efficiency and are 

easy to implement. And then the DSM was decomposed into a 

series of IMFs and one residual. To filter the noise-dominated 

IMFs, this paper innovatively adopted OTSU algorithm to 

determine high-frequency modes (noise-dominated components) 

automatically. Finally, a comparison of the elevation differences 

between reconstructed elevations and observed elevations was 

conducted to detect noise points effectively. 
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 Figure 1. Flow chart of the proposed method 

 

2.1 IMFs Extraction by Sifting Process 

The EMD was first introduced by Huang et al. (1998) for 

analyzing data from nonstationary and nonlinear processes, and 

now has been successfully applied to hyperspectral image 

classification in remote sensing areas (Demir and Erturk, 2010; 

Demir et al., 2011; Erturk et al., 2013; He et al., 2014). The 

EMD involves the decomposition of the two-dimensional (2-D) 

signal  ,S x y  into a series of IMFs by a sifting process, as 

shown in Figure 2. The sifting process is conducted in an 

iterative manner. The process of EMD is repeated until the 

number of extrema of residual is less than 2 or its iterations 

reach the pre-defined maximum times. The results of EMD are 

composed of several IMFs and one residual term given by 
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Figure 2. Flow chart of sifting process 

 

2.2 Envelopes Estimation Using Morphological Operations 

Among the sifting process, one important procedure is to obtain 

the upper and lower envelopes of the data set. The envelope 

estimation procedure is the main part affecting the EMD 

implementation efficiency. The traditional algorithms always 

use cubic spline to estimate the upper and lower envelopes, 

which is efficient for one dimensional signal. However, this 

paper applied the EMD to huge number of point clouds. 

Therefore, if cubic spline is still applied for envelope estimating, 

the sifting process will be time consuming. Hence, this paper 

adopted morphological operations to obtain upper and lower 

envelopes due to their high implementation efficiency and low 

computation complexity.  

 

The morphological operations used in this paper involve 

morphological dilation and morphological erosion. As we know, 

the upper envelopes are obtained by interpolating local maxima, 

while the lower envelopes are achieved by interpolating local 

minima. To make it feasible for point clouds, morphological 

dilation was adopted instead of interpolating maxima given by 

 

( , )
( , ) ( ) max ( ( , ))w

x y w
u x y S S x y


 

 

(2) 

 

where  w  = 3 3   

                
w   denotes the morphological dilation 
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In this way, all the local maxima can be accepted as components 

of upper envelope. In terms of lower envelope, it can be 

obtained using morphological erosion given by 

 

( , )
( , ) ( ) min ( ( , ))w

x y w
l x y S S x y


 

 

(3) 

 

where  w  = 3 3   

                
w   denotes the morphological erosion 

 

2.3 High-frequency Modes Based on OTSU Algorithm 

The result of EMD consists of a series of IMFs. These IMFs can 

be classified as two categories, namely high-frequency modes 

corresponding to noise-dominated components and low-

frequency modes corresponding to signal-dominated 

components. Thus, there will be a mode indexed by k  

separating these two kinds of modes given by 
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(4) 

 

This paper applied the OTSU algorithm to the mode index 

determination. The OTSU algorithm was first presented by Otsu 

(1979) for image classification by selecting optimal threshold 

automatically. The OTSU algorithm first dichotomizes the 

pixels into two classes, namely background and objects by a 

threshold at level k . The optimal threshold can be obtained by 

maximizing the variance between background and objects 

classes. This paper adopted a similar principle to determine the 

high-frequency modes. Firstly, the first IMFs 

( , 1,2, ,iIMF i k  ) and the residual term compose the class of 

‘background’, whereas the last IMFs 

( , 1, 2, ,iIMF i k k n    ) and the residual term compose the 

class of ‘objects’. 

 

According to the principle of OTSU, when the between-class 

variance reaches maximum, the optimal threshold will be 

achieved given by 
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where  
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                N  is the size of the signal 

 

2.4 2.4 Filtering of high-frequency modes 

These high-frequency modes need to be filtered so as to make 

the recovered signal free from noise. The filtering methods 

always rely on wavelet thresholding including soft thresholding 

and hard thresholding, which are defined as Equations (6)-(7): 

Soft thresholding: 
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Hard thresholding: 
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where      ,j kW  is wavelet coefficient 

  sign  is a sign function 

 th is the threshold at j  level 

 

th is generally defined as Equation (8) 

2lnjth N

 

(8) 

 

where      j is the standard deviation at j  level 

 N is the length of the signal 

  

This paper adopted soft thresholding method to filtering these 

noise-dominated modes. Thus, a variant of soft thresholding for 

EMD is defined as Equation (9) 

'
( )( )

0

i i i

i

i

sign IMF IMF th IMF th
IMF

IMF th

  
 



 

(9) 

 

where 'IMF  is the IMF after thresholding 

 

2.5 Criterion for Noise Points Detection  

These high-frequency modes need to be filtered so as to make 

the recovered signal free from noise. This paper adopted soft 

thresholding method to filtering these noise-dominated modes. 

The 2D signal can be reconstructed using the filtered high-

frequency modes and low-frequency modes. The recovered 2D 

signal can be seen as noise-free signal. Based on mapping 

relationships between the 2D signal (DSM) and point clouds, 

the recovered elevation of each point can be obtained. Generally 

speaking, the noise points own two characteristics, namely 

abrupt elevation and scatter. Thus, the noise points can be 

detected based on Equation (6) 
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(10) 

 

where   z p  is the observed elevation 

                 'z p  is recovered elevation 

                1th  is the elevation difference threshold 

                2th  is threshold for detecting neighboring points 

                3th  is the number threshold 

 

3. EXPERIMENTAL RESULTS AND ANALYSIS 

Three different datasets used in practice were tested to evaluate 

the performance of the proposed denoising method under 

varying terrain features. The first dataset (sample1) covers 

diverse land-use and land-cover types including residential 

buildings, roads, forests and farmlands as shown in Fig. 3 (a). 

The second dataset (sample2) characterizes by modern 

architecture with low and high-storey buildings as shown in Fig. 
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4 (a). The third dataset (sample3) is dominated by mountains 

and forests. Among them some rivers and small lakes existed as 

shown in Fig. 5 (a). 

 

To show the performance of the proposed method, three 

horizontal profiles of the digital surface model (DSM) before 

denoising were selected from the three datasets as shown in 

Fig.3 (b), Fig.4 (b) and Fig.5 (b). From these three one-

dimensional profiles we can find that both high and low outliers 

own abrupt elevations comparing with their neighboring points. 

Moreover, these outliers are generally scattered. After applying 

the proposed method to these three datasets, the corresponding 

denoising results were achieved as shown in Fig.3 (c), Fig.4 (c) 

and Fig.5 (c). The three corresponding horizontal profiles 

elaborate that the proposed method eliminated both high and 

low outliers effectively while preserving useful ground details. 

 

  
(a) (b) 

 
(c) 

Figure 3. Denoising and result of the first dataset: (a) Gray-scale 

image rendered using intensity values; (b) A horizontal profile 

of the DSM (red crossed symbols indicate outliers); and (c) The 

corresponding result after denoising. 

 

  
(a) (b) 

 
(c) 

Figure 4. Denoising and result of the first dataset: (a) Gray-scale 

image rendered using intensity values; (b) A horizontal profile 

of the DSM (red crossed symbols indicate outliers); and (c) The 

corresponding result after denoising. 

 

 

 

 

 
(b) 

 
(a) (c) 

Figure 5. Denoising and result of the first dataset: (a) Gray-scale 

image rendered using intensity values; (b) A horizontal profile 

of the DSM (red crossed symbols indicate outliers); and (c) The 

corresponding result after denoising. 

 

4. CONCLUSION 

Denoising is a crucial pre-processing step for airborne LiDAR 

point cloud. In this study, a novel denoising algorithm based on 

EMD for airborne LiDAR point cloud was the first time 

developed. The proposed algorithm first decomposed point 

cloud into a series of IMFs. By innovatively applying OTSU 

algorithm to these IMFs, the noise-dominated components can 

be determined and then were filtered according to soft 

thresholding method. Finally, noise points were detected 

automatically by comparing observed elevations and 

reconstructed elevations.  

 

To verify the validity and robustness of the proposed method, 

three datasets located at three different cities in China were 

tested. The experiments demonstrate that the proposed method 

exhibits a good performance in denoising both high and low 

outliers at the areas with various terrain features (e.g., 

residential buildings, roads, forests, farmlands, rivers, etc.), 

thereby providing a good foundation for the post-processing of 

airborne LiDAR point cloud, such as filtering, building 

reconstruction, road extraction, and so on. 
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