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ABSTRACT: 

Due to their usefulness in various implementations, such as energy evaluation, visibility analysis, emergency response, 3D cadastre, 

urban planning, change detection, navigation, etc., 3D city models have gained importance over the last decades. Point clouds are one 

of the primary data sources for the generation of realistic city models. Beside model-driven approaches, 3D building models can be 

directly produced from classified aerial point clouds. This paper presents an ongoing research for 3D building reconstruction based on 

the classification of aerial point clouds without given ancillary data (e.g. footprints, etc.). The work includes a deep learning approach 

based on specific geometric features extracted from the point cloud. The methodology was tested on the ISPRS 3D Semantic Labeling 

Contest (Vaihingen and Toronto point clouds) showing promising results, although partly affected by the low density and lack of points 

on the building facades for the available clouds.  

Figure 1. The proposed classification pipeline applied to ALS data (~6pts/sqm) over a part of Toronto, Canada (ISPRS benchmark 

dataset - Niemeyer et al., 2014; Rottensteiner et al., 2014): (a) original data, (b) geometric feature extraction (local planarity shown), 

(c) DEM extraction, (d) classification with Deep Learning. The point cloud in (d) is colored as ground level objects - GLOs (blue), 

roofs (green) and vegetation (red).

1. INTRODUCTION

Over the last decades, 3D city models gained importance due to 

their wide range of applicability, in many use cases (i.e. visibility 

analysis, 3D cadastre, urban planning, etc.) with more than 100 

applications (i.e. surveillance network planning, property 

registration, designing parks, etc.) (Biljecki et al., 2015). As 3D 

city models are being used for various purposes, it became a 

multi-disciplinary hot research field, as well. For this reason 

generation of 3D city models from photogrammetric or ALS 

point clouds has been studied by different researchers with 

different approaches (Haala and Kada, 2010; He et al., 2012; 

Lafarge and Mallet, 2012; Sampath and Shan, 2010; Toschi et al., 

2017; Wagner et al., 2017). These works are often performed 

relying on external ancillary data, such as building footprints, 

DSM, DTM, etc (Fig. 2). However, it is not always possible to 

access such data, and even if they are reachable, they are not 

always up-to-date or correct, matching resolution and accuracy.  

These aforementioned reasons pushed us to develop a method for 

3D building modeling based on a classified point cloud (Fig. 1), 

which enables to extract all needed information from one and 

only one input. Our aim is to use points geometric features in 

order to extract buildings’ roofs and facades, ground level objects 

(GLOs) and vegetation from aerial point clouds. This extracted 

information can be used afterwards for 3D building modeling 

without depending on any ancillary data.  

This paper reports progresses to our previously presented work 

(Özdemir and Remondino, 2018). These advancements include 

deep learning implementation, removal of orthophoto 

processing, usage of only point cloud data, inclusion of more 

features in the classification workflow and improvement of 

classification with separation of building facades and roofs.  

In the following sections, after a review of related works (Section 

2), the developed method is reported in Section 3. Results are 

given in Section 4 before conclusions of the study in Section 5.  

2. RELATED WORK

Many researches were performed on 3D building reconstruction 

using dense point clouds, as dense point clouds became more and 

more available in the last decades with the advances in LiDAR 

sensors and photogrammetry (Remondino et al., 2014). Most of 

these studies exploit available data (e.g. building footprints, 

DTM, DEM) in order to extract roofs, and then fitting geometric 
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primitives to these extracted roofs (Dorninger and Pfeifer, 2008; 

Holzmann et al., 2017; Li et al., 2019; Malihi et al., 2016; 

Vosselman and Dijkman, 2001; Xiong et al., 2014).  

 

 
Figure 2. State-of-the-art 3D building reconstruction approaches. 

 

Since our approach (Fig. 3) is based on extracting all needed 

information from a point cloud through classification, in the 

following sections we briefly share state-of-the art methods 

related to the steps of our approach: point cloud segmentation, 

3D geometric features and 3D deep learning. 

 

 
Figure 3. The proposed approach to classify aerial 

photogrammetric point clouds using a deep learning method. 

 

2.1 Point Cloud Segmentation and Classification 

Point cloud segmentation has been an active research field for 

years, since it is a challenging task due data complexity. There 

have been different approaches developed during the years 

(Nguyen and Le, 2013). While some approaches focus on 

primitive fitting with sample consensus algorithm (Fischler and 

Bolles, 1981), some others rely on data fusion with combination 

of image and 3D data (Adam et al., 2018), in addition to the 

geometry based approaches, such as region growing (Rusu, 

2010).  

Similarly, classification of point clouds has always been a 

challenging task. In order to solve this complex problem, 

researches preferred to focus either on LiDAR or 

photogrammetric clouds. On the LiDAR side, Douillard et al. 

(2011) focused on a voxelization based approach for different 

kind of LiDAR scanners, Macher et al. (2017) developed a 

workflow to classify indoor LiDAR point clouds for Building 

Information Modeling (BIM) applications, Ramiya et al. (2017) 

proposed a classification method based on segmentation and 

histogram analysis. On the photogrammetric side, Becker et al. 

(2017) developed a machine learning based classification method 

- including both colour and geometry-based features. Dorninger 

and Nothegger (2007) developed a generic method that can 

handle unstructured point clouds, regardless of the data source. 

 

2.2 Geometric Features for Point Clouds 

The literature for point cloud classification show that geometric 

features of points are commonly used to classify point clouds. 

Many approaches focus on geometric features that can be 

implemented for both photogrammetric and LiDAR point clouds 

(Hackel et al., 2016a; Hackel et al., 2016b; Hackel et al., 2017a; 

Thomas et al., 2018; Weinmann et al., 2013; Weinmann et al., 

2015b; Weinmann et al., 2015a). On the other hand, there are 

many approaches concentrating only on LiDAR point clouds 

(Charaniya et al., 2004; Dohan et al., 2015; Lalonde et al., 2006; 

Niemeyer et al., 2011b; Niemeyer et al., 2011a). Such methods 

frequently take advantage of eigenvalues and eigenvectors in 

order to extract geometric features and utilize machine learning 

classifiers in order to classify point clouds with respect to their 

geometric feature vectors. 

 

2.3 Point Cloud Classification with Deep Learning 

Deep learning has been used in various fields (such as natural 

language processing, speech recognition, computer vision,  

image processing, point cloud classification, etc.), due to its 

ability to solve complex problems (Deng, 2014; Goodfellow et 

al., 2016). For point cloud classification, a deep learning method 

has some advantages with respect to machine learning, as it does 

not need either handcrafting features to summarize your data nor 

a suitable classifier designed for your goal. 

Different deep learning approaches for point cloud classification 

were presented in the literature: voxel-grid based classification 

(Hackel et al., 2017b; Wu et al., 2015), superpoint graph structure 

for semantic segmentation (Landrieu and Simonovsky, 2018), 

capturing local structures (Qi et al., 2017) and contextual features 

(Yousefhussien et al., 2018), etc. 

 

3. DATA AND METHODOLOGY 

Our aim is to classify aerial point clouds in order to extract 

buildings’ facades and roofs, vegetation and GLOs. The proposed 

method has two main parts: (i) data preparation with feature 

extraction and (ii) classification with deep learning (Fig. 3). 

While the classification part is straightforward (Section 3.3), the 

data preparation part includes (Section 3.2): extraction of 

geometric features, 3D region growing segmentation and DEM 

extraction.  

In order to improve classification’s accuracy, we do not only rely 

on extracted geometric features (Section 3.2), but we exploit the 

neighbouring region of each point (Section 3.3).  

 

3.1 Employed data 

The ISPRS 3D Semantic Labeling Contest dataset (Niemeyer et 

al., 2014) is used to test and validate the developed method. The 

dataset includes point cloud data acquired with a Leica ALS50 

airborne laser scanner over Vaihingen (Germany). In the dataset, 

points are labelled in 9 classes as follows: powerline, low 

vegetation, impervious surfaces, cars, fence/hedge, roof, facade, 

shrub and tree (Fig. 4). The point density of the dataset is 

~5pts/sqm. The training set contains 753,876 points whereas the 

evaluation set contains 411,722 points. 

 

3.2 Segmentation, Feature and DEM Extraction from Point 

Cloud 

In our classification workflow, four custom features are used 

(Section 3.2.1-4): local planarity, vertical angle, elevation change 
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and height above ground. Additionally, a new approach for DEM 

extraction from point cloud using region growing segmentation 

and geometric features is proposed. 

 

 

 
Figure 4. Labelled training (above) and evaluation data (below) 

over Vaihingen (Germany). Each of the 9 classes is labelled with 

a different colour. 

 

 

3.2.1 3D Region Growing Segmentation: For our 

classification pipeline we use 3D region growing segmentation. 

This existing algorithm was implemented in Point Cloud Library 

(Rusu and Cousins, 2011), and we take advantage of it for our 

DEM extraction step. 

The algorithm works using the points’ curvature values. Initially, 

to prepare the seeds list, it sorts the points with respect to their 

curvature values. Afterwards, it starts growing the region with the 

point which has the minimum curvature value (Fig. 5). The 

points, which are qualified for the region, are removed from the 

list of seeds (Rusu, 2010). 

 

 
Figure 5. Region growing algorithm. 

 

3.2.2 Local Planarity: this feature is created by fitting a plane 

to neighbouring points and then calculating the average distance 

of those points the plane (Fig. 6). For plane fitting, we utilize the 

RANSAC (Fischler and Bolles, 1981) implementation available 

in the Point Cloud Library (Rusu and Cousins, 2011). As this 

geometric feature gives a metric about how planar the 

surrounding of each point is, we used it for separation of non-

planar regions (i.e. vegetation) from planar regions (i.e. façades 

and roofs). 

 

 
Figure 6. Computed local planarity feature shown for a part of 

the Vaihingen’s training data. Unit of the legend is meters. 

 

3.2.3 Vertical Angle: using 3D surface normal values of each 

point, the angle between the xy-plane and the normal vector is 

computed (Fig. 7). Using this geometric feature, surfaces can be 

distinguished with respect to their orientation. For example, 

facades form more vertical surfaces compared to roads and roofs, 

which are more horizontal surfaces. 

 

 
Figure 7. Computed vertical angle feature shown on part of the 

Vaihingen’s training data. Unit of the legend is grad. 

 

3.2.4 Elevation Change: to calculate this feature for a given 

3D point, minimum and maximum elevation values of 

neighbouring points are searched. The difference between these 

two values is assigned as elevation change value (Fig. 8). 

 

 
Figure 8. Elevation change feature visualized on a part of 

Vaihingen’s training data. Unit of the legend is meters. 
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3.2.5 Further Features: other geometric features are 

extracted from the point cloud using CloudCompare: anisotropy, 

surface variation, sphericity and verticality. All these features are 

extracted using eigen values, except for the verticality, which 

relies on eigenvectors. For a complete description of these 

features, please refer to (Hackel et al., 2016b). 

 

3.2.6 Digital Elevation Model Extraction: in order to 

calculate a “height above ground” feature for each point in the 

point cloud (section 3.2.7), an approximate elevation of the 

ground level is needed. A new method (Fig. 9) is proposed to 

extract a hypothetical ground level with a DEM, utilizing region 

growing segmentation and geometric features (section 3.2.1).  

 

 
Figure 9. DEM extraction approach. 

 

As the aim is to extract a DEM in the final step, the region 

growing segmentation is adapted not to be too sensitive to small 

curvature (Fig. 10). This adjustment ensures two benefits: (i) an 

easier elimination of small details and (ii) final larger segments. 

Having separated the point cloud into segments, we initiate the 

suitable segment selection process with the largest segment, 

assuming it belongs to GLOs class. 

 

 
Figure 10. Result of region growing segmentation on 

Vaihingen’s training data. Each segment is shown with a 

randomly assigned colour. 

 

While analysing the segments, we control their neighbouring 

points’ elevation differences and average elevation difference 

between segments (Fig. 11).  

Following this step, the extracted point cloud is rasterized to form 

a DEM (Fig. 12), which is then used for the calculation of the 

“height above ground” feature (section 3.2.7). 

 

 
Figure 11. DEM extraction from segmented point clouds. 

 
Figure 12. Extracted pre-DEM point cloud (above) and DEM 

(below) for evaluation set. Points are coloured with respect to 

their elevations: from lower (blue, green) to higher (yellow and 

red). The legend is in meters, representing elevation of points. 

 

3.2.7 Height Above Ground: starting from a DEM (Section 

3.2.5), for each point in the point cloud, the elevation difference 

from the closest DEM point is calculated and assigned to the 

point (Fig. 13). 

 

  
Figure 13. Height above ground feature (left) and elevation 

values (z-coordinates) of points coloured for evaluation data 

(right). Unit of the legend is meters. 

 

3.3 Training and Classification with Deep Learning 

We utilized a simple deep learning approach based on a neural 

network with five layers including: sequence input layer, 

bidirectional long short-term memory layer with 200 hidden 

units, fully connected layer, softmax layer and classification layer 

(Fig. 14).  

 

 
Figure 14. The used neural network. 

 

The reason to use a sequential deep learning approach is that we 

prefer to describe each point with its surrounding points, which 

can represent the geometry around the point in a better way 

compared to feature vectors. Therefore, for each point we sought 

its neighbouring points, and gave this as a sequence to the deep 

learning algorithm. For the training and classification purposes 

the following geometric features are used: height above ground, 

local planarity, anisotropy, surface variation, sphericity and 

verticality. In addition to the geometric features of the points in a 

sequence, we also included each point’s decentralizing the 

coordinates. In order to obtain these decentralized coordinates, 

we simply subtracted minimum x, y, z values within each 

sequence. Including both coordinates and geometric features in 
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each sequence, our method can learn local geometric shapes and 

their variations for classification. Loss and accuracy of the 

network during training is shown in Figure 15. 

 

 
Figure 15. Loss and accuracy of the trained network for 4 classes. 

 

4. RESULTS 

The proposed method is an improvement of (Özdemir and 

Remondino, 2018) which was developed assuming the 

availability of very dense point clouds and the need to generate 4 

classes: roofs, façade, GLOs and vegetation. The Vaihingen 

dataset feature a low and varying point density, especially around 

the powerline, building facades and vegetation classes. This led 

our feature extraction pipeline to eliminate many points (Table 1) 

as they do not have enough neighbouring points for our algorithm 

within a certain search radius.  

The Vaihingen dataset was processed in two runs: in the first run 

our deep learning algorithm (Section 3.3) was trained with the 

available 9 classes whereas in the second run it was trained with 

only 4 classes.   

 

Class 

Reference 

Data 

After 

Elimination 

Lost  

Data 

% Data 

Loss 

Powerline 600 98 502 84% 

Low veget. 98690 93467 5223 5% 

Imp. surf. 101986 97853 4133 4% 

Car 3708 3235 473 13% 

Fence 7422 7087 335 5% 

Roof 109048 103897 5151 5% 

Façade 11224 7533 3691 33% 

Shrub 24818 23230 1588 6% 

Tree 54226 47486 6740 12% 

Total 411722 383886 27836 7% 

Table 1. Number of points in each evaluation set for each class, 

before and after elimination. 

 

For the 9-class classification of the evaluation data, results are 

shown in Figure 17, while confusion matrix and per-class 

accuracy are given in Table 2. 

For the second run, we merged or removed some classes in the 

training set in order to get 4 classes. The removed classes are 

powerline, car and fence. We merged tree and shrub classes to 

form vegetation class, and similarly, low vegetation and 

impervious surfaces to form the GLOs class. For the 4-class 

classification, results are shown in Figure 18 while confusion 

matrix and achieved accuracy results are given in Table 3. 

As previously mentioned, our objective is to classify the point 

cloud into 4 classes. Therefore, our geometric features are 

designed to emphasize the difference between these 4 classes but 

not all available 9 classes in the dataset. As we did not select our 

features to highlight powerlines, cars and fences, accuracies in 9-

class classification are lower compared to 4-class classification. 

Similarly, looking for the available results on the benchmark’s 

website, while our 9-class accuracies are lower than the vast 

majority of them, our 4-class accuracies are similar to average 

results. 

In addition to the tests on the Vaihingen dataset, the replicability 

of the used training was evaluated, in order to see how it could 

classify other kind of data. This is indeed an important issue in 

the Geomatics and Geoinformatics field as many researchers are 

working on the classification problem but replicability and 

scalability are still very open issues. In order to solve these issues, 

a sensor-independent dataset, at least for roofs, can be acquired 

and tested with the proposed RoofN3D (Wichmann et al., 2018). 

The network trained with 4-classes (Table 3) was used to classify 

a small portion of ISPRS benchmark dataset of Dortmund City 

Center  (Nex et al., 2015). This is a denser point cloud data with 

~50pts/sqm density, acquired using oblique photogrammetry 

technique, instead of laser scanner. 

In the classification results (Fig. 16) it can be seen that facades 

could not be classified, whereas the GLOs have a proper look and 

roofs are arguably-correct classified. We assume this situation is 

mainly caused by the difference in point density between the two 

datasets, and the lack of points on vertical structures during the 

training procedure. 

 

 

 
Figure 16. A portion of the Dortmund benchmark dataset, 

original cloud part (top), and classified (bottom) with 4-class 

classifier: roofs (green), vegetation (red) and GLOs (blue). 

 

5. CONCLUSIONS 

This paper reported an approach for point cloud classification for 

a successive 3D building reconstruction procedure. The 

developed automated procedure includes deep learning 

processing and the extraction of buildings’ roofs and facades, 

beside vegetation and GLOs. The procedure relies on geometric 

features, which are calculated for each 3D point with their 

neighbouring points within a certain radius. The density of the 

available cloud plays a key role in the classification procedure: if 

points are sparse, geometric features cannot be properly 

calculated and such points need to be eliminated (Table 1). 

Moreover, an imbalanced loss of façade points in the training 

data caused misclassifications. Nevertheless, newly generated 

aerial dense point clouds are more dense, with oblique 

photogrammetric point clouds featuring points also on building 

façades (Nex et al., 2015). Therefore, extracting semantic classes 

from such point clouds will facilitate to derive 3D building 

geometries based on extracted entities. 
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Figure 17. 9-class classification result for Vaihingen evaluation data. 

 

Class Name Powerline 

Low 

veget. Imp. surf. Car Fence Roof Facade Shrub Tree Precision Recall F1 Score 

Balanced 

Acc. 

Powerline 36 1 0 0 0 27 0 3 31 36.7% 1.4% 2.70% 19.1% 

Low veget. 0 22690 43360 3 826 10899 118 15427 144 24.3% 70.2% 36.07% 47.2% 

Imp. surf. 0 5951 88386 0 196 2358 7 952 3 90.3% 65.5% 75.95% 77.9% 

Car 0 200 9 3 548 433 2 2040 0 0.1% 42.9% 0.19% 21.5% 

Fence 0 364 51 0 680 770 74 4271 877 9.6% 20.1% 12.98% 14.8% 

Roof 1535 560 2479 0 339 93387 73 1601 3923 89.9% 80.8% 85.10% 85.3% 

Facade 102 296 98 0 28 1271 2344 1650 1744 31.1% 76.6% 44.25% 53.8% 

Shrub 0 1689 473 1 456 1775 125 15302 3409 65.9% 30.9% 42.04% 48.4% 

Tree 892 587 27 0 315 4664 318 8313 32370 68.2% 76.2% 71.94% 72.2% 

Average 46.2% 51.6 41.2% 48.9% 

Table 2. Confusion Matrix and per-class accuracy for 9-class classification. 

 

 
Figure 18. 4-class classification result for Vaihingen evaluation data. 

 

Class Name GLO Roof Facade Vegetation Precision Recall F1 Score Balanced Acc. 

GLO 169454 8380 561 12925 88.6% 94.6% 91.5% 91.6% 

Roof 3404 92100 36 8357 88.6% 84.9% 86.7% 86.8% 

Facade 608 1185 1738 4002 53.1% 65.1% 58.5% 59.1% 

Vegetation 4418 5537 283 60478 85.5% 64.6% 73.6% 75.1% 

Others* 1210 1289 52 7869     

    Average 79.0% 77.3% 77.6% 78.1% 

Table 4. Confusion Matrix and per-class accuracy for 4-class classification. Others* include points from powerline, cars and fence, 

which are classified as GLOs, roof, façade or vegetation. 
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