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ABSTRACT: 
 
Training dataset generation is a difficult and expensive task for LiDAR point classification, especially in the case of large area 
classification. We present a method to automatically extent a small set of training data by label propagation processing. The class labels 
could be correctly extended to their optimal neighbourhood, and the most informative points are selected and added into the training 
set. With the final extended training dataset, the overall (OA) classification could be increased by about 2%. We also show that this 
approach is stable regardless of the number of initial training points, and achieve better improvements especially stating with an 
extremely small initial training set. 
 
 

1. INTRODUCTION 

LiDAR (Light Detection And Ranging) automatic classification 
has been an important study topic over years. Supervised 
statistical approaches, such as Support Vector Machines (SVM) 
(Secord and Zakhor, 2007) or Random Forest (Guo et al., 2011) 
have been widely applied and achieved good performance. 
Additionally, to incorporate the spatial contextual information, 
Markov Random Field (MRF) and Conditional Random Field 
(CRF) are successfully used for contextual classification and 
achieve smoother results than the classifications based on 
individual independent features (Niemeyer et al., 2014; 
Shapovalov et al., 2010). This research mostly focuses on site-
specific classification for 3D points at a small scale. Only few 
papers were published on large area LiDAR classification. 
 
Extensive 3D point clouds over large area would result in 
handcrafted features inhomogeneity, making automated points 
cloud classification difficult. This would bring further challenges 
for class separability when only small training data is available. 
Especially, supervised classifiers rely on the quality of the 
labeled training data. The training samples should be fully 
representatives of the class-type statistics to allow the classifier 
to find the correct solution. In the case of large area classification, 
this constraint makes the generation of an appropriate training set 
a difficult and expensive task that requires extensive manual 
interaction.  This is a common problem for classification of large 
amounts of data, and only a small amount of reference points can 
be manual labelled due to the limited economical and temporal 
resources. Therefore, the classification model constructed on the 
collected small training data could show poor generalization 
capabilities when applied to the rest of large amount of data.  
Additionally, manual training set definition is usually done by 
visual inspection of the scene and the successive labeling of each 
sample. This phase is highly redundant as well as time-
consuming. 
 
A solution to the problem of training data extraction is 
represented by semi-automatic active learning methods. Its key 
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idea is to select the samples whose inclusion in the training set 
would be beneficial to the classification performance. And the 
semi-automatic active learning already has shown to be effective 
for hyperspectral image classification. For instance, a 
combination of the SVM classifier is commonly used (Mitra et 
al., 2004; Tan et al., 2014), samples that are close to the hype-
plane are selected into the training dataset. In order to be adaptive 
with any generative classifier, the maximum information gain 
(Rajan et al., 2008) and breaking tie (Luo et al., 2005) can also 
be used to select uncertain samples. A co-training approach 
proposed by (Romaszewski et al., 2016) scored samples by 
combining spatial and spectral features, an optimal training set 
would be learned by iteratively adding new samples with high 
scores. 
 
In this paper, we aim to extend a small set of initial labelled 
samples during a process of label propagation. By adapting an 
optimal neighborhood selection, the knowledge about class 
labels from the training set can be correctly extended to their 
neighborhood. And one most informative point is selected by BT 
(breaking tie) and added into the training set. In this way, we 
extent the training dataset, and automatically label the newly 
added samples.  Compared with original small training set, the 
new extended training set could be more representative for 
features and capable to improve the classification results.  
 
The rest of the paper is organized as follows: Section 2 explains 
our method. Section 3 presents the experiment on real data and 
its results, while Section 4 describes the performance along 
iteration and the impact of the number of initial training points. 
Summaries are provided in Section 5. 
 

2. METHODOLOGY 

Normally, the active learning approach consists of two 
components. The first is the selection of the most useful 
unlabelled samples to the classifier, and the second is how to 
determine the class labels of these new selected samples. In this 
paper, we start with a small set of suboptimal training points. The 
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breaking ties (BT) method (Luo et al., 2005) is applied to sample 
the informative unlabelled points. And the label of selected 
unlabelled point is determined by the spatial similarity. Since the 
class label is highly correlated with spatial similarity of points, 
we could assume that points located in the same neighbourhood 
are likely to have the same label with the center point. After 
adding those informative samples to the training dataset, the 
classification model is forced to focus on conflicting areas and to 
improve its generalization capabilities. The processing sequence 
is as follows: 
 
Step 1: Based on the initial small training dataset, an initial 
classifier is built; 
Step 2: For each training point, finding its’ optimal 
neighbouring points; 
Step 3: The classifier is applied to those neighbouring points, 
and one most informative point is selected by the minimal BT 
value and labelled by the current training point. 
Step 4: Extending training dataset by adding new samples, and 
updating the classifier; 
Step 5: Repeating step 2,3,4, until a maximum iteration number 
is met. Then, the final training set is used to refine the classifier; 
Step 6: Finally, the classifier is used to predict labels for all 
unlabelled points. 
 
The following section 2.1 describe the estimation of the optimal 
neighborhood, and section 2.2 induces the breaking ties 
 
2.1 Label propagation by the optimal neighbourhood 

By taking the advantage of spatial correlation of point cloud, the 
knowledge about class labels of training points can be extended 
to their neighborhood. To guarantee the accuracy of label 
propagation, an optimal neighborhood estimation method is 
applied (Li et al., 2019). The  neighboring points are adaptively 
selected by weighted geometric similarity, so that all neighboring 
points that potentially belong to the same object with the 
concerned points could be included. 
 
Here, the geometric similarity is measured by the angle between 
the normal vectors and point-to-plane orthogonal distances, 
while the weights are determined by the local surface variations 
(σ). To avoid lacking enough neighboring points for non-planar 
points, like vegetation, we assign larger weights to those non-
planar points to increase the geometric similarity with neighbors. 
The weight function is defined in Eq. (1), and neighboring points 
that satisfy Eq. (2) are collected as the optimal neighbors of the 
concerned point: 
 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡(𝑝𝑝0,𝑝𝑝𝑖𝑖) = �
1 𝑖𝑖𝑖𝑖 𝜎𝜎(𝑝𝑝0) ≤ 𝑇𝑇𝑇𝑇𝑇𝑇𝜎𝜎

𝑒𝑒𝜎𝜎(𝑝𝑝0) ∙ 𝑒𝑒𝜎𝜎(𝑝𝑝𝑖𝑖) 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝜎𝜎(𝑝𝑝0) > 𝑇𝑇𝑇𝑇𝑇𝑇𝜎𝜎
 (1) 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡(𝑝𝑝0,𝑝𝑝𝑖𝑖) ∙ 𝑛𝑛𝑛𝑛𝑝𝑝0 ∙ 𝑛𝑛𝑛𝑛𝑝𝑝𝑖𝑖 ≥ cos(𝑇𝑇𝑇𝑇𝑇𝑇𝛼𝛼) 
𝑎𝑎𝑎𝑎𝑎𝑎 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡(𝑝𝑝0,𝑝𝑝𝑖𝑖) ∙ �(𝑝𝑝0 − 𝑝𝑝𝑖𝑖) ∙ 𝑛𝑛𝑛𝑛𝑝𝑝0� ≤  𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑 (2) 

 
Where 𝜎𝜎(𝑝𝑝0) is the local surface variation in the point 𝑝𝑝0. 𝑇𝑇𝑇𝑇𝑇𝑇𝜎𝜎 
is a threshold to determine whether 𝑝𝑝0 may belong to a planar 
object. 𝑛𝑛𝑛𝑛𝑝𝑝  denotes the normal vector of point 𝑝𝑝  and 𝑝𝑝 =
[𝑥𝑥𝑝𝑝,𝑦𝑦𝑝𝑝, 𝑧𝑧𝑝𝑝] denotes the 3D coordinates of point 𝑝𝑝. 𝑇𝑇𝑇𝑇𝑇𝑇𝛼𝛼 is the 
threshold of the normal vector-angle change and 𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑  is the 
threshold of the local point-to-plane orthogonal distance. 
  
2.2 Sample selection by BT 

The BT technique is focused on the diversity of the unlabeled 
samples, which is obtained by the minimum difference between 
the two highest posterior class probabilities. The more a point 

shows a similar posterior probability between the two most 
probable classes, the more it is uncertain and thus capable of 
providing useful information if added to the training dataset (Tuia 
et al., 2011). Thus the BT value of point 𝑝𝑝𝑖𝑖 is formed by Eq.(3): 
 

BT(𝑝𝑝𝑖𝑖) = max
𝑐𝑐∈𝐶𝐶

�𝑃𝑃(𝑙𝑙𝑖𝑖 = 𝑐𝑐|𝑝𝑝𝑖𝑖)� − max
𝑐𝑐∈𝐶𝐶\𝑐𝑐+

�𝑃𝑃(𝑙𝑙𝑖𝑖 = 𝑐𝑐|𝑝𝑝𝑖𝑖)� (3) 

Where 𝑃𝑃(𝑙𝑙𝑖𝑖 = 𝑐𝑐|𝑝𝑝𝑖𝑖) probability for class prediction 𝑙𝑙𝑖𝑖 of a point 
𝑝𝑝𝑖𝑖, 𝑐𝑐 ∈ 𝐶𝐶 corresponds to one class 𝑐𝑐 among the 𝐶𝐶 possible 

classes, and 𝑐𝑐+ = max
𝑐𝑐∈𝐶𝐶

�𝑃𝑃�𝑙𝑙𝑖𝑖 = 𝑐𝑐�𝑝𝑝𝑖𝑖�� is the most probable 

class for point 𝑝𝑝𝑖𝑖. 

 

After finding all optimal neighboring points for one training 
point, the point minimizing Eq.(3) is then taken and labeled by 
the current, certain training point. The procedure is implemented 
for all training points and repeated for several times, the final 
selected labeled training points are used to refine the classifier. 
 

3. RESULTS 

3.1 Datasets 

The point cloud we used was a fully labelled airborne LiDAR 
dataset of Vienna, Austria. The selected area is 1270×200 m2, 
and the average density is about 50 points/m2. This area 
represents a complex urban scene, including a mixture of high 
and low vegetation, high-rise and small detached houses, and flat 
and sloped ground. Five domain classes were categorized for the 
Vienna dataset: ground, vegetation, roofs, façades and others that 
include fences, cars, street lights, power lines and so on.  
To get an impression of the dataset, the percentage distribution 
of each class in the dataset are shown in Table. 1. 
 

Class Percentage 
Ground 53.70% 
Vegetation 26.72% 
Roofs 14.04% 
Facades 1.54% 
Others 4.00% 

Table 1. Percentage distribution of each class in the dataset 
 
3.2 Experiment setup and results 

We used the random forest (RF) as the probabilistic classifier. 
For the optimal neighbourhood estimation, the spherical 
neighbourhood with radius of 2m was used for initial 
neighbouring points searching. Then the optimal neighbouring 
samples are selected by weighted geometric similarity and 
labelled by its neighbouring labelled training point. The initial 
number of training points is 100 per class, and the iteration was 
empirically set as 3 to extend the training data. 
 
Figure. 1 shows the classification results using initial training 
dataset, extended training dataset and the reference dataset. From 
visual inspection, a more smooth classification result is achieved 
after training dataset extension. For instance, as shown in the 
marked area A in Figure. 2, more points are correctly classified 
as ground after the active learning, whereas those points are 
wrongly labelled as others in the initial training dataset. Another 
notable change appears in the marked area B in Figure. 2. There 
is a large amount of points misclassified as vegetation by the 
initial classification. After the active learning, most of those 
points’ labels are changed into façades, this situation could be 
explained by a small error in the reference data (seen in the 
Figure. 2(c)). 
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From the Table. 2, the OA (overall) accuracy was increased by 
1.7% after the active learning of training points. A relatively 
significant improvement was achieved for the class of vegetation 
and others, 4.00% and 3.37%, respectively. However, the 
accuracy of façade has dropped to 74.14% using the extended 
training dataset. 13.36% façade points are misclassified as 
vegetation which is 6.31% higher than the initial classification, 
and a few of façade points (2.41%) are misclassified as roofs 
since they are easily mixed up over the conjunctions of roofs and 
façades.  
 
 

Class Initial 
accuracy 

Accuracy 
after active learning 

OA 84.24% 85.98% 
Ground 88.60% 89.35% 
Vegetation 79.74% 83.73% 
Roofs 81.82% 84.85% 
Façades 84.59% 74.14% 
Others 64.06% 67.37% 
Table 2. Accuracy comparison of classification using initial 

training set and extended training set 
 

 
(a) 

 
(b) 

 
(c) 

 
Figure 1. The classification results. (a) using the initial training dataset; (b) using the extended training dataset; (c) the reference 

labelled data.    
 

   
(a) (b) (c) 

 
Figure 2. Detailed comparison of classification results. (a) using the initial training dataset; (b) using the extended training dataset; 

(c) the reference labelled data. 
 
 

4. DISCUSSIONS 

To access the stability of this active training data learning 
method, we started with different amounts of training dataset, 
which includes 10,100 and 1000 initial training points per class, 
respectively. Each experiment was repeated 3 times. The 
accuracy changes along the iterations are shown in Figure. 3, 
which are the average accuracy and its standard deviation over 3 
experiments.  

 
Compared to the initial classification results, the OA accuracies 
were all increased after the active learning (seen in Figure. 3(a)). 
Notably, the significant overall accuracy improvement was 
achieved by the smallest set of initial training data of 10 samples 
per class. It gained 5% higher OA accuracy than initial 
classification, while 2.4% and 1.5% OA increase for initial 
training points of 100 and 1000 per class, respectively. The 
representativeness of the extremely small training set is usually 
lacking strongly, thus the effect of adding new informative 
samples would be notable when it was started with a poor initial 
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classification result. While the models trained by 100 and 1000 
samples per class are already decent, the improvement would 
become moderate when the amount of the initial training set is 
raised. Also due to the incompleteness of small initial training set 
of 10, the variation is relatively larger than the other two initial 
training sets. 
 
We also observed that the accuracy would be immediately 
improved by extending the training data in the 1st iteration, and 
the accuracy only has slight changes over iterations besides the 
accuracy of façade. It means that the samples that are selected 
during the first extension are the most informative and could be 
effective to increase classification ability, whereas other samples 
from the rest of iterations may have very similar feature vectors 
with samples that already exist in the training set. Therefore, they 
could not provide more useful information to achieve better 
accuracy. This is caused by the local neighbourhood we used for 
label propagation. However, the trend of accuracy change of 

façade is different from the others. Façade points tend to be 
misclassified into vegetation during this active learning 
procedure. Since generally the optimal neighbourhood favours 
points that are located in the same plane, vegetation points that 
lie in the same vertical plane would have similar feature vectors 
with the vertical façade points. Iteratively including those 
vegetation points into training dataset would lead to the 
confusion with façade. 
 
Another interesting finding is that the performance of active 
learning would be fundamentally impacted by the initial amount 
of training samples. The accuracy with 100 initial training points 
per class reached 84.5% after 6 iterations, meanwhile the total 
number of training points per class is 1600. This result is still not 
as good as the initial classification accuracy using random 1000 
training samples at first. But it is comparable to the classification 
by initial training samples of 300 per class (84.04%). 
 

  
(a) (b) 

 
 

(c) (d) 

 
 

(e) (f) 

Figure 3. The trend of accuracy changes over iterations. (a) overall accuracy; (b) ground accuracy; (c) vegetation accuracy; (d) roofs 
accuracy; (e) façades accuracy; (f) others accuracy. 
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5. SUMMARY 

We proposed an effective active learning method to 
automatically extend training points. Classification accuracy was 
increased by using the extended training dataset, which was 
significant especially starting with an extremely small set of 10 
labelled points per class. An optimal training dataset would be 
achieved by a few of iterations. The reasonable amount of 
training samples also keep the classifier learning efficient. Due 
to the limitation of initial training sample, an exploration for 
initial samples selection will be considered in the further 
research. 
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