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ABSTRACT: 

 

The use of algorithms for automatic classification of aerial laser scanner 3D Point Clouds is the main process that improves its thematic 

quality. The main objectives of using 3D Point Clouds are the description of the surface and the detection of objects. The aim of this 

proposal for bridge and water detection algorithms is to increase the range and accuracy of the classification parameters of these 

products obtained with LiDAR technologies. With this methodology, the Digital Elevation Models (DEM) quality is improved and 

they are obtained by automated models of bridges and hydrography.  

This paper describes a methodology to detect and classify bridges and continental water bodies in points using the properties of LiDAR 

technology such as radiometric and geometric variables implementing indexes like NDVI, NDWI or NFC. In addition, the Network of 

Roads and Hydrographic models in Spain are used to reduce the area of interest and errors. Part of the province of Teruel (Spain) has 

been used as study area. 
 

 

1. INTRODUCTION 

 
  

Spanish National Geographic Institute manages and 

coordinates the PNOA-LiDAR project. The aim of this project 

is to measure the whole Spanish territory by Aerial Laser 

Scanner (ALS) every 6 years.  

This project started in 2008 and in 2015 the whole national 

coverage was completed, called First Coverage. Currently, the 

Second Coverage is being acquired improving the capabilities 

of the project. The mean density of the registered 3D Point 

Clouds is around 1 point/m2, with a RMSE in z of 15-20 cm. 

PNOA-LiDAR is an open data project, with free use and 

distribution licence. Data generated in the PNOA-LiDAR 

project have been used in research works (Montealegre-Gracia, 

A. L., 2017), generation of DEMs, Hydrographic models or 

archaeological discoveries (Fernández-Lozano, J., 2014). 

Point Cloud density defines Digital Terrain Model (DTM) cell 

size, nowadays a 5 meters grid is published for the First 

Coverage and a 2 meters grid will be published for the Second 

Coverage. 

Another important improvement between the first and the 

second coverage is the requirement of a simultaneous image 

registration with near infrared information in addition to RGB 

which is used to colour the Point Cloud. 

 

Point cloud 

density 

Point cloud 

RMSEz 

DTM 

RMSEz 

DTM 

resolution 

1p/m2 ≤ 0.15m ≤ 0.5m 2m X 2m 

Table 1 – PNOA-LIDAR main technical specifications 

 

 For the production of the DTM a manual edition was needed 

for bridges and water bodies. The goal is to obtain a solution for  

detecting these elements in an automatic way improving other 

studies presented before (Zheng, Yi., 2013). 

 

2. METHODOLOGY 

 
  

Automatically classified 3D Point Clouds with R-G-B-NIR 

values of simultaneous registered images, in LAS format, 

corresponding to PNOA-LiDAR Project are used as input.  

In a first step of the automatic classification each point from the 

3D Point Cloud is assigned to one of the following 6 classes, in 

correspondence with ASPRS specifications (American Society 

for Photogrammetry & Remote Sensing, 2010). Class 12 is used 

as overlap between flight strips in PNOA-LiDAR:  

         

ID Class 

2 Ground 

3 Low Vegetation 

4 Medium Vegetation 

5 High Vegetation 

6 Buildings 

7 Noise 

Table 2 – Classes defined by ASPRS used in PNOA-LiDAR 

project 

 

This first approximated classification is done using commercial 

Point Cloud processing software TerraScan (TerraSolid Team, 

2018). After trying different strategies, it was concluded that 

the results obtained in the automatic classification were of 

sufficient quality to continue to the following phase of the 

procedure. In addition, the processing time of the automatic 

classification was optimal with this option (approximately 4 

minutes per 2x2 km file). This automatic classification is only 

based on geometric features of the point cloud and additional 

information as the number of returns, or the flight strip 

numbers. 
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Increasing the range of classes and the classification accuracy 

are the objectives on a second step. For this, other products are 

combined with the 3D Point Clouds in the classification 

algorithms to help to reduce processing times, errors and 

validate them in subsequent processes. 

The implementation and execution of the following algorithms 

is done using Extract Transform and Load (ETL) software FME 

(Safe Software Team, 2018). 

Summarizing, the workflow of the PNOA-LiDAR project is as 

follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 – PNOA-LiDAR Point Clouds processing flow chart 

 
 

2.1. Bridge classification 

 
In the approximated classification the bridge elements are not 

labelled as Class 17-bridge mainly because nowadays there is 

no software that provides a good performance automatically. In 

consequence, these elements are usually misclassified as 

ground or building points in the approximated classification. 

This error makes distortions in DTMs or orthophotos. 

Using other geometric products is the key of success in the 

implementation of new classification algorithms. The National 

Geographic Institute of Spain publishes, as open data policies, 

the Network of Roads of all Spain in lineal vector format. 

Regarding the bridge detection problem, this product is useful 

to locate those areas of the point cloud that represent a bridge 

because this model distinguishes which road sections are 

elevated using an attribute for this. The proposed method to 

detect bridges in the point cloud consists of four consecutive 

steps, as it can be seen in the flow chart shown in Figure 2. 

In the first step two polygons vector products are generated, 

these two products are filtered using the attribute which 

indicates that the road is elevated. The first product is generated 

with a 2 meters buffer operator (resulting in a longitudinal 

polygon, in accordance with the road direction). The second 

product is generated with different geometric operators 

resulting perpendicular rectangles to the axis of the road model 

and dimensions 2x10 meters (transversal polygons, following 

the road direction).  

In a second step the 3D Point Cloud is compared with vector 

products generated in the previous procedure. This comparison 

considers a null hypothesis, all points from the 3D Point Cloud 

which intersects with both vector products generated are 

considered Bridge.  

In a third step a DEM grid of 2x2 meters is generated. The 

boundaries are determined by the second vector product 

(transversal polygons) generated in the first step and the Z value 

is determined by the mean of points selected in the second step. 

In a fourth step the original 3D Point Cloud is compared with 

the DEM generated in step number 3. If the difference of height 

is less than 1 meter, those points are considered as Bridge. 

New steps are considered as loops from the second and fourth 

steps where the 3D Point Clouds introduced are the generated 

in the fourth step.  

 

 

Figure 2 – Bridge classification flow chart 

  
Three loops are implemented to obtain satisfactory results 

where bridge points are discriminated against ground and 

building ones. 

  

Figure 3 – Comparison between before and after detecting 

bridge (in grey). Ground points are in brown, building points 

in orange and vegetation in green 
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2.2. Continental water bodies classification 

 
Traditionally ALS sensors were not able to detect water, but 

current systems are able to do it, although no homogeneously. 

This is a methodology for the classification of those points in 

water taking into account some previous studies related with the 

image classification of continental waters (Acharya, Tri D., 

2018).  

There are different radiometric indexes suitable to carry out 

jobs of identifying water in an aerial image, i.e. NDVI 

(Normalized Difference Vegetation Index), NDWI 

(Normalized Difference Water Index) or Normalized False 

Colour (NFC): 

 

𝑁𝐷𝑉𝐼 =  
(𝑁𝐼𝑅 − 𝑅)

(𝑁𝐼𝑅 + 𝑅)
              𝑁𝐷𝑊𝐼 =  

(𝐺 − 𝑁𝐼𝑅)

(𝐺 + 𝑁𝐼𝑅)
 

  

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐹𝑎𝑙𝑠𝑒 𝐶𝑜𝑙𝑜𝑢𝑟 =  
(𝑁𝐼𝑅 ∗ 𝑅 ∗ 𝐺)

2𝑏𝑖𝑡𝑠
              

 

They all have identified a similar problem if it is used only the 

near infrared channel: it is very difficult to distinguish between 

water and ground shadows. The potential of the proposed 

method is that combines the potential of radiometric image 

information with the altitude information of the LiDAR Point 

Cloud to improve the classification. 

In the proposed method firstly a decision tree algorithm is 

settled implementing 3 conditions for selecting water points 

using the indexes shown before: 

 

Possibilities NDVI NDWI NFC 

High < -0.10 > 0.20 >0.03 

High < -0.20 - - 

Medium < 0.15 (-0.15, 0.40) <0.03 

Table 3 – Radiometric indexes ranges 

 

 In addition there are 3 more filters with the aim of avoiding the 

classification of shadows as water points: 

- Approximated classification on first phase: All points 

which classification is ground or low vegetation are 

considered, discarding the rest. 

- Slope: Z value in points selected as water must not differ on 

0,5 meters of the Z mean value in an area of 4x4 meters. 

This filter is useful due to the homogeneousness of the Z 

value of water points and the existence of big shadows in 

abrupt areas near to water bodies. 

- Hydrographic model: the Hydrography model of reference 

in Spain is a polygon vector which helps to determine the 

probability of belonging to a water body.  

If the convex hull polygon to near points radiometrically 

selected as water intersects in a percentage of surface 

greater than 50% with a polygon of the hydrographic 

model, those points are considered to have more 

possibilities to belong to a water body. 

The points with higher possibilities are automatically 

reclassified as class 9 – water and the others, with medium 

possibilities, are taken into review. 

 

 

Figure 4 – Result example of a water area 

 

During the process of reclassification it is also obtained a 

polygon layer of the resulting water body contours with an 

elevation attribute. To digitize the contour it is necessary to 

erase class 9-water and get the polygon of the hole. This 

polygon is used later to fill the DTM with a constant Z in those 

regions where there is no point cloud information. 

 

 
3. RESULTS 

 
The methodology has been applied in the LiDAR data 

corresponding to the second national coverage of PNOA-

LIDAR Project in a study area of 1.000 km2 in Teruel province, 

Spain. This data was collected in 2018. The aforementioned 

product was generated by the Spanish IGN, with an 

approximate LiDAR processing time of one month. The area 

has been chosen because there are sufficient elements and 

different cases of interest for this work. 

 

For the analysis of the results a visual review has been made, 

using as ground truth the simultaneous orthophoto obtained 

with the images registered in the LiDAR flight, in order to 

identify commission and omission problems and partial 

detections of bridges and water bodies.  

These are the statistical results for the bridge detection 

procedure (Table 4): 

 

Type of detection 
Number of 

bridges 
Percentage 

Omissions 9 21% 

Commissions 0 0% 

Partial detections 4 10% 

Full detections 29 69% 

Total 42 100% 

Table 4 – Bridge results 

 

The total number of points classified as bridge are 18.838 in the 

whole studied area, achieving an accuracy detection of almost 

80% between full and partial detections. 

As an example here are some images of detected situations: 

NIR-R-G view Before Water 

Classification 
After Water 

Classification 
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Full detection Partial detection 

Figure 5 – Examples of bridge detection situations (in grey) 

 

Considering the bridge classification results there are some 

cases where the whole bridge is not classified or points from the 

ground under the bridge are classified wrongly. In most of these 

cases the main cause is due to a bad geometry of the lineal road 

geometries where the axis is not well digitalized along the 

bridge, so the algorithm is not able of determine which points 

are elevated.  

The process for obtaining the results for water areas has been 

the same. It is important to know that to analyse the result 

corresponding to rivers they have been considered as a unique 

element, with the exception of big water rafts in the middle of 

the river that have been considered as another element.  

These are the statistical results for water bodies extraction 

(Table 5): 

 

Type of detection 
Number of 

water bodies 
Percentage 

Omissions 5 16% 

Commissions 2 6% 

Partial detections 5 16% 

Full detections 20 63% 

Total 32 100% 

Table 5 – Water body results 

 

The total number of points classified as water are 356.168 in the 

whole studied area. In this case, the detection procedure 

achieved an accuracy rate of 79% between full and partial 

detection. 

As an example here there are some images of detected 

situations: 

 

  

  

Partial detection Omission 

Figure 6 – Examples of water detection situations (in blue) 

 

Analysing the water results we can say that: 

- Commission errors correspond with two shadows in flat 

areas. 

- Partial detections correspond with rivers, due to changes 

in the water radiometry. The same problem is the cause 

of the main omissions, encountered in artificial rafts for 

industrial or agricultural use. When the radiometric of 

water areas have brightness is also a problem for 

detection.  

 

 
4. CONCLUSIONS 

 
These procedures show that the objective of bridge and water 

bodies’ detection have been successfully implemented in the 

study case. Due to this success, it has been introduce as part of 

the standard production workflow of the PNOA-LiDAR 

project. 

Using other products to establish the area of interest improves 

the results, but this factor doesn´t affect the success of these 

algorithms without them. The idea is to use this method on one 

hand, as a first improvement of LiDAR classification, and on 

the other as an error reporter for the products used. Thus, future 

results would be more and more accurate thanks to this loop 

process. It could be also interesting to implement them as tools 

in a CAD for manual edition. 

Image calibration affects to the use of radiometric parameters, 

so it is necessary a local test to make sure that the tolerances 

applied are correct in the studied area. Furthermore, as a future 

work it could be useful the combination of these indexes with 

LiDAR intensity values. 

The application of this method in the whole country with data 

collected in different years and situations makes the 

automatization difficult. The algorithms need some parameters 

of machine learning to improve itself for the processing of the 

third coverage. 
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