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ABSTRACT: 
 
Airborne laser scanning (ALS) plays an important role in spatial data acquisition. One of the advantages of this technique is laser beam 
penetration through vegetation, which makes it possible to not only obtain data on the tree canopy but also within and under the canopy. 
In recent years, multi-wavelength airborne laser scanning has been developed. This technique consists of simultaneous acquisition of 
point clouds in more than one band. The aim of this experiment was to examine and assess the possibilities of tree segmentation and 
species classification in an urban area. In this experiment, point clouds registered in two wavelengths (532 and 1064 nm) were used 
for tree segmentation and species classification. The data were acquired with a Riegl VQ-1560i-DW laser scanner over Elblag, Poland, 
during August 2018. Tree species collected by a botanist team within terrain measurements were used as a reference in the classification 
process. Within the experiment segmentation and classification process were performed. Regarding the segmentation, TerraScan 
software and Li et al.’s algorithm, implemented in LidR package were used. Results from both methods are clearly over-segmented in 
comparison to the manual segments. In Terrasolid segmentation, single reference segments are over-segmented in 28% of cases, 
whereas, for LidR, over-segmentation occurred in 73% of the segments. According the classification results, Thuja, Salix and Betula 
were the species, for which the highest classification accuracy was achieved. 
 

1. INTRODUCTION 

Airborne laser scanning (ALS) (Baltsavias, 1999) is a well-
known and widely used technology. One of the advantages of this 
technology is fast and accurate data acquisition. ALS technology 
provides the user with accurate geometric information about 
registered objects. Point clouds, which are derived from ALS, are 
mostly used for the generation of digital terrain models (DTMs), 
digital surface models (DSMs) and in 3D modelling (Hu et al., 
2018). Another advantage of ALS is laser beam penetration 
through vegetation, which not only makes it possible to obtain 
data on the tree canopy but also within and under the tree. 
Because of its advantages, ALS is commonly used in forestry 
(Hyyppä et al., 2012) as well as in urban tree mapping for 
individual tree segmentation and classification (Zhang et al., 
2015), often in fusion with hyperspectral data (Zhang and Qiu, 
2014; Alonzo et al., 2014). 
 
Individual tree segmentation often plays a vital role in tree 
species classification. Segments (a single tree) could just be 
single objects in object-based image analysis. Another approach 
utilizes point clouds as a source of geometric features used during 
tree classification for characterizing single crown structural 
parameters. For example, Alonzo et al. (2014) proposed 28 ALS-
based variables and, after evaluation, used seven of these (five 
geometrical and two intensity-based variables). Deng et al. 
(2016) introduced 17 ALS-based features and, after evaluation, 
chose six of these (five geometrical-based features and average 
laser intensity for each segment).     
 
ALS is a well-known technology, which has been continuously 
developed. In recent years, multispectral laser scanning has 
appeared on the market, aimed at acquiring data in more than one 
laser wavelength simultaneously. The history of the development 
of multispectral laser scanners is relatively long (Morsy et al., 
2017). The first multispectral laser scanning tests were performed 

in laboratories using terrestrial laser scanners. In 2011, airborne 
tests with Riegl scanners were performed. ALS data were initially 
acquired within three separate flights, utilizing different ALS 
scanners within each flight (Briese et al., 2012). Such flights 
should take place within a short time gap because of further 
integration of the data. Subsequent tests consisted of mounting 
more than one scanner on an aeroplane (Briese et al., 2013). As 
a result, two datasets from different sensors were obtained 
simultaneously. In 2014, the first multispectral laser scanner – 
Titan – was launched onto the market. Another solution is the 
Leica Chiroptera 4X, equipped with one bathymetric and one 
topographic scanner, enabling the acquisition of both 
bathymetric and topographic data simultaneously. 
 
Intensity derived from light detection and ranging (LiDAR) 
technology is a relevant feature, which provides information 
about object properties, e.g., rock properties (Burton et al., 2011). 
Briese et al. (2013) presented the application of multi-wavelength 
airborne laser scanning for archaeological prospection. Intensity 
from multispectral ALS may be used as an additional attribute in 
point cloud classification (Xiaoliang et al., 2016). Matikainen et 
al. (2017) proposed application of multispectral airborne laser 
scanner data for land cover classification and map updating. Tree 
species classification using multispectral ALS is not a new topic. 
However, until now, data from a Titan scanner has been used in 
most experiments presented, meaning that intensity registered in 
three channels was used (Yu et al., 2017). In Axelsson et al. 
(2018), multispectral laser scanning data were used for 
classification of tree species, with an accuracy of 76.5% from the 
best model. 
 

2. DATA AND STUDY AREA 

The data were acquired with a dual-wavelength RIEGL VQ-
1560i-DW. This laser scanner offers two channels of differing 
wavelengths: green (532 nm) and infrared (1064 nm). Both 
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channels provide straight, parallel scan lines. The scan lines of 
the two channels are tilted against each other by 28 degrees 
(Riegl). The scanner provides two separate point clouds: one 
registering intensity in green wavelengths and the other in 
infrared. This laser scanner has successfully identified possible 
applications in agriculture and vegetation mapping. Intensity 
registered in two wavelengths enables calculation of the Green 
Normalized Difference Vegetation Index (GNDVI). 
 
Data were obtained in an urban area over Elblag, Poland, in 
August 2018. The mean density of the point cloud was 12 
points/m2. In Table 1 number of training and classified trees from 
selected species collected by a botanist team is presented.  
 

Species  No of training trees  No of classified trees  
Thuja   16  14  
Salix   10  11  
Picea   16  26  

Robinia   17  19  
Tilia  26  50  
Acer   20  35  

Aesculus   15  14  
Sorbus   16  17  

Crataegus   13  14  
Quercus   7  7  
Ulmus   14  15  
Betula   13  14  
Total  183  236  

Table 1. Number of training and classified trees from selected 
species 

 

3. METHODOLOGY 

The dual-wavelength data were pre-processed. For both 
channels, there was one point cloud, so the datasets had to be 
integrated. This was done in such a way that every echo from one 
point cloud had an additional attribute (intensity) from the nearest 
neighbour of the second point cloud. As a result, every echo had 
two intensity values in two channels: green and infrared. The next 
step performed was segmentation. Single trees from different 
species were delineated. Points from the high and medium classes 
of vegetation were then assigned to the segment. Points in every 
segment statistic for both channels were calculated. These 
statistics were: min., max., mean, median, standard deviation, 
root mean square (RMS), sigma and skewness describing the 
symmetry of the sample. These statistics were calculated for both 
channels and used as input features in the classification process.  
 
As a first step, histograms for all tree species were generated. The 
histograms were generated for first echoes from classes four to 
five (medium and high vegetation) for two attributes: intensity in 
infrared and green wavelengths. The histograms may indicate 
which species are resembled and might lead to difficulties in 
distinguishing the tree species. Thus, it may be necessary to 
combine some species into one group during the classification 
process. Tree species obtained from terrain vision by biologists 
served as a reference in the classification process. 
 
Classification was performed using a Matlab program and the 
Classification Learner application. All classification algorithms 
were tested and the most accurate model was chosen. At the 
outset, all tree species were used for training: Thuja, Salix, 
Ulmus, Picea, Robinia, Tilia, Acer, Aesculus, Sorbus, Crataegus, 
Betula and Quercus. In subsequent steps, the species were 
combined into groups. After species combining, the model 

training process was carried out and this was stopped at the point 
when significant increases in accuracy were no longer observed. 
The model that included the most species was chosen for further 
classification. 
 
Geometric features of single trees were derived from point clouds 
segmented based on geometric relationships between points. 
Segmentation was performed only for points from the high 
vegetation class, with two different approaches (both based on 
point clouds). The first method was watershed segmentation, 
implemented in Terrasolid software as a grouping method, with 
only two parameters: minimum height of tree (2m) and minimum 
number of points in a group/segment (20). The second method 
used was the algorithm developed by Li et al. (2012), 
implemented using the LidR package (Airborne LiDAR Data 
Manipulation and Visualization for Forestry). Six different 
parameters are available, but we decided to set it all to default 
values. 
 
Two classification approaches are presented in this article. In the 
first approach, the classification process focused on amplitude in 
green and infrared bands. In the second approach, amplitude in 
the infrared channel and GNDVI were used to classify the tree 
species. The GNDVI has a value from –1 to 1 and is calculated 
according to the formula (1): 
 

GNDVI =
(୒୍ୖିୋ)

(୒୍ୖାୋ)
                                     (1) 

 
Where NIR – intensity in infrared channel 

  G – intensity in green channel 
 

4. RESULTS 

In this section, results of the performed classification are 
described. To begin with, histograms of amplitude in infrared and 
green wavelengths are presented. 
 
4.1 Histograms 

Table 2 presents histograms of the amplitude in infrared and 
green wavelengths. According to the histograms, it can be seen 
that the distribution of amplitude values among some species 
(particularly Tilia and Acer) are very similar to each other. This 
may make it difficult (or almost impossible) to distinguish these 
species from one another. Thus, it may be necessary to combine 
some species into one group during the classification process. On 
the other hand, histograms presenting infrared amplitude 
distribution are different for Salix and Betula in comparison to 
other species. 
 
4.2 Segmentation results 

Both segmentation methods resulted in a point cloud with an 
additional attribute integer (TreeID or Group), indicating which 
points belong to a single segment. As a reference, manual crown 
delineation data were used. The extent of each tree was estimated 
from CHM and point cloud data collected in August. An 
additional data source was also used for interpretation, consisting 
of filed measurements and leaf-off point clouds from February. 
Results from both methods are clearly over-segmented (Fig. 1). 
For 376 reference segments, watershed segmentation in 
Terrasolid created 442 groups. When Li et al.’s algorithm (2012) 
was implemented in LidR, it created 1122 trees 
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Table 2.  Histograms presenting intensity for selected tree species in green and infrared channel
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Figure 1. Example of segmentation result. The results for both 
algorisms are clearly over-segmented. Single reference trees are 
divided into two segments by Terrasolid (left) and into several 

segments by LidR (right). 

 
In the case of over-segmentation, single reference trees are 
divided into several segments. In the results of Terrasolid 
segmentation, single reference segments are over-segmented in 
28% of cases, whereas, for LidR, over-segmentation occurred in 
73% of the segments (more details of these results are 
summarized in Table 3). When the negative influence of over-
segmentation is mostly connected with corruption of the 
geometrical features values, under-segmentation (when resulting 
segments are within more than just a single reference segment) 
can have an even more devastating influence on the classification 
results. The results of Terrasolid segmentation show under-
segmentation in 20% of the segments and in 11.6% of the LidR 
results (more detailed results are summarized in Table 4). 
 
Presented results proved that tree segmentation is topic, which 
still may be explored. Because the results of individual tree 
crown segmentation and delineation are far below the authors’ 
expectations, the authors decided not to use geometrical features 
in the final experiments and classification, thereby avoiding the 
classification results being biased by erroneous segmentation. 
For intensity-based classification, only reference segments were 
used. 
  

No of 
resulted 

segments 
in single 
reference 
segment 

0 1 2 3 4 5 6 
7 - 
22 

LidR 6 94 79 59 46 24 24 44 

TerraSolid 6 246 84 3 8 1 1 0 

Table 3. Segmentation accuracy: the number of resulted 
segments that are within the single reference segment (over-

segmentation). 

 
Number of reference 
segments in single result 
segment 

5 4 3 2 1 

LidR 0 1 9 120 992 

TerraSolid 1 3 8 76 354 

Table 4 Segmentation accuracy: the number of reference 
segments that are within the single result segment (under-

segmentation). 

 

4.3 Classification  results 

As a first step, all 12 species were used. All classifiers in the 
Classification Learner application were tested. The best results 
were given by SVM classifier; therefore, this classifier was 
chosen for subsequent steps.   
 
To start with, all features for two channels (min., max., median, 
mean, sigma, standard deviation, RMS and skewness) were used 
in the classifier training. The accuracy of the classifier was 
52.5%. Other assorted combinations of features were used in 
order to assess their importance in SVM classification. Min., 
max., mean, standard deviation, RMS and skewness features 
gave the highest accuracy of 55.7%, i.e., 3.2 percentage points 
more in comparison to the approach where all features were 
included.  
 

Species 
Accuracy [%] 

12 classes 9 classes 8 classes 6 classes 
Thuja 100 92.9 92.9 92.9 
Salix 81.8 81.8 81.8 72.7 
Picea 42.3 42.3 46.2 34.6 

Robinia 63.2 47.4 42.1 42.1 
Tilia cordata Mill 28.0 

69.7 
81.9 

87.5 

Acer 31.4 
Aesculus 57.1 
Sorbus 29.4 17.6 

Crataegus 35.7 35.7 28.6 
Quercus 0 

31.8 22.7 
Ulmus 13.3 
Betula 85.7 85.7 85.7 78.6 

Total accuracy 43.6 58.1 66.9 77.1 
Model accuracy 55.7 66.1 70.5 78.1 

Table 5. Results of tree species classification using green and 
infrared intensity 

In Table 5, the results of all the classification processes are 
presented. All tree species were classified initially. The results 
show which classes can be distinguished from one another. For 
example, Thuja, Salix, Robinia, Aesculus and Betula are 
characterized by a classification accuracy higher than 50%. 
Moreover, the accuracy of Thuja, Salix and Betula classifications 
was higher than 80%. However, the total accuracy of all trees was 
lower than 50%, thus some species were combined into groups. 
This integration was performed after analysis of the confusion 
matrix. As a first step, Quercus and Ulmus were assigned to one 
group, and Tilia, Acer and Aesculus were assigned to another 
group. The model accuracy increased to 66.1%, and the total 
classification accuracy was 58.1%. After combining the species 
into groups, the classification accuracy of the models was found 
to increase. 
 
The second approach involved using GNDVI and infrared 
channel amplitude in the classification process. This approach 
was almost the same as in the green-infrared classification. The 
results of the classification are presented in Table 6.  
 
According to Table 6, it can be noted that the results obtained are 
similar to those from the first approach. The same species (i.e., 
Thuja, Salix and Betula) are easy to distinguish. For Thuja, the 
same accuracy was achieved in both approaches (92.9%). For 
Salix, higher accuracy was achieved in the second approach 
(90.9%), compared to the first one (72.7%). Similar results were 
obtained for Betula (78.6% correctly classified trees in the first 
approach and 85.7% in the second one). 
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Species 
Accuracy [%] 

12 classes 9 classes 7 classes 
Thuja 92.9 100 92.9 
Salix 90.0 63.6 90.9 
Picea 26.9 23.1 30.8 

Robinia 68.4 63.2 47.4 
Tilia cordata Mill 34.0 34 

87.6 

Acer 28.6 

56.3 
Aesculus 64.3 
Quercus 0 
Ulmus 26.7 
Sorbus 41.2 23.5 

Crataegus 21.4 35.7 14.3 
c 78.6 71.4 85.7 

Total accuracy 44.1 48.7 73.7 
Model accuracy 55.7 60.4 76.5 

Table 6. Results of tree species classification using GNDVI and 
infrared intensity 

 
5. CONCLUSIONS 

In the presented experiment, dual-wavelength ALS data were 
used in the classification of tree species. Two approaches were 
examined: using intensity registered in a green and an infrared 
channel, and using infrared and GNDVI values for classification. 
The results for both approaches were similar, i.e., the highest 
classification accuracy was achieved for Thuja, Salix and Betula. 
Higher accuracy for these species was obtained in the second 
classification approach. For Thuja, 92.9% of trees were correctly 
classified and the accuracy for Salix and Betula were 90.9% and 
78.6%, respectively. According to other species, the 
classification accuracy was much lower. However, Robinia also 
achieved almost 70% accuracy.  
 
In segmentation process TerraScan software and Li et al.’s 
algorithm, implemented in LidR package were used. Results 
derived from both methods are noticeably over-segmented in 
comparison to the manual segmentation. In Terrasolid 
segmentation, single reference segments are over-segmented in 
28% of cases, whereas, for LidR, over-segmentation occurred in 
73% of the segments. The segmentation results were 
unsatisfactory for the authors,  so it was decided not to use the 
geometric features of the segments in tree species classification. 
Additionally, the results proved that single tree segmentation 
from ALS may be still explored.   
 
Analysis of the classification results reveals that intensity is a 
valuable source of information about trees. However, few can be 
distinguished reliably. In this experiment, only radiometric 
information was used. In further analysis, geometric features 
should be also included, which may increase the classification 
accuracy of species with similar radiometric properties. 
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