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ABSTRACT:

In this paper, we analyze different training strategies and accompanying architectures for Convolutional Networks (ConvNets) when
multiple similar datasets are available using the semantic segmentation of rectified facade images as example. Additionally to direct
training on the target dataset we analyze multi-task learning and fine-tuning. When using multi-task learning to train a ConvNet,
multiple objectives are optimized in parallel. Fine-tuning optimizes these objectives sequentially. For both strategies, the tasks
share a common part of the ConvNet for which we vary the depth. We present results for all strategies and compare them regarding
the overall pixel-wise accuracy and show that for the special case of facade segmentation there are no significant differences using
multiple datasets or not or training a ConvNet with different strategies.

1. INTRODUCTION

Convolutional Networks (ConvNets) have been shown to out-
perform other techniques in many areas in the last years. Prob-
ably one of the most famous applications is image classification.
Krizhevsky et al. (2012) started the current Deep Learning era
with their impressive results on the ImageNet Large Scale Vi-
sual Recognition Challenge (Russakovsky et al., 2015). For se-
mantic segmentation, some authors extended ConvNets, usually
designed for image classification (Long et al., 2015) or trained
newly developed architectures (Ronneberger et al., 2015). Even
if currently the main application area of ConvNets is Computer
Vision, they can be applied in many other fields, e.g., speech
recognition (Abdel-Hamid et al., 2014) or malware detection
(Tobiyama et al., 2016).

One disadvantage of almost all (supervised) Deep Learning
methods is that large amounts of training data are needed, be-
cause the training of such an architecture entails the optimiza-
tion of plenty of parameters. While for some tasks big and/or
multiple datasets are available, e. g., ImageNet (Russakovsky
et al., 2015) for image classification or Cityscapes (Cordts et
al., 2016) for semantic segmentation of urban scenes, for many
more specific tasks only small or even no datasets exist.

Therefore, many approaches have been developed in recent
years to reduce the amount of training data needed for a mean-
ingful optimization. They comprise smarter activation func-
tions (ReLU instead of sigmoid or tanh), (artificial) data aug-
mentation and more sophisticated architectures, such as ResNet
(He et al., 2016) or DenseNet (Huang et al., 2017) which intro-
duced skip-connections within sub-blocks of the network.

On the other hand, there are training strategies with accompa-
nying adapted architectures which use additional data in the
form of other “similar” datasets with a more or less differing
objective. In (Kendall et al., 2018), the same network per-
forms three tasks in parallel: pixel-wise semantic segmentation,
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object-level instance segmentation and pixel-wise metric depth
estimation. All tasks somehow depend on each other, as with-
out knowing what one sees it is hardly possible to determine
single objects and knowing objects helps in depth-regression.

In this paper, we analyze different training strategies and ac-
companying architectures for ConvNets when multiple similar
datasets are available using facade segmentation as example.

Facade segmentation has been of increasing interest for dif-
ferent applications, e.g., city planning, augmented and virtual
reality or in the movies. While old approaches (Mayer and
Reznik, 2006; Reznik and Mayer, 2008) employed multi-view
data, most recent approaches use single images for semantic
segmentation.

Martinović et al. (2012) proposed a three-layered approach
for facade segmentation. A Recursive Neural Network is in-
troduced to obtain probabilistic distributions from an over-
segmented facade image in the first layer. In the second layer,
a Markov Random Field is used to merge object-level results
from specific object-detectors, using the labeling of the first
layer. The final layer introduces architectural constraints for
more plausible results. Mathias et al. (2016) extended the above
approach by optimizing each layer. In (Jampani et al., 2015) an
iterative auto-context pipeline is used stacking boosted decision
trees for pixel-wise classification.

ConvNets have been introduced for facade segmentation by
Schmitz and Mayer (2016). Their work comprises the convolu-
tional part of (Krizhevsky et al., 2012) and a fine-tuned pixel-
wise classificator for facades. As the basic architecture includes
multiple sub-sampling operations, the resulting resolution was
less than the original.

Cohen et al. (2017) employed hard-coded structural constraints
on a pixel-wise classification through a dynamic-programming
approach. By utilizing symmetries and repetitions their ap-
proach is capable to predict occluded facade objects.

Rahmani et al. (2017) used a Structured Random Forest (SRF)
for pixel-wise labeling and extended their work in (Rahmani
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and Mayer, 2018) by adding proposals of a Region Proposal
Network to the input of the SRF and by applying determinis-
tic rectangular fitting. A sliding window detector, utilizing a
cascade of weak classifiers, is proposed in (Neuhausen et al.,
2018).

One particular technique that we analyze in this paper is called
fine-tuning or transfer learning: The network is trained on one,
usually the larger, less specific dataset (source). Then, the clas-
sifier, i.e., the last layer(s) of the network, is replaced by a new
one, which is trained on the goal dataset (target).

The other technique which we compare fine-tuning with is
multi-task learning: For each task, an independent classifier is
defined, but the classifiers share the same basis. This is similar
to fine-tuning, but instead of replacing one classifier by another
after training the first, both classifiers are trained in parallel.

We show results for both strategies and compare them – regard-
ing the overall pixel-wise accuracy – among each other as well
as with direct training, where only a single dataset (target) is
used.

In particular, we investigate the problem of semantic segmen-
tation of rectified facade images for two different datasets,
namely Graz (Riemenschneider et al., 2012) and ECP (Teboul
et al., 2010). For the latter, we use the corrected version (Mar-
tinović et al., 2012).

The remainder of this paper is organized as follows: In Section
2, we introduce the basic architecture of our network as well as
our modifications, followed by the employed training strategies
in Section 3. Details of our experiments are presented in Sec-
tion 4. We show and discuss results in Section 5 and, finally,
conclude the paper with Section 6.

2. NETWORK ARCHITECTURE

The network architecture we have chosen as basis for our exper-
iments is FC-DenseNet56 (Jégou et al., 2017). It is an extension
of DenseNet (Huang et al., 2017) for semantic segmentation.
DenseNet is defined by a set of dense blocks, in which already
extracted features are directly used as input for all subsequent
layers within the block. As there is no need for a repeated en-
coding of information, the training of such a network is more ef-
ficient and also possible with smaller amounts of training data.

Figure 1 shows the architecture of the employed network. FC-
DenseNet56 consists of an initial convolutional layer, an encod-
ing, transition-down path, a bottleneck dense block, a decod-
ing, transition-up path, and a final convolution layer as pixel-
wise classificator. The transition-down path is defined by five
consecutive dense blocks. After each dense block, its input
and output are concatenated and a transition-down operation is
applied. The transition-up part is defined by five consecutive
dense blocks as well. A transition-up operation is applied be-
fore each dense block and its output is concatenated with the
output of the transition-down part at the corresponding depth
(skip connection). For details of the implementation of dense
blocks, transition-up and transition-down operations we refer
to the original paper (Jégou et al., 2017). Our only modification
consists of an additional convolutional layer between the last
dense block and the final layer, which is included in Figure 1
(red hatched).

For our experiments we defined different versions derived from
the basic architecture. The analyzed training strategies, except

Figure 1. Architecture based on (Jégou et al., 2017).
green: Dense Block, red: Convolution, blue: Transition
Down, purple: Transition Up, and yellow: Concatenation.
Dashed grey arrows illustrate Skip Connections. The part
marked in light red is identical for all our experiments. The
hatched convolutional layer is our only architectural mod-
ification.

of direct training, require independent classificators (cf. Section
3). To determine which depth of the independent classifiers is
optimal, we have trained networks with different split points.
Besides direct training (Figure 2a) of the introduced network,
we have defined one version with an independent final convolu-
tional layer (MTL1/FT1, Figure 2b), one where both convolu-
tional layers are independent (MTL2/FT2, Figure 2c) and a final
one where both convolutional layers as well as the last Dense
Block are independent (MTL3/FT3, Figure 2d). The light red
parts in Figure 2 are the same as in Figure 1 and the blue and
yellow parts correspond to the specific tasks. For both tasks, the
number of feature maps is identical, except for the final layer,
where it corresponds to the number of classes of the task.

3. TRAINING STRATEGIES

We present our training strategies in the next subsections. Dur-
ing direct training of a network for a single task only the cor-
responding dataset is used. The other two strategies make use
of multiple, different datasets with corresponding independent
(but similar) tasks. Both multi-data strategies lead to a common
representation of the underlying features by sharing parameters
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(a) No multi-task definition (direct training) (b) Only last convolutional layer is independent (MTL1 and
FT1)

(c) Both convolutional layers are independent (MTL2 and
FT2)

(d) Last dense block and both convolutional layers are inde-
pendent (MTL3 and FT3)

Figure 2. The four versions of the proposed network with independent classifiers of different depths. DB: Dense Block,
C: Convolutional layer. The light red parts are the same as in Figure 1. The blue and yellow parts correspond to the
independent tasks. MTL means Multi-Task Learning and FT Fine-Tuning.

within the basic architecture and have, therefore, the potential
to lead to a better generalization.

3.1 Direct Training

The most common way to train a ConvNet is directly on a sin-
gle task with corresponding data, e.g., pairs of images and la-
bels for image classification (Krizhevsky et al., 2012; Simonyan
and Zisserman, 2014). A function has to be defined to compute
the loss of the network’s output w.r.t. the ground-truth label.
Then, the parameters of the network are refined by a gradient-
descent algorithm, depending on the computed loss and their
gradients, which are computed by back-propagation. Repeated
over many iterations and training examples the parameters ide-
ally converge to a (local) optimum.

3.2 Multi-Task Learning

When training a ConvNet with multi-task learning, multiple
objectives are optimized in parallel. For instance, Girshick
(2015) learned class probabilities (classification) and bounding-
box offsets (regression) for an input image and multiple regions
of interest. Kendall et al. (2018) trained a network for semantic
segmentation, instance segmentation and depth estimation. For
each task, an independent part of the network is designed, which
follows a common architecture and has its own loss-function.

Contrary to the above approaches, we are not concerned with
multiple tasks for the same input image, but take images from
two datasets for the training batch in each iteration. We use the

sum of the task-specific losses as overall loss, weighted by the
relative number of images. When applying back-propagation to
compute gradients w.r.t. the parameters of the network, in our
case the gradients of the independent parts only depend on the
task-specific weights and loss, while the gradients for the shared
part are averaged over all examples.

3.3 Fine-Tuning

For fine-tuning a ConvNet to a specific (target) task, it has to
be pre-trained on another (source) task. The pre-training cor-
responds to direct training on the source dataset (cf. Section
3.1). Then, the task-specific part of the network, which usu-
ally consists of the last few layers, is replaced and the network
is trained on the target dataset. Long et al. (2015) extended
image-classification networks (Simonyan and Zisserman, 2014;
Krizhevsky et al., 2012; Szegedy et al., 2015) for semantic seg-
mentation and fine-tuned their architecture end-to-end for this
task. Fine-tuning can be seen as a special case of multi-task
learning, where the training on different tasks is completely
asynchronous. To prevent pre-trained layers from overfitting
to the new data, the learning rate for these layers is usually
reduced. Reducing the learning rate to zero would lead to a
feature-extractor followed by a task-specific network.

4. EXPERIMENTS

For both, fine-tuning and multi-task learning, we have trained
multiple networks with slightly varied architectures, which dif-
fer concerning the position where the independent classifier
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starts. By this means, we analyze how deep the shared part of
the network should be to achieve the best result. The four ver-
sions of the architecture we have used are introduced in Section
2 and shown in Figure 2. Versions (b), (c) and (d) were used for
both, multi-task learning and fine-tuning experiments.

4.1 Datasets

Our two datasets consist of rectified and cropped images of fa-
cades and corresponding ground-truth annotations.

4.1.1 ECP “Ecole Centrale Paris Facades Database Bench-
mark 2011” (Teboul et al., 2010) contains 104 rectified and
cropped images of single facades in Hausmannian style and
corresponding ground-truth annotations with 7 semantic classes
(window, wall, balcony, door, roof, sky, shop). Because the orig-
inal annotations were produced by a Hausmannian-style gram-
mar, some labels were imprecise or even wrong. Martinović et
al. (2012) provided more precise annotations which we used for
our experiments. We split the data into 80 training and 24 test
images.

4.1.2 Graz This dataset (Riemenschneider et al., 2012) con-
tains 50 rectified and cropped images of single facades of differ-
ent styles and corresponding ground-truth labels with 4 seman-
tic classes (window, wall, door, sky). The images were gener-
ated automatically after extracting a piecewise planar geometry
from about 30 different viewpoints. Due to the approximation
of the geometry, the projected images contain artifacts. We split
the data into 40 images for training and 10 images for testing.

4.2 Training

For all experiments we trained the networks from scratch, using
random patches of size 192 × 192 pixels which are scaled ran-
domly, independent of their dimension, and randomly flipped
horizontally. No further data augmentation was applied. As op-
timization algorithm we used Adam (Kingma and Ba, 2014)
with decoupled weight decay regularization as proposed in
(Loshchilov and Hutter, 2017). The learning rate was set to
0.001 and the weight decay to 0.0001. We did not change the
learning rate for our fine-tuning experiments, as Adam com-
putes individual learning rates for the parameters by estimating
first and second moments of the gradients. For the additional
convolutional layer we defined 32 kernels of size 1 × 1. Each
network is trained by minimizing the pixel-wise cross-entropy
loss for the specific task and by minimizing the weighted sum of
the pixel-wise cross-entropy losses for both tasks for multi-task
learning, respectively (cf. Section 3.2).

All networks were trained for 150,000 iterations in total on a
single GeForce GTX 1080 Ti. The fine-tuning experiments
were trained for 100.000 iterations on the source dataset and
50,000 iterations on the target dataset. Training time was
around 10 hours per experiment. We set the batch-size to 8 for
direct training and the fine-tuning experiments. For the multi-
task learning experiments, the batch-size was 12 in total, with 8
examples from the ECP dataset and 4 examples from the Graz
dataset, as the former contains twice as much data.

5. RESULTS AND DISCUSSION

In Tables 1 and 2 we show quantitative results for our exper-
iments for the two datasets ECP and Graz, respectively. For
comparison we use overall accuracy, i.e., the ratio of correctly
classified pixels to all pixels (we ignored pixels that are labeled

Version Training Test
accuracy accuracy

DT .9769 .9323
MTL1 .9687 .9341
MTL2 .964 .9353
MTL3 .6436 .9345
FT1 .9723 .9353
FT2 .9569 .93
FT3 .971 .9319

Table 1. Results after 150,000 iterations for different ver-
sions of the architecture (Figure 2) for target dataset ECP.
DT: Direct Training, MTLd: Multi-Task Learning, and
FTd: Fine-Tuning. d denotes the depth of the independent
part.

Version Training Test
accuracy accuracy

DT .9812 .9323
MTL1 .9772 .9335
MTL2 .976 .933
MTL3 .9819 .9335
FT1 .9849 .9335
FT2 .9861 .9305
FT3 .9869 .9365

Table 2. Results after 150,000 for different versions of the
architecture (cf. Table 1) for target dataset Graz.

as void). Surprisingly, all trained networks achieved very simi-
lar results for each dataset.

The best overall test accuracy on ECP was 0.9353 (MTL2 and
FT1) and the worst 0.93 (FT2), with an absolute difference of
0.0053 and a relative difference of 0.57%. For Graz the best
overall test accuracy was 0.9365 (FT3) and the worst 0.9305
(FT2), with an absolute difference of 0.006 and a relative dif-
ference of 0.64%.

The quantitative overall results show no significant differences,
neither between training on a single dataset and training on both
datasets, nor between fine-tuning and multi-task learning. Fur-
thermore, the results do not suggest which depth of the inde-
pendent part is optimal, as there is no clearly observable pattern
in the relative ranking.

Thus, we additionally analyze the results of the different ver-
sions for the individual classes based on the Intersection over
Union (IoU):

IoU =
TP

TP + FP + FN
(1)

with TP: True Positive, FP: False Positive, and FN: False Neg-
ative.

Table 3 gives the IoU for individual classes for both datasets.
The class door shows the largest deviation for both datasets,
which we assume to be caused by the lowest relative occurrence
of door in the training data. Especially MTL3 produces clearly
better results for this class compared to direct training for both,
the ECP and the Graz dataset. Our interpretation is that training
a ConvNet only benefits from additional data if there is a gap
between the diversity in the original data and the complexity in
the represented classes. In our experiments, this only holds for
the class door, for which the number of training examples is low
(only about one door per facade) and the possible appearance
varies widely in terms of shape, material or color.
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In Figures 3 and 4 we present qualitative results for ECP and
Graz, respectively. From left to right we show: image, ground-
truth annotation, results from direct training, MTL3 and FT3.

As our approach does not include post-processing and we did
not consider symmetries or straight edges in our loss-function,
the results for individual objects are “ragged”. Most of the win-
dows, for instance, are not perfectly rectangularly shaped and
especially for the first two examples in Figure 4, there is no
straight boundary between sky and wall. However, this also
holds for the image. Therefore, it is quite interesting that, for
the second example of Figure 4, the pointed gable is mostly
ignored and classified as sky.

Some of our results show rudimentary objects at the left and
right image margins (e.g., a few pixel wide balcony on the right
side of the lower row of balconies in the first example of Figure
3). While in the result of direct training in the third example of
Figure 4 one window in the lowest row is almost totally missing,
MTL3 detected a window in the second example, that even is
not annotated in the ground-truth data.

Including post-processing, like rectangular fitting, could im-
prove qualitative results, yet, it is not clear if quantitative re-
sults would become better, as both datasets are not annotated
perfectly correctly.

Although we could not show that any specific training strategy
is significantly more preferable than the others, we note that our
results are comparable to other state-of-the-art approaches, even
without any pre- or post-processing (cf. Table 4). Regarding the
overall accuracy, on ECP data, even our worst result (0.93 with
FT2) is better than the best result of the referred approaches
(Rahmani and Mayer, 2018). All this leads us to the conclusion,
that the limit of accuracy is almost reached for these datasets,
due to the way the data was annotated. Particularly, there are
arbitrary annotation errors by using fixed shapes (rectangles for
windows) or rules that separate different classes with a straight
horizontal edge, which lead to annotations that are not precise
in terms of pixels and also contradicting.

On the other hand, it seems that a sophisticated ConvNet archi-
tecture in combination with a good optimization algorithm is
able to produce very good results on such data with low com-
plexity (in terms of the number of semantic classes) as well as
low diversity (as the images are rectified and cropped) even with
small amounts of training data.

Thus, in summary, there is reason to assume that the datasets
are not suitable to demonstrate the differences between various
training strategies and accompanying architectures of ConvNets
for making use of multiple datasets. Even worse, the results
for just direct training are so good, that there is no room for
improvement by adding information from an additional dataset.

6. CONCLUSION

We have shown that there are no significant differences when
training a ConvNet with different strategies on multiple datasets
for semantic segmentation of rectified facade images. Nei-
ther fine-tuning nor multi-task learning stood out with regard
to pixel-wise accuracy or training time. Surprisingly, even di-
rect training on a single dataset led to comparable results.

Nevertheless, we have shown that our results are comparable to
those of other state-of-the-art approaches and concluded, that

this might be the reason why there was no improvement possi-
ble by making use of multiple datasets.

For future work we, thus, want to analyze the training strategies
on more complex data, e.g., different view-points and on more
diverging data (aerial and terrestrial images for instance). We
still consider the question if a specific training strategy can be
recommended for a specific class of tasks and if so, what effect
the depth of the task-dependent part has, as relevant.
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ECP Graz
Version Window Wall Balcony Door Roof Sky Shop Avg. Window Wall Door Sky Avg.
DT .764 .893 .861 .753 .82 .945 .882 .846 .8 .889 .754 .557 .75
MTL1 .779 .898 .849 .749 .818 .946 .888 .847 .784 .889 .716 .621 .753
MTL2 .776 .9 .852 .766 .822 .946 .895 .851 .798 .89 .714 .574 .744
MTL3 .781 .896 .856 .818 .828 .949 .878 .858 .794 .885 .809 .601 .772
FT1 .777 .898 .863 .772 .823 .95 .886 .853 .792 .886 .777 .605 .765
FT2 .775 .892 .855 .742 .801 .938 .886 .838 .793 .883 .781 .569 .757
FT3 .774 .893 .848 .784 .825 .943 .877 .849 .798 .889 .779 .622 .772
MEAN .775 .896 .855 .769 .82 .945 .881 .854 .794 .887 .761 .593 .759
STD .005 .003 .006 .026 .009 .004 .01 .01 .005 .003 .036 .026 .011

Table 3. IoU for individual classes for our versions of the ConvNet (cf. Table 1) on both datasets.

Class [1] [2] [3] [4] [5] DT MTL1 MTL2 MTL3 FT1 FT2 FT3
Window .823 .78 .87 .804 .786 .853 .866 .876 .869 .84 .846 .881
Wall .929 .89 .91 .915 .935 .946 .952 .941 .947 .952 .953 .953
Balcony .893 .87 .92 .864 .892 .921 .907 .905 .926 .916 .935 .9
Door .813 .71 .79 .795 .892 .891 .864 .856 .902 .916 .831 .929
Roof .892 .79 .91 .91 .93 .922 .917 .918 .927 .925 .895 .895
Sky .982 .96 .97 .962 .972 .987 .979 .985 .982 .984 .984 .985
Shop .932 .95 .96 .951 .963 .931 .937 .973 .926 .921 .902 .911
Average .895 .852 .904 .886 .91 .922 .917 .922 .926 .922 .907 .922
Overall .914 .88 .918 .902 .922 .932 .934 .935 .935 .935 .93 .932

Table 4. Results on ECP dataset from: [1] (Jampani et al., 2015), [2] (Mathias et al., 2016), [3] (Cohen et al., 2017), [4]
(Rahmani et al., 2017), [5] (Rahmani and Mayer, 2018), and from our versions of the employed ConvNet (cf. Table 1).
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Figure 3. Results for images from ECP dataset. From left to right: image, ground truth, direct training, MTL3, FT3.

Figure 4. Results for images from Graz dataset. From left to right: image, ground truth, direct training, MTL3, FT3.
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