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ABSTRACT: 

 

MMSs allow us to obtain detailed 3D information around roads. Especially, LiDAR point clouds can be used for map generation and 

infrastructure management. For practical uses, however, it is necessary to add labels to a part of the points since various objects can be 

included in the point clouds.  Existing automatic classification methods are not completely error-free, and may incorrectly classify 

objects. Therefore, even though automatic methods are applied to the point clouds, operators have to verify the labels. While operators 

classify the point clouds manually, selecting 3D points tasks in 3D views are difficult. In this paper, we propose a new point-cloud 

image based on the trajectories of MMSs. We call our point-cloud image trajectory-based point-cloud image. Although the image is 

distorted because it is generated based on rotation angles of laser scanners, we confirmed that most objects can be recognized from 

point-cloud images by checking main road facilities. We evaluated how efficient the annotation can be done using our method, and the 

results show that operators could add annotations to point-cloud images more efficiently.  

 

 

1. INTRODUCTION 

Recently, with the advent of Mobile Mapping System (MMS), 

dense LiDAR point clouds over a wide range of area are available. 

An MMS is a vehicle that equips cameras, laser scanners such as 

LiDAR, a GNSS (Global Navigation Satellite System) receiver, 

and so on. MMSs allow us to obtain detailed 3D information 

along roads, which can be used for map generation and 

infrastructure management.  

 

However, various objects can be included in the point clouds, so 

that it is necessary to add labels to a part of the points for practical 

uses. Since manual segmentation and classification are tedious 

and time-consuming tasks, automatic methods have been 

intensively studied among the ISPRS community. For example, 

Yang et al. introduced contextual features to recognize road 

facilities from MMS data (Yang, 2017). Soilán et al. proposed 

road markings’ segmentation and classification methods using 

neural networks (Solian, 2017). 

 

Despite these studies, existing methods are not completely error-

free, and may incorrectly classify objects. Therefore, even though 

automatic methods are applied to classify point clouds, operators 

have to verify the results in case of commercial uses. Typically, 

operators find incorrect and missing labels from hundreds of 

hours of MMS data while watching videos or time-series 2D 

images driven from MMS data, resulting in a costly and time-

consuming task. In addition, supervised machine learning 

algorithms require a lot of manually created training data, which 

is also a time-consuming task.  

 

In this paper, we aim to reduce the operators’ task of adding 

labels to MMS point clouds. Currently, typical manual labelling 

methods are as follows. 

                                                                 
*  Corresponding author 

 

(1) Operators select a region of a 2D image (i.e. camera image) 

and add a label to the region as shown in Figure 1. Since an 

MMS captures a huge number of 2D images while driving, 

operators have to go through many time-series images. Note 

that laser scanners and cameras are fixed on the MMS vehicle, 

meaning their relative positions are known. With the relative  

 

 
 

Figure 1. Labelling of a camera image 

 

 

 
 

Figure 2. Labelling of 3D point clouds 
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positions and a well-known pin-hole camera model, 3D points 

(i.e. LiDAR points) can be projected on a 2D image. In other 

words, it is possible to select 3D points corresponding to the 

selected region of the 2D image, and labels can be added to the 

selected points. 

(2) Operators display 3D points on the computer screen and select 

a part of them to add labels as shown in Fig. 2. Since point 

clouds are too large to display, operators have to subdivide and 

sequentially process the point clouds.   

 

This manual procedure is not efficient because it restricts the 

working space of operators to camera views or viewing frustums 

of 3D CG. Therefore, we discuss a new method for efficiently 

labelling point clouds obtained by MMSs. Our approach allows 

operators to efficiently process point clouds using a wide range 

of visualization of MMS data.  

 

Figure 3 shows an overview of our method. An MMS outputs 

point clouds, trajectories of the vehicle, and camera images. In 

our method, a point-cloud image is generated using the point 

clouds and vehicle trajectories. The point-cloud image consists 

of 3D points arranged in a lattice manner on a 2D image. This 

image is useful for adding annotations to MMS data, because all 

objects are displayed on a single image. In addition, annotations 

on the point-cloud image can be automatically copied to the point 

clouds and camera images. Since the point-cloud image and the 

point clouds are equivalent, annotations on the point-cloud image 

can be copied to segmented point-clouds. Annotations can also 

be copied to camera images, because 3D points can be mapped 

on a camera image using a pin-hole camera model when the 

relative position between laser scanners and cameras is known. 

 

 
Figure 3. Our Proposal for MMS data annotation 

 

 

2. RELATED WORK 

Munoz (2008) proposed to classify MMS point clouds by 

combining local feature descriptors and context based features, 

reaching 91.66% accuracy. Babahajiani et al. (2014) classified 

non-ground points into several classes based on local feature 

descriptors, achieving an accuracy from 72% to 95%. Guan 

(2014) tried automatic segmentation of road signs by performing 

segmentation with multiple thresholds considering the density of 

MMS point clouds. Yang (2015) extracted objects along roads 

such as buildings, street lamps, trees, telegraph pillars, traffic 

signs and cars by generating multi-scale super-voxels based on 

3D point clouds, colours, intensities, and their distribution, and 

applying graph-based segmentation. However, these methods are 

not error-free, with an accuracy of around 70–90%. Classification 

errors are not allowed in most practical applications. In practical 

cases, all of the automatically classified results must be verified 

by operators before being delivered to customers.  

 

Recently, machine learning algorithms have been surprisingly 

improved. Yang (2013) classified MMS point clouds by 

calculating geometric features and applying SVM. Yu (2016) 

extracted and classified traffic signs using super-voxels of MMS 

point clouds. However, machine learning approaches are not 

error-free as well. In addition, supervised machine learning 

approaches require a lot of training data, which is not easy to 

collect because training data often has to be manually created. 

Unfortunately, at present, automatic labelling methods are not 

sufficient to obtain practical results not requiring operator’s work. 

 

When measuring using an MMS, trajectories of the vehicle are 

recorded as well as point clouds. The trajectories are calculated 

using GPS and IMU, which is used to calculate the position of 

laser scanners. Trajectories data consists of a sequence of 3D 

coordinates. The vehicle trajectories, camera images, and point 

clouds are synchronized, and they have a common GPS time. 

Since the relative positions between the vehicle, laser scanners, 

and cameras are known, data gathered from different devices can 

be linked to each other. For example, point clouds can be mapped 

to a camera image so that each point can be coloured using the 

pixel values corresponding to the projected position. 

 

In this paper, we focus on visualization methods where operators 

can efficiently and intuitively add labels to point clouds. Our 

method is based on mapping point clouds to a single 2D image. 

We call point clouds mapped onto a 2D image a point-cloud 

image. Bruno (2015) introduced a sensor-space to map 3D points 

onto a 2D image. They quantized the rotation angle of the laser 

scanners at each point and determined the pixel position.   

However, rotation angles are not generally available for 

commercial MMSs. Kohira (2017) proposed a more general 

mapping method using GPS time of the point,  the rotation 

frequency and the pulse repetition frequency of laser scanners. 

Since the rotation frequency and the pulse repetition frequency 

are the basic specification values of the laser scanners, this 

method can be applied to general MMSs. However, each row in 

the image is drifted since parameters for mapping are deviated 

during measurement as shown in Figure 4.  

 

    
 

Figure 4. Conventional point-cloud images 
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(a) Road view                       (b) Feature view  

 

Figure 5. Trajectory-based point-cloud images 

 

In this paper, we propose a method for generating point-cloud 

images where operators can easily recognize objects. While a lot 

of automatic labelling methods have been discussed, efficient 

labelling methods for operators have rarely been discussed so far. 

We believe that efficient labelling methods are very important in 

practical applications, such as infrastructure management and 

map generation. Furthermore, efficient labelling is also useful to 

create training data for machine learning.  

 

 

3. TRAJECTORY-BASED POINT-CLOUD IMAGE 

3.1 Point-cloud image 

In this paper, we propose a new point-cloud image based on the 

trajectory of an MMS. We call our point-cloud image trajectory-

based point-cloud image. Figure 4 shows conventional point-

cloud images, which are drifting due to a slight deviation of laser 

scanners frequency and GPS time. Figure 5 shows trajectory-

based point-cloud images, in which points are ordered along the 

trajectories of an MMS. 

 

In the conventional method, point clouds acquired while the laser 

beam performs one rotation are allocated in a horizontal row of 

the image. However, we learned that the rotation frequency of 

laser scanners was not only slightly shifted from the specified 

value, but also that it deviated a MMS proceeded. We measured 

the amount of deviation of laser scanners which perform one 

rotation every 1/100th of a second. Figure 6 shows a histogram 

of the difference between the specified rotation cycle time and 

the actual time calculated using point clouds with GPS time. 

Although the deviation is very small, it causes pixel shifts in 

conventional point-cloud images.  

 

 
 

Figure 6. Deviation of rotational frequency of laser scanners 

 

On the other hand, in the trajectory-based point-cloud image, 

points are regularly arranged even if the rotation frequency 

deviates, because point clouds are adjusted using the MMS 

trajectories. In our method, point clouds can be mapped on an 

image in two modes. In the first mode, point clouds are mapped 

so that the trajectories coincide with the vertical center line of the 

image as shown in Figure 5(a). This mode is suitable for 

displaying roadways and objects on the road without separating 

them. In the other mode, point clouds are mapped so that the 

trajectories coincide with the vertical lines at the left and right 

edges of the image as shown in Figure 5(b). This mode is suitable 

for displaying objects located in high positions along a road, such 

as buildings, poles, trees, and cables. 

 

The trajectory-based point-cloud image is created in two steps. 

First the reference points are calculated using point clouds and 

the polyline of trajectories. Then each 3D point is mapped on the 
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2D image according to the relative position with the reference 

point. In the followings, this process is described in detail.  

 

3.2 Reference points on the trajectories 

Laser beams are emitted from laser scanners while an MMS runs 

forward. Therefore, the scan-lines become helical as shown in 

Figure 7. Trajectories of an MMS are represented as a sequence 

of 3D coordinates, which thus indicates a path of the IMU 

installed on the MMS.  

 

When the scan-line and the MMS trajectory line are displayed 

from the top view as shown in Figure 7(b), the scan-line and the 

trajectory line intersect twice per laser beam revolution, at the 

upper and bottom sides. We refer to each intersection as 

reference point, and to the GPS time at that point as reference  

 

 
 

Figure 7. An MMS trajectory, a scan-line, and reference points 

 

 

 
 

Figure 8. Intersection between a scan-line and a trajectory line. 

 

 

reference points or lower ones is required to identify the 

trajectory, we use lower reference points. This is because upper 

time. With regard to the reference point, since one of upper 

reference points cannot be obtained normally when no object 

exists above the MMS.  

 

We suppose that the scan-line consists of points {𝐩𝑖}, and the 

MMS trajectories consist of points {𝐪𝑗}. They are represented as 

polylines generated by connecting the points sequentially. We 

also denote the GPS time of 𝐩𝑖 as 𝑡𝑖, and the coordinates of 𝐩𝑖as 

(𝑝. 𝑥𝑖 , 𝑝. 𝑦𝑖 , 𝑝. 𝑧𝑖). For calculating reference points from the scan-

line and the MMS trajectories, their polylines are projected on the 

x-y plane. The projected polylines are denoted as {�̅�𝑖} and {�̅�𝑗}.  

 

The reference points are calculated as crossing points between 

two polylines {�̅�𝑖} and {�̅�𝑗} as described in Figure 8. We suppose 

that two line segments �̅�𝑠�̅�𝑠+1  and �̅�𝑡�̅�𝑡+1 intersect at �̅�. Then 

the reference point 𝐫 and the reference time 𝑇 are calculated as: 

𝐫 =
|�̅�𝑠+1 − �̅�|𝐩𝑠 + |�̅�𝑠 − �̅�|𝐩𝑠+1

|�̅�𝑠 − �̅�| + |�̅�𝑠+1 − �̅�|
 (1) 

 

𝑇 =
|�̅�𝑠+1 − �̅�|𝑡𝑠 + |�̅�𝑠 − �̅�|𝑡𝑠+1

|�̅�𝑠 − �̅�| + |�̅�𝑠+1 − �̅�|
 (2) 

The reference point 𝐫  where  𝑝. 𝑧𝑠 < 𝑞. 𝑧𝑡  is a lower one and 

where 𝑝. 𝑧𝑠 > 𝑞. 𝑧𝑡 is an upper one. In addition, the directions of 

the scan-lines at the lower and upper references are opposite to 

each other. We then select the lower reference points to make 

point-cloud images. When the reference time of the lower 

reference points are obtained, they are sorted in ascending order 

as {𝑇𝑖}. 

 

3.3 Trajectory-based point-cloud image 

Suppose that point 𝐩  with GPS time 𝑡  is mapped to the 

coordinates (𝑢, 𝑣) of the image. In our method, points can be 

mapped in the road view and the feature view as shown in Figure 

5.  

 

For  the road view point-cloud image, points are mapped based 

on the fact that the reference points are on the vertical center line 

of the image. First, we select the reference time 𝑇𝑘 that satisfies: 

𝑇𝑘−1 + 𝑇𝑘

2
≤ 𝑡 <

𝑇𝑘 + 𝑇𝑘+1

2
 (3) 

Then the pixel coordinates (𝑢, 𝑣) of the image are calculated as: 

𝑢 = INT (
2𝑡 − (𝑇𝑘−1 + 𝑇𝑘)

𝑇𝑘+1 − 𝑇𝑘−1
∙ 𝑊)

𝑣 = 𝑘                                                  

 (4) 

where INT(x) is a function that returns the integer part of x, and 

W is the width of the point-cloud image. The value of W can be 

determined using the number of laser beam shot per laser beam 

cycle. 

 

For the point-cloud image in the road view, the reference points 

are mapped onto the right and left edges of the image. Thus the 

following reference time 𝑇𝑘 is selected.  

𝑇𝑘 ≤ 𝑡 < 𝑇𝑘+1 (5) 

Then the pixel coordinates (𝑢, 𝑣) are calculated as:  

𝑢 = INT (
𝑡 − 𝑇𝑘

𝑇𝑘+1 − 𝑇𝑘
∙ 𝑊)

𝑣 = 𝑘                                    

 (6) 
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4. FEATURES OF POINT-CLOUD IMAGE 

The point-cloud image is distorted because it is generated based 

on rotation angles of the laser scanners. In our research objective, 

it is required that operators can correctly recognize objects in 

point-cloud images and add labels to them. In this section, we 

evaluate 2D views of various objects on the point-cloud images 

qualitatively.  

 

Example images are shown in Figure 9 to 18. In each figure, a 

camera image is shown on the left, and a point-cloud image is on 

the right. Camera images are taken from a front camera on the 

MMS. Some camera images are rotated or flipped to be compared 

with the point-cloud images.  

 

Figure 9 – 11 show pole-like objects such as street lights, traffic 

signs, and trees. Although tall objects tend to be bent, they can 

easily be identified from the point-cloud images. Figure 12 and 

13 show a guard pipe and a guardrail. They can also be clearly 

identified. Figure 14 and 15 show road markings. Although the 

point-cloud images are generated only using the intensity of point 

clouds, road markings can be recognized. In these figures, the 

boundary of the roadway and the walkway are recognizable. 

However, it is difficult to recognize manhole covers on the road, 

because points of the manhole covers are missing. In Figure 16 

and 17, signals are shown. Although points of signal lights are 

missing, signals can be identified by the shape of signal frames.  

 

From these examples, we confirmed that most objects can be 

recognized from the point-cloud images, but some objects such 

as objects emitting light or not reflecting light may be difficult to 

be identified. 

 

   
Figure 9. Street light 

 

   
Figure 10. Traffic sign 

 

   
Figure 11. Roadside tree 

 

  
Figure 12. Guard pipe 

 

  
Figure 13. Guardrail  

 

   
Figure 14. Road marking (stop sign) and manhole covers 

 

   
Figure 15. Road marking (crosswork sign) and manhole covers 

 

   
Figure 16. Traffic signal 
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Figure 17. Signal for pedestrians 

 

 

5. EVALUATION 

5.1 Conditions of experiments 

We evaluate how efficiently the annotation is added using our 

method. An operator adds annotations to (1) 2D camera images, 

(2) 3D point clouds, and (3) trajectory-based point-cloud images. 

Then we compared the operation time for each task.  

 

Point clouds were captured using an MMS in Inagi-shi, Tokyo. 

The MMS is an MX-8 developed by Trimble. This MMS has two 

VQ-250 LiDAR scanners on the right and left of the vehicle. 

Camera images were taken with a camera mounted at the front of 

the MMS. 

 

5.2 Quantitative evaluation 

Table 1 shows the time for adding annotations by the operator. In 

this evaluation, the operator searched street lights and road signs 

from camera images, point clouds, and point-cloud images, and 

placed annotations at detected positions.  

 

 

Camera image 3D point cloud Point-cloud image 

11m 27s 11m 4s 6m 51s 

Table 1. Annotation time by the operator 

 

As shown in this table, the operator could add annotations to 

point-cloud images more efficiently. In the case of camera 

images, the operator had to identify the same object in multiple 

images and add an annotation to each image, because the same 

object appeared in multiple images, which was time-consuming. 

In the case of point-clouds, the operator sometimes added 

annotations to incorrect positions, which is because the operator 

did not notice that he selected the background points instead of 

the one they wanted.  It was difficult for the operator to recognize 

the depth on the 2D screen. On the other hand, the point-cloud 

image was useful for the operator, because the data is 2D (without 

depth), and each object appears only once on the point-cloud 

image. 

 

5.3 Qualitative evaluation 

For qualitative evaluation, we interviewed the operator and 

obtained the following comments.  

· In camera images, the same object appears in many different 

images. It was necessary to confirm whether each object was 

annotated or not. This confirmation was very stressful. In the 

point-cloud image, confirmation was very easy, because all 

objects were displayed in a single image. 

· In the point cloud, objects were often occluded, so that the 3D 

scene had to be rotated to detect the target object. It was 

difficult to identify the positional relationship among objects. 

In some cases, the positional relationship was only identified 

by moving objects. 

· In the point-cloud image, objects of the same type tended to be 

displayed in the neighborhood. This was helpful to find the 

target object. 

 

From the above comments, it is also shown that our method is 

useful for annotating MMS data. 

 

 

6. CONCLUSIONS 

In this paper, we discussed visualization method for efficient 

labelling of MMS point clouds. The conclusions are as follows: 

 

- We propose a new point-cloud image based on the trajectories 

of an MMS; trajectory-based point-cloud image. In our method, 

point clouds can be mapped on an image in two modes. Therefore, 

we can choose the mode depending on the target facilities of a 

road side. 

 

- The point-cloud image is distorted because it is generated based 

on the rotation angles of laser scanners. We investigated 2D 

views of various objects on the point-cloud images and 

confirmed that most objects can be recognized from the point-

cloud images. 

 

- We evaluated how efficiently the annotation input was made 

using our method. In the result, an operator could add annotations 

to point-cloud images more efficiently.  
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