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ABSTRACT:

Light Detection and Ranging (LiDAR) is nowadays one of the most used tools to obtain geospatial data. In this paper, a method to
detect and characterise power lines of both high and low voltage and their surroundings from 3D LiDAR point clouds exclusively
is proposed. First, to identify points of the power lines a global search of candidate points is carried out based on the height of each
point compared to its neighbours. Then, the Hough Transform (HT) is applied on the set of candidate points to extract the catenaries
that belong to each power line, allowing the identification of each conductor individually. Finally, conductors located on the same
power line are grouped, their geometric characteristics analysed, and the quantitative features of the surroundings are computed. A
very high accuracy of power line classification is reached with these methods, while the computational time is optimised by efficient
memory usage and parallel implementation of the code.

1. INTRODUCTION

Today, most of the activities of modern-day societies depend
on electricity. Thus, it is necessary to ensure the efficient
operation of the electric transmission networks, which typically
include nationwide, regional and distribution networks. In
forested countries, most parts of the networks are located inside
forests (Matikainen et al., 2016), and they must be checked
and maintained periodically. The absence of obstacles in the
transmission line corridor, i.e. Right-of-Ways (ROWS), is a
security requirement that must be fulfilled. The process of
checking this requirement is traditionally performed through
visual inspection of the elements of the power line, which
can be expensive, error prone, and even risky, because the
observation areas are not always easily accessible. Thus,
methods based on airborne LiDAR data are proposed in order
to characterise the power lines and its surroundings with high
precision, and therefore to detect dangerous obstacles that may
interfere with the proper power lines operation.

In the literature a number of proposal can be found.
(McLaughlin, 2006) proposes the segmentation of the LiDAR
point cloud in elliptic neighbourhoods and the analysis of
the covariance matrix eigenvalues. This allows to distinguish
among three types of classifications: power lines, vegetation
and buildings. Furthermore, the reconstruction of the power
lines in order to obtain the parameters of each transmission line
is proposed.

In (Zhu , Hyyppä, 2014) a method to power line extraction in
forest areas using a rasterized point cloud is proposed. This
method is based, on the one hand, on the statistical analysis to
identify power line candidates, using height and point density
criteria. On the other hand, candidate points are converted into
a binary image, where image processing techniques are applied
to find power lines.

In (Clode , Rottensteiner, 2005) a method for tree and power
line extraction in urban areas is shown, the height difference
between the first and the last pulse is used and finally the

intensity of LiDAR points is taken into account. The distance
between trees and power lines is computed by applying a
classification method based on the theory of Demper-Shafer.

A different method for power line extraction is shown in (Wang
et al., 2017). A DTM is built to select candidate points. Then,
multi-scalar spherical neighbourhoods are used to group the
candidates into clusters. Inside the clusters, feature extraction is
performed in order to distinguish between power lines and other
objects. Finally, the authors classify line points using support
vector machine, which needs a training data set to calibrate the
classifier.

(Liu et al., 2009) carry out an analysis of the skewness and
kurtosis in order to classify LiDAR points as ground and
non-ground. They employ an improved Hough Transform
over a rasterization of the points to detect power lines in the
grayscale 2D image.

Finally, (Sohn et al., 2012) perform the segmentation of power
lines using Markov Random Fields. Once the segmentation is
complete, a voxel based rasterization is carried out. For each
voxel, they apply the Hough Transform. The linear candidate
points are then converted into line segments by 3D line fitting
based on Random Sample Consensus (RANSAC). To detect the
pylons, line segments are converted into a binary image and
Random Forests are used to perform a binary classification of
pylon vs no pylon.

In this paper we present a novel power line classification
method from airborne LiDAR that relies only on the spatial
coordinates of the points. Neither intensity data nor number
of returns are needed to perform a successful power line
classification. The algorithms presented in this paper work at
point level, so neither a 2D binary image nor a rasterization
is necessary. Furthermore, the methods to be exposed in this
paper can be immediately applied to any data set, since a large
data set to train any supervised classification method is not
needed. The method is robust in the sense that it works for non
specific flights along the power lines. In fact, all the use cases
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in this paper are obtained from general purpose LiDAR data.
Additionally, we consider that the computational costs needed
to perform the classification are very low, despite only a few
authors provide this information. We deal with two techniques
that improve computational performance by using efficient 3D
data structures that take advantage from the memory locality
of data, and by using OpenMP implementations to parallelize
the code for multi core systems. These solutions decrease
significantly the execution times of our proposal. Experiments
show that an average correctness of 99, 24% was achieved, with
an execution time less than two minutes for a 8 ·106 points data
set.

2. POWER LINE EXTRACTION

The two main elements of the power lines are wires and
pylons. According to our proposal, the first part of the
power line detection consists in the extraction of the individual
conductors. Detection of pylons is performed once the wires
are detected, since the position of them depends on the position
and orientation of the wires.

2.1 Iterative Candidate Search

The objective of the Iterative Candidate Search (ICS) is to label
every LiDAR point that could be part of a conductor. This
stage also allows us to reduce the computational costs of the
subsequent steps, since the algorithms will be run on a reduced
amount of points compared to the original size of the point
cloud.

The ICS is based on two premises: Firstly, transmission
lines are elevated over the ground and secondly, there are
no structures above and near the transmission lines. These
premises can be checked by just using the spatial information
of the LiDAR points, so a previous classification of the data is
not needed. The proposed algorithm computes the percentage
of neighbour points (C) that are located at a vertical distance of
the current analysed point. If the percentage is big enough, the
target point is labelled as a power line candidate.

Let pi = (pix, piy, piz) be the current LiDAR point defined
only by its spatial coordinates. The point cloud is defined as
the set of all points obtained in a specific flight, i.e. Ω =
{p1, p2, . . . , pn}. Thus, for each LiDAR point pi, the subset
Ni = {n1, n2, . . . , nm} ⊂ Ω / (pix − Rs) ≤ njx ≤ (pix +
Rs), (piy −Rs) ≤ njy ≤ (piy +Rs) is built. This set consists
of the neighbours of the currently analysed LiDAR point, where
Rs is the size of the search distance around each LiDAR point.

Once the subset Ni is built, the algorithm performs two
calculations: On the one hand it obtains the number of
neighbours whose vertical distance to the currently analysed
point is large enough to not belong to the same wire. To achieve
this, the Wire Thickness Threshold (Wth) is defined as the
estimated thickness of a conductor. The number of pointsNnwn
meeting this condition is given by:

Nnwn = |{nj} ∈ Ni / | njz − piz | > Wth| (1)

where Ni = set of neighbours of pi
niz = height of each neighbour
piz = height of the currently analysed point
Wth = wire thickness
| · | = the cardinality of a set of points

On the other hand, the algorithm computes the number of
neighbours whose vertical distance is greater than Hth, where
Hth is the Height Threshold parameter.

Npos = |{nj} ∈ Ni / njz +Hth < piz| (2)

where Npos = number of points that meet the condition
Ni = set of neighbours of pi
niz = height of each neighbour
piz = height of the currently analysed point
Hth = height threshold

The points that eventually can influence these computations, are
depicted in Figure 1. The blue point is the current analysed
LiDAR point (pi). Npos is the number of green points and
Nnwn is the sum of green and red points.

Figure 1. Graphic representation of the criteria to label a
point as power line candidate.

Once the values Nnwn and Npos are computed for each point,
the descriptor Ci is defined as

Ci =
Npos
Nnwn

(3)

It may be that for some point, Nnwn = 0. This will eventually
happen on points in the ground. In that case, we assume that
Nnwn = |Ni| where |Ni| is the cardinality of the set Ni, i.e.
the number of neighbours no matter its height.

Finally, we label the points as members of the wire if they meet
the following condition:

Ci > Cth (4)

where Cth is the minimum ratio of points that must meet the
conditions imposed by Equations 1 and 2.
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(a) (b) (c)

Figure 2. Results of each ICS iteration. (a) Fully merged iterations. (b) Results of the first iteration. (c) Results of the
second iteration. Note that at the second iteration no points of the upper catenaries are detected, but only points of the

mid and lower catenaries.

This algorithm was firstly designed assuming the absence of
points above the wires, so in the case of several wires located
on top of one another, the algorithm will struggle to correctly
label the points belonging to the lower wires. This issue is
solved by executing the candidate search iteratively, ignoring on
each iteration the points previously labelled as wire members.
The execution finishes when there are no more candidates to
consider. The results of each iteration of the ICS are shown in
Figure 2.

2.2 Power Line Detection

After the ICS stage, the 2D Hough Transform (HT) proposed
in (Duda , Hart, 1972) is applied. A projection of the LiDAR
points over the XOY plane were performed in order to detect
straight lines.

On the Hough Space, each straight line is represented by

x cos(θ) + y sin(θ) = ρ (5)

where x, y = spatial coordinates of each LiDAR point
ρ = distance from the origin of coordinates
θ = angle between the x-axis and the normal to the

line

The sensitivity of the HT can be adjusted through the
modification of three parameters: The angle step (As) that is
the angle separation between two consecutive lines; The grid
spacing (Gs) that is the minimum distance between lines that
HT can distinguish. And (Nc) that is the minimum number of
points that a line must have to be detected.

On each iteration, HT finds the straight line with the greatest
number of points, and gives the polar coordinates of that line,
i.e., (ρ, θ).

In order to identify points belonging to each line, at the end of
each iteration a reversed voting is carried out. Knowing the pair
(ρl, θl) of the detected line, points whose spatial coordinates
(x, y) fits into Equation 5 are searched. As a result of this step,
each conductor of each power line is grouped in one specific
cluster of points.

To identify every straight line in the LiDAR point cloud, HT is
executed iteratively until the last line found contains at least Nc
points. At the end of each iteration, the votes to the detected
line are checked and the corresponding points are grouped in
clusters.

2.3 Splitting Vertical Conductors

Due to the bi-dimensional nature of the HT, conductors located
in the same vertical plane are detected as an unique line.
A method to split the line into individual clusters, each one
corresponding to one conductor was developed.

The first step is to represent the different wires contained in one
plane, therefore a 2D representation of the lines is introduced.
Each point is represented by its distance to a reference point
and its z-coordinate, where the reference point is the one with
the minimum x-coordinate. Thus, the 2D plot will show the
height (H-axis) versus the distance to the first point (D-axis).
An example of a triple wire configuration is shown in Figure 3.
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Side view of a power line

Figure 3. Distribution of points in the vertical plane of a
power line with three conductors.

Once the representation is computed, the next step is to identify
the number of separated catenaries co-existing in the same
vertical plane. The plots of each line are rasterized in order to
turn each scatter plot into a 2D histogram, as shown in Figure 4.
As the number of points in each case can be different, the
number of bins in the histogram is chosen to be nbin × nbin,
where nbin =

√
N , according to the square-root choice method

and N is the number of points of the analysed conductors.

When the histogram is built, the point density is computed. In
order to avoid the effects of spurious points, we obtain two point
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Figure 4. Raw histogram of a power line with three
conductors placed in the same vertical plane. The colour
bar in the histogram indicates the number of points per

bin.

densities: one using the total number of bins, and another using
the number of non empty bins, as shown in Equation 6:

ρ =
N

nbin
, ρne =

N

nnebin
(6)

where ρ = point density
ρne = point density of the non-empty bins
N = number of points of the power line
nbin = number of total bins
nnebin = number of non empty bins

For each column in the 2D histogram, the number of adjacent
bins with a difference in the number of points greater than ρ is
computed, as shown in Equation 7:

nj = nj + 1 if bin [i+ 1]− bin [i] > ρ or bin [0] > ρρne (7)

where nj = number of detected gaps
i = position of the bin
bin = array of each column values of the 2D histogram

The results of applying the Equation 7 to two columns of the
2D-histogram previously shown are displayed in Figure 5.

When the value of nj is obtained for each column in the
histogram, we assume that the number of catenaries placed in
the same vertical plane is equal to the mode of all the values
computed of nj .

Due to the lack of power lines with enough spurious points
in the available examples, we employ a synthetic test to test
the robustness of the algorithm. A set of random catenaries
with spurious points are generated, as shown in Figure 6.
Each catenary consists of 300 points, and a dispersion both
in distance and height is randomly generated in order to
approximate the behaviour of real data sets. The number of
generated catenaries is 3, and their extremes are 6 meters apart.
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Figure 5. Histogram of columns 0 and 10. The red points
represent a detected catenary.

For a given number of spurious points, the algorithm is run one
hundred times, counting the number of successes and failures
in the identification of the number of catenaries. The results are
shown in Figure 7. The three catenaries were detected in every
case study from 0 to 500 generated spurious points. In real data
sets, find such amount of spurious points is not expected, so the
algorithm can be considered robust.

2.4 Pylons Detection

Pylons are basic elements of power lines, as they are the
structures that support and guide them. In this paper we propose
a method for the detection of the areas where the pylons are
located.

A wire hanging between two pylons under the action of its
weight, adopts a well known shape named catenary. The
proposed algorithm for pylon identification uses the first
and second spatial derivatives of the wire points to locate
discontinuities. At those discontinuities is where pylons are
expected to be found. Furthermore, the existence of a pylon
at the start and the end of a transmission line is assumed.

Due to the non uniform and scattered distribution of the LiDAR
points, the use of finite difference methods produce inaccurate
results. The proposed method is based on the computation of
linear fits around each point. In order to perform the linear
fits, it is necessary to transform each catenary into a 2D scatter
plot, using the same strategy introduced in Section 2.3. The
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Figure 6. Plot and histogram of a random generated
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Figure 7. Results of the synthetic tests.

catenary where the pylons are detected is shown in the example
of Figure 8.

A gap discontinuity in the first derivative is expected when the
curve reaches a pylon area. Actually, the linear fits carried
out nearby the extremes of each catenary include points of
the adjacent catenaries. Therefore, instead of jumping from
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Figure 8. Side view of a catenary with several pylons.

positive to negative values, the behaviour of the fits is to fast
decrease until only points of the new catenary are considered
(example in Figure 9b). The points where the first derivative
is zero correspond to two areas: The local minimums of
the catenaries and the discontinuities. Theoretically, points
corresponding to the discontinuities of the catenaries will be
those whose value of the slope is nearest to zero. Eventually,
using these points to locate the pylons yields to inaccurate
results, due to the unbalance of adjacent catenaries: the end of
one catenary and the start of the adjacent one do not have to be
symmetrical; they may have different density of points or slope
magnitude. This causes that the zero slope positions in the first
derivative are located around the peaks of the catenary.

In order to discriminate the local minimums from the
discontinuities, the second derivative is analysed, as shown in
Figure 9c. The position of the discontinuities on the catenaries,
and the position of the pylons, matches with the mid point of
the valleys of the second spatial derivative.

2.5 Power line characterisation

Once the location of the pylons is known and the catenaries are
individually identified, it is possible to extract the geometric
characterisation of the power lines.

The catenary curve can be modelled as shown in Equation 8:

y(x) = a+ c cosh
x− b
c

(8)

where a = vertical displacement from the X-axis (m)
b = horizontal displacement from the Y-axis (m)
c = vertical position of the catenary vertex (m)

The parameter c also corresponds to the ratio between the
horizontal tension of the wire at its lowest point and the linear
weight density:

c =
T0

w
(m) (9)

where T0 = horizontal tension at the lowest point (N)
w = linear weight density (N/m)
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Figure 9. Pylon detection results.

In order to compute the parameters a, b and c, a non linear fit of
the data to Equation 8 is carried out.

Furthermore, using the catenary curve equation it is possible to
compute the length of each conductor. The length of any given
function between two points is given by:

L =

∫ p2

p1

√
1 + [f ′(x)]2 dx (m) (10)

where L = computed length of the catenary
p1 = initial horizontal position of the catenary
p2 = end horizontal position of the catenary

Substituting Equation 8 into 10 yields to

L = a

(
sinh

(
p2 − b
a

)
− sinh

(
p1 − b
a

))
(m) (11)

Since we have individually clustered the LiDAR points of each
conductor, it is possible to compute important distances in
a very accurate way, by computing point-to-point: distances
between conductors inside the same power line, width of the
power line and distance between pylons. Furthermore, using the
classification described in (Martı́nez et al., 2016), the distance
to the closest vegetation, ground and building can be easily
computed.

2.6 Experiments and Results

To validate the results obtained in the classification of power
lines using the proposed algorithms, we conduct experiments
over two point clouds data sets obtained from different
sources: the point cloud corresponding to Rozas area was
provided privately, while the point cloud corresponding to
Diablo Canyon area was obtained from OpenTopography
(OpenTopography, 2010). The values of the necessary
parameters to run the algorithms are listed in Table 1 and
the characteristics of the points clouds are listed in Table 2.
The ground truth was acquired manually using the OLIVIA
software (Martı́nez et al., 2018). The results of the classification
are analysed attending to three parameters: correctness,
completeness and quality, defined as shown in Equation 12:

Table 1. Values of the parameters needed in the
algorithms.

Parameter Value
Hth 0.90
Wth 0.15 m
Rs 1.00 m
Cth 0.90
As 0.10◦

Gs 0.10◦

Nc 10

Correctness =
TP

TP + FP

Completeness =
TP

TP + FN

Quality =
TP

TP + FP + FN

(12)

where TP = true positives
FP = false positives
FN = false negatives

Table 3 shows that an average correctness of 99.24% was
achieved, while the average of completeness and quality is
94.50% and 93.84%, respectively. The correctness achieved
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Table 2. Technical data of the data sets used in the evaluation.

Data set Rozas Diablo Canyon
Source Proprietary OpenTopography
Num Points 3 585 186 8 097 766
Density (pts/m2) 16.18 10.50
Sensor RIEGL VW-480i Leica ALS50
Terrain Type Forest Steep hills

is higher than those reported by different authors, such as
(Zhu , Hyyppä, 2014) (93.26%), (Chen et al., 2018) (96.50%),
(Guo et al., 2016) (89.00%) and comparable to those found
in (McLaughlin, 2006) (99.80%) and (Wang et al., 2017)
(98.44%).

Table 3. Statistical results of the evaluation.

Data set Rozas Diablo Canyon

Correctness (%) 98.91 99.58
Completeness (%) 93.57 95.44

Quality (%) 92.61 95.06

The average completeness given in this paper is similar to
those found in (Chen et al., 2018) (94.80%), and superior to
(McLaughlin, 2006) (86.9%), (Guo et al., 2016) (86.00%) and
(Wang et al., 2017) (83.08%).

The correctness error is due to isolated points located at the
top of high vegetation, and aligned with any power line.
Completeness error is caused during the ICS stage, and it is
due to those points belonging to transmission lines that do not
pass this filter.

To increase the computational efficiency of the algorithms, the
point clouds are organised into an octree structure, as shown in
(Martı́nez et al., 2016). By using the octree, a higher neighbour
points locality in memory is achieved, which improves the
overall performance significantly. Also, both the ICS and the
Hough Transform are coded to be executed in parallel using
OpenMP. The following performance tests are carried out using
the multi core system Intel(R) Core(TM) i7-4790 CPU @
3.60GHz.
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Figure 10. Speed Up values for different number of
threads.

A common measure to test the quality of a parallel
implementation is the speedup. The speedup is defined as

the ratio between the execution time with n cores and with 1
core. The achieved speedup is shown in Figure 10. It presents
an almost optimal linear behaviour when using the 4 physical
cores. In the range of hyper-threading, from 4 to 8 threads,
the speedup decreases, due to bottlenecks related with memory
accesses.
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Figure 11. Execution times for different number of points.

Finally, Figure 11 displays the relationships between the
number of points and the execution times. In addition,
the relation between the number of detected points and the
execution times of the ICS and HT are shown in Figure 12.
The tests were performed over reduced versions of the Diablo
Canyon data sets. Note a linear growing of the execution
time until 5 000 000 points, when it starts to grow faster.
This behaviour is caused by the Hough transform and its high
computational cost when the number of detected points is very
high, as shown in Figure 12.
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detected points.
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The data sets used in the validation of the power line
classification were acquired for general purposes, so we can
consider that the obtained results in this paper are very
competitive against other methods, since some authors like
(Chen et al., 2018), (Guo et al., 2016) or (Liu et al., 2009)
used airborne LiDAR data sets obtained specifically to detect
transmission lines.

3. CONCLUSIONS

In this paper a general method to automatically detect and
characterise power lines is shown. A fast algorithm to select
power line candidates based on parameters was developed.
The proposed iterative candidate search yielded very good
results discriminating power line points from ground, buildings
and vegetation. After the selection of candidates, the power
lines were identified by applying the Hough transform, and a
method to split different conductors in each detected line was
developed. Finally, the position of the pylons was determined
using geometric tools.

A very high degree of correctness and precision was achieved
while keeping the computational costs very low. By applying
our algorithms, an average quality of 93.84% was achieved in
the power line detection. Our method has several advantages:
specific flights over power lines are no needed, since the
algorithms can be applied over any data set; not only
for classifying power lines, but for detecting its presence.
Furthermore, the algorithms are not restricted to a specific
type of environment: they yield good results in open areas,
urban zones and forest areas. Finally, it’s possible to
compute distances directly from point to point, which increases
significantly the accuracy of the measures.
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