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ABSTRACT: 

Processing unorganized 3D point clouds is highly desirable, especially for the applications in complex scenes (such as: mountainous 

or vegetation areas). Registration is the precondition to obtain complete surface information of complex scenes. However, for 

complex environment, the automatic registration of TLS point clouds is still a challenging problem. In this research, we propose an 

automatic registration for TLS point clouds of complex scenes based on coherent point drift (CPD) algorithm combined with a 

robust covariance descriptor. Out method consists of three steps: the construction of the covariance descriptor, uniform sampling of 

point clouds, and CPD optimization procedures based on Expectation-Maximization (EM algorithm). In the first step, we calculate a 

feature vector to construct a covariance matrix for each point based on the estimated normal vectors. In the subsequent step, to 

ensure efficiency, we use uniform sampling to obtain a small point set from the original TLS data. Finally, we form an objective 

function combining the geometric information described by the proposed descriptor, and optimize the transformation iteratively by 

maximizing the likelihood function. The experimental results on the TLS datasets of various scenes demonstrate the reliability and 

efficiency of the proposed method. Especially for complex environments with disordered vegetation or point density variations, this 

method can be much more efficient than original CPD algorithm.  

* Corresponding author – uavyufuzang@gmail.com

1. INTRODUCTION

During the last decades, advances in laser scanning technology 

have led to significant development of research and activities 

related to computer vision, topographic mapping, and terrain 

analysis [Xu et al., 2017]. Among them, terrestrial laser 

scanning (TLS) is frequently used for various applications (such 

as: object extraction, tracking, deformation detection, building 

reconstruction) since it can collect dense point clouds quickly 

and accurately. In such applications, processing unorganized 3D 

point clouds are inevitable and highly desirable [Li et al., 2016], 

especially for tasks in complex areas (for example: mountainous 

or vegetation scenes). However, to obtain complete information 

of an area or scene, multiple TLS stations are required, leading 

to the registration problem of transforming the point clouds 

from different stations into a same coordinate system. 

Various 3D registration methods have been proposed, 

demonstrating superior performance, but they usually need to be 

carefully designed to work well in specific environments. In 

general, an efficient registration of TLS point clouds should 

solve two major problems: extracting the registration primitives 

(geometric features) and determining the corresponding 

primitives [Habib et al., 2010]. However, in a complex 

environment, outliers caused by disordered vegetation, and 

occlusions caused by complex objects pose challenges for 

automatic registration. Specifically, various outliers or noise 

affect the extraction accuracy of registration primitives. For 

TLS datasets, point densities also vary considerable depending 

on the scanning distance and incidence angle. This varying 

point density decrease the reliability of extraction. On the other 

hand, complex as similar structures increase the number of 

mismatched correspondences since various similar local surface 

of one predefined level appear in complex environment.  

To tackle the aforementioned problems, we propose an effective 

TLS registration method for complex scenes by improving the 

CPD method. The CPD algorithm determines the optimal 

transformation between stations by maximizing a Gaussian 

Mixture Model (GMM) likelihood function. It takes the whole 

point cloud into consideration without extracting geometric 

features, and matches iteratively to maximize the values of an 

objective function. The method has a strong robustness to 

outliers or noise [Lu et al., 2018]. Besides, we designed a robust 

3D descriptor of a suitable covariance matrix to describe the 

geometric information of each point, ensuring that a global 

optimum is achieved. Considering all these factors, the core 

concept of our proposal is to combine the advantages of the 

covariance descriptor and CPD algorithm. Compared with 

original method, this method exhibits excellent performance 

and good applicability for complex scenes. 

1.1 Related Work 

Some existing methods use artificial markers to perform 

alignment between different stations [Kim et al., 2016]. 

However, the deployment and precise positioning of the 

artificial targets are generally labor-intensive and time-

consuming, especially for mountainous or riverbank scenes. 

To date, a variety of automatic registration methods were 

provided. Many classification methods have been proposed to 

classify them [Salvi et al., 2007]. According to the registration 
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errors, these methods are generally categorized into coarse and 

fine methods. The former provide initial transformation 

parameters for the latter. Without rough registration, fine 

methods are easy to fall into local minima. 

Most coarse methods are based on geometric primitives 

(including feature points, straight lines, spatial curves, regular 

planes etc.). Primitives (geometric elements used for 

registration) contain discriminative geometric information that 

facilitate the matching of correspondences. Specifically, feature 

points are usually extracted from point clouds to increase 

matching efficiency, [Ge, 2017]. Various feature point 

extraction methods are available, including SIFT [Pang et al., 

2012], SURF [Aoki et al., 2017], and DoG [Theiler et al., 2014]. 

However, feature point based methods are sensitive to outliers 

or point density variations. Apart from these, straight lines 

[Date et al., 2018] and regular planes [Forstner et al., 2017] are 

also popular primitives, but limited to artificial environments 

where regular features can be easily extracted. Besides, spatial 

curves [Yang et al., 2014] and curved planes [Raposo et al., 

2018] are frequently used as registration primitives as well, 

exhibiting good performance for free-form objects. However, 

for TLS point clouds of complex scenes, few effective spatial 

curves or curved planes can be found. These registration 

primitives based methods mainly apply matching strategies (e.g., 

index, conditional constraint or RANSAC searching) to search 

potential primitives, and use feature descriptors to measure and 

determine correspondences. 

Fine methods aim at refining the initial transformation. Typical 

fine methods are the Iterative Closest Point (ICP) algorithm 

[Besl  et al., 1992] and its variations [Dong et al., 2016; Li et al., 

2015]. ICP minimizes the objective function formed by the 

squared distances between the closest points iteratively to get 

the accurate transformation. Traditional ICP is limited by its 

narrow region of convergence. Good initial values are needed to 

avoid falling into a local minimum. Other registration methods 

are common used, such as: 4-points Congruent Sets [Mellado et 

al., 2014], Simultaneous Localization and Mapping method 

[Saeedi et al., 2014]. 

Recently, probability methods such as Coherent Point Drift 

show competitive performance in different scenarios.  CPD was 

firstly introduced in [Myronenko et al., 2010]. It treats the 

registration of two point clouds as a probability estimation 

problem. Based on motion coherence theory, Gaussian Mixture 

Model (GMM) centroids are fit to the point clouds using the 

Expectation-Maximization (EM) algorithm. The CPD algorithm 

does not need initial values, or a series of strategies to ensure 

enough correspondences. CPD offers superior accuracy and 

stability in presence of outliers. However, CPD only uses the 

constraint of distance between two point clouds to measure 

similarity, performing poorly on data with varying point density. 

1.2 Our Contributions 

In this research, we extend the CPD algorithm with a novel 

descriptor for robust registration of complex scene TLS point 

clouds. The main contributions and innovations are as follows: 

(1) A robust descriptor is proposed, using three feature values

between the current point and its neighbour to construct a

covariance matrix. Next, the generalized eigenvalues are

calculated to measure the difference between any two points,

making it robust to outliers and varying point density.

(2) Based on the descriptor, we extend the CPD algorithm by

improving its objective function and the posterior probability

function, to make use of distance information as well as robust 

geometric information provided by the descriptor. 

2. METHODOLOGY

Our proposed registration method consists of three steps: the 

construction of the covariance descriptor, uniform sampling of 

TLS points, and CPD registration procedures.  In the first step, 

the normal vectors of each point are estimated. Then, we 

calculate feature values to form a covariance matrix for each 

point. In the subsequent step, to ensure efficiency, we sample 

the TLS point clouds uniformly. Finally, we construct an 

objective function considering the geometric information 

described by the descriptor, and optimize the transformation 

iteratively by maximizing the likelihood function.  

The workflow is shown in Figure 1. The details will be 

introduced in the following sections. 

Figure 1. Workflow of the proposed method 

2.1 Construction of covariance-based descriptor 

Covariance is a method of decreasing the dimension, by 

quantifying the change of many variables together. Inspired by 

[Cirujeda et al., 2015], we constructed a covariance-based 

descriptor gathering shape information of a local surface. It 

offers many intrinsic advantages: invariant to spatial 

transformation, and robust to outliers and point density 

variation. 

For one point and its neighbours, the first step is to calculate the 

feature vector for each neighbour based on normal vectors. The 

feature vector of one neighbour jP is formed as:

 , ,j j j jF h  (1) 

Where, j is the angle between the normal vector of current

point iP and neighbour jP ; j is the angle between the normal

vector of neighbour jP and the vector from neighbour jP to 

current point iP ; j and j together reflect the shape of the

local surface (as shown in Figure 2(a)); jh is the distance from 

neighbour jP to the tangent plane L formed by normal vector of 

current point iP and a radius r (as shown in Figure 2(b)). This 

local distance describes the geometric scale of the local surface. 
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(a)                                               (b) 

Figure 2. Illustration of three local feature variables. (a) 

Deviation angle between normal. (b) Local distance. 

 

Based on the feature vectors of neighbours, we construct a 

covariance matrix for current point
iP , written as:  

                       
1

1
( ) ( )( )

n
T

j jr i

j

C P F F
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                  (2) 

where n is the number of neighbours within a specified 

radius;  indicates the average feature vector of neighbours. 

The covariance matrix contains the feature information of the 

local surface. We form a covariance matrix for each point to 

describe its local characteristics. 

 

Notably, the covariance formed by the feature vectors has 

different dimensional variables. To measure the dissimilarity 

between any two points reasonably, we use the generalized 

eigenvalues of two covariance matrixes, as: 

                       
1 2 2 2 2

1 2 3( , )r rD C C In In In               (3) 

where
1 2 3, ,   are the generalized eigenvalues of covariance 

matrixes 
1

rC and
2

rC [Tuzel et al., 2006]. The dissimilarity 

describes the geometric differences of the local surface well. 

 

The dissimilarity is normalized between (0, 1), written as: 
1 2

1 2( , ) exp ( , ) ,( 0.1 )f r r ff P P w D C C w in default       

                                                                                                (4) 

where
fw is a weight to increase the descriptiveness. Smaller 

dissimilarity value represents that the geometric difference 

between two points is small. 

 

2.2 Improved CPD algorithm 

 

The CPD algorithm considers the registration problem between 

two point clouds: 
3 1( ,..., )T

N NX x x  and 

3 1( ,..., )T

M MY y y  as an optimization problem of probability. 

It uses Gaussian Mixed Model (GMM) centroids to represent 

the points of source station
3MY 

. The points in the target 

station
3NX 

 are regarded as the points generated by the GMM 

centroids. When two point clouds
3NX 

and
3MY 

align well, the 

weighted sum (or objective function) of probability between 

two point clouds reaches the maximum. During the optimization, 

the degree of movement of each point from 3MY  is regarded the 

same (only one variance
2 used for all points), this is why the 

algorithm is called “coherent point drift”. The GMM probability 

density function of CPD is written as: 
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where ( )P m represents the probability of m-th GMM 

component occurs; ( / )p x m represents the probability of one 

point of
3NX 

occurs given that m-th GMM component has 

occurred, indicating that the probability of one point in 
3NX 

is 

generated by m-th GMM component centroid.  

 

In practice, it is impossible to match each point in 
3NX 

with 

each point in 
3MY 

 since outliers exist or two point clouds do 

not have 100% overlap. To account for this, the following 

formula is formed: 

                 
1

1
( ) (1 ) ( ) ( / )

M

m

p x w w P m p x m
N 

               (6) 

where 0 1w  , representing the amount of outliers. Then the 

EM algorithm is used to estimate the optimum transformation 

iteratively. During the E-step, the matching probability between 

any two points from 
3NX 

and
3MY 

 as well as the 

transformation are “guessed” first. Then Bayes’ theorem is used 

to compute the posterior possibility to construct a likelihood 

function. In the M-step, these parameters are updated iteratively 

by minimizing the upper bound of the objective function. 

However, only distance information is considered in the 

objective function, easily leading to incorrect positions (as 

Figure 3(b) shows). Considering this, we construct the objective 

function as: 

22
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where   represents the transformation parameters (R, T); 

( , )mT y   refers to the transformed point of
my ;

2 refers to the 

variance of all GMM components’ changing. 
PN is the sum of 

( / )old

E nP m x . ( / )old

E nP m x  is the posterior probability of any 

two points that considers additional geometric information, 

written as: 
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(8) 

Where ( , )n mg x y and ( , )n mf x y represent normal constraint, 

and the weight formed by covariance descriptor, respectively. 

They are written as follows: 
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where ( , )
myT n  represent the normal vector transformed by 

current transformation, 
nw  is the weight of normal constraint; 

D and
D are the mean and variance of the dissimilarity 

between two covariance matrixes.  

 

Then the algorithm iterates the E-step and M-step until 

transformation becomes stable. Finally, the transformed points 

of 
3MY 

are determined as
3 3 3 3 1( , ) T

MT Y R Y T     (as 

Figure 3(c) shows), and the probability of correspondence can 

be reflected by
EP .  

 
(a) 

  
(b)                                           (c) 

Figure 3. Registration results by original model and the 

proposed model: (a) Rendering results by normal vectors of two 

stations. (b) Registration result by the original model. (c) 

Registration result by the proposed model. 

 

3. EXPERIMENTS AND RESULTS 

3.1 Experimental datasets 

TLS point clouds of complex scenes are used to demonstrate the 

performance of the proposed method. Specifically, mountainous 

and river bank areas are selected (see Figure 4). The first dataset 

is about a mountainous area located on an Island in China. The 

second dataset is sampling a riverbank area, located in the 

Luogang district of Guangdong province China. Both datasets 

have lots of occlusions and noise. To test the method, we select 

four stations from them separately, and use Geomagic Studio 

2012 to simplify the original point clouds first. Detailed 

information on datasets used is listed in Table 1. 

 

 

   
(a)                                         (b) 

   
(c)                                          (d) 

   
(e)                                           (f) 

   
(g)                                          (h) 

Figure 4. Two TLS datasets of complex scenes: (a)-(d) T1 to T4 

stations of mountainous area, (e)-(h) T1 to T4 stations of 

riverbank area. 

 

Table 1. Detailed information of datasets 

 
 

3.2 Registration results 

Figure 5 (a)-(c) show the registration results of mountainous 

point clouds, and Figure 5 (d)-(f) demonstrate the registration 

results of the riverbank area. Table 2 lists the registration 

accuracy and precision. The mean error is calculated by the 

distance between two nearest points of the overlapping area. 

MSE refers to the mean square error. To ensure the efficiency of 

registration, TLS point clouds are uniformly resampled to about 

6000 points. The geometric information (e.g. normal vector, 

generalized eigenvalues) are computed based on the original 

point clouds. 
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(a)    

 
(b) 

  
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 5.  Registration results of two datasets: (a)-(c) 

registration of adjacent mountainous stations, (d)-(f) registration 

of adjacent riverbank stations. 

 

Table 2. Registration accuracy 

 
 

From Figure 5, we can see that different degrees of overlap, 

point density variation, and even missing of points exist in the 

datasets. However, Figure 5 shows that adjacent TLS point 

clouds were aligned well by the proposed method. It shows the 

robustness and reliability of the method, demonstrating that the 

proposed method is suitable for TLS data of complex scenes. 

Table 2 shows that the registration errors are small (about 

0.10m for mountain data, and about 0.15m for riverbank data).  

The RMSE shows the good global alignment statistically. 

Notably, these registration results can be improved further by 

fine registration method.  

 

     
(a)                                              (b) 

Figure 6. Registration details of Figure 5(f): (a) Building wall. 

(b) Bridge. 

 

Particularly, the last row in Table 2 shows that the registration 

accuracy of T3 and T4 from riverbank area is relative large 

(more than 0.20m). Some details of Figure 5 (f) are extracted 

and shown in Figure 6. It shows that there is a translation 

between the building walls, and the bridge floors. This is 

because the majority of points concentrates on the areas (like 

the road along the river) near the scanner. For the distinct areas, 

the point density is relative small. Thus, dense areas are easily 

matched together based on the constraints of probability. 

Therefore, in our future work, we will give different weights for 

the points with different point densities to compensate for that. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W13, 2019 
ISPRS Geospatial Week 2019, 10–14 June 2019, Enschede, The Netherlands

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W13-1169-2019 | © Authors 2019. CC BY 4.0 License.

 
1173



 

 

To evaluate the performance further, we applied the original 

CPD algorithm to register the TLS point clouds directly. The 

results are shown in Table 3. Table 3 shows that it has poor 

performance in complex environments. This also demonstrates 

the satisfactory performance of the proposed method. 

 

Table 3. Registration results by CPD algorithm 

 
 

To further evaluate the performance of robustness, we carried 

out experiments under different situations. We select station T2 

and T3 from mountainous dataset. Different amount of 

Gaussian noise was added to the point cloud. Besides, we use 

Geomagic Studio 2012 to sampling the point clouds with 

different average point span. 

 

Table 4 shows that noise exerts little influence on the proposed 

method since the mean error stays within 0.15m. The proposed 

method is also robust to varying point density. The correct 

position can be reached even with sparse point density (for 

example: 0.4m). 

 

Table 4. Registration accuracy of different situations 

 
 

4. CONCLUSION AND FUTURE WORK 

In this research, we propose an automatic registration method 

for TLS point clouds by improving the CPD algorithm, 

combining the geometric information described by a covariance 

descriptor to robustly register point clouds of complex scenes. 

The experimental results on TLS point clouds from different 

scenes demonstrates the efficiency and reliability of our 

proposal. Especially for complex environments with disordered 

vegetation or point density variations, this method is much more 

efficient than the original CPD algorithm. The proposed method 

combines the advantages of novel covariance descriptor and the 

CPD algorithm, which achieves a robust performance providing 

a good alignment.  

 

However, there are still some problems that need to be further 

investigated, for example, the probability of two points should 

consider the influence exerted by point density, which is the 

common phenomenon for TLS point clouds; Variance should 

be improved to improve the convergence efficiency. In the 

future, we will try to apply extended coherent point drift to 

consider geometric constraints more scientifically. Comparisons 

to other descriptors and registration methods will be carried out 

to explore the potential performance. 
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